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A high-temperature cluster series is derived for the partition function of an order-disorder-type hydrogen-
bonded ferroelectric crystal, taking into account a simplified interaction between protons as well as the over-
lap of the protonic wave functions between the two sites in a hydrogen bond. The zero-order result is the
Weiss molecular-field approximation, and the two-particle-cluster result reduces in the classical limit to the
Bethe treatment of the Ising model. The specific properties of crystal lattices can be taken into account in
higher order terms. The results of the above approximations as well as the results of an “Oguchi”-type
treatment, valid at all temperatures, are compared with exact solutions in the case of a simple soluble model.

I. INTRODUCTION

ITHIN the past several years, a considerable
effort has been made to understand the nature
of second-order phase transitions.! In particular, a recent
study of the far-infrared absorption spectra of KH,PO4
type ferroelectrics® has shown that the ferroelectric
transitions in these crystals cannot be explained simply
in terms of an instability of the lattice against a certain
vibrational mode as in the case of perovskite-type
ferroelectrics,® and that the order-disorder nature of the
transitions has to be taken into account. Contrary to
the case of the Ising and Heisenberg* models, however,
relatively little attention has been devoted to the sta-
tistical mechanics of order-disorder-type hydrogen-
bonded ferroelectric crystals.!-®

The elementary excitations from the ferroelectric
ground state of a simplified model of a KH;PO4-type
ferroelectric have recently been studied by de Gennes,®
but any really satisfactory treatment at intermediate
temperatures is still lacking.

Though the breakdown of the classical molecular-
field model near the critical point has been clearly
shown,®7 this model is still widely used because of its
simplicity.®* In particular, the quantization of the
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protonic vibrational energy levels (which seems to be
important for the ferroelectric behavior of such crystals
in view of the rather large isotope effects on replacing
hydrogen by deuterium,’ can be easily taken into
account within the molecular field model.*® Quantum
effects have so far not been incorporated in the Slater-
type theories’>!% of the ferroelectric phase transitions.
These theories, which have shown relatively good
results, though they were not able to give a really satis-
factory explanation for the observed isotope effects and
predicted a consistently too large heat of the transition,
are based on the specific properties of KH,PO4type
crystal lattices. They take certain interactions into
account exactly and others only on the average, but
neglect the quantization of the protonic energy levels.

The purpose of the present work is to derive a cluster
approximation for the partition function of an order-
disorder-type hydrogen-bonded ferroelectric crystal,
which should be capable of taking into account simul-
taneously all important interactions, i.e., short-range
and long-range forces as well as the effects of the quan-
tization of the protonic energy levels. The zero-order
result is the Weiss molecular-field approximation, and
the two particle cluster result is in the classical limit
identical with the Bethe!® treatment of the Ising model.
The specific properties of crystal lattices can be in-
corporated in higher order terms. As shown in a sub-
sequent paper, the four-particle-cluster result for
KH,PO4 reduces in the classical limit to the Slater-
Takagi-Senko-Uehling model of the order-disorder
transition in this crystal.

We would like to stress that our purpose is to derive
a high-temperature-cluster expansion, where successive
approximations are made by taking progressively larger
linked clusters. We do not claim that the leading terms
of this series represent a satisfactory approximation,
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though small clusters might be suitable for a description
of certain properties of ferroelectric crystals in a re-
stricted temperature range.

II. HAMILTONIAN

The basic aspects of our problem can be studied on
the following simplified model: each of the N protons
of our system occupies one of the two states k=1 or |
inside a given hydrogen bond and interacts with ¢
nearest neighbors. In the representation of localized
particles, the given problem is described by the follow-
ing Hamiltonian (Appendix A):

N
H=HAH;=3% [—T(S#+S8:)

t==]

"%JZG (mit—ny)(mp—n)], (1)

=1

where #; is the proton ‘“number” operator
k=1, (2)
and (Si++S:) is the proton “jump”’ operator

Sit=bittby,

Si=bulbit,
with &' and b, being the creation and annihilation
operators for the proton at the site ¢ and the state k:

V= b,’kT I 0).

The vacuum state |0) is defined as a state with no

proton present. I' stands for the proton tunneling
integral

Nig= b“kfbik )

©)

—'I‘,'= (‘I’,’t IHgl‘I/ﬁ), (4)

and J for the nearest neighbor’s interaction parameter.
In this paper we shall consider only the case J>0. The
assumption of the model that there is one and only one
proton in each hydrogen bond can be expressed by

nit+nia=1. (5)

The above model represents an extreme simplification
since the protons are assumed to move in a rigid lattice
potential, thus neglecting proton-lattice interactions.!
However, as shown in the subsequent paper, a major
part of this interaction as well as long range forces and
specific properties of crystal lattices (which have also
been neglected) can be readily incoprorated in our model
without changing the basic procedure, so that their
omission at this point seems to be justified. The same
is the situation with the effects of one proton on the
tunneling integral of another, which are as well taken
into account in the subsequent paper. The neglect of
higher vibrational states of the proton is not serious
since they are in the 2000 cm™ range, while kT, is of
the order of 200 cm™. It should be noted that for the

1 R. Blinc and M. Ribari&, Phys. Rev. 130, 1816 (1963).
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classical limit (I'=0) the above Hamiltonian reduces to
the Hamiltonian of the Ising model.

As ferroelectricity represents an example of the so
called “broken symmetry” [see, for example, R. H.
Brout, Phase Transitions (W. A. Benjamin Inc., 1965)]
the variational ground state of the above Hamil-
tonian can be easily derived with the help of a trial
function,

Y=TI [(cost)ba'+ (sind)ou’110),  (6)

1=]1

which has a lower symmetry than the original Hamil-
tonian. Minimizing the expectation value,

E6)=(¥|H|¥)=N[— (sin26)I'— (cos?26) (¢J/4)], (7)

with respect to the variational parameter 8, we find that
a partially polarized ground state with an energy

Ey=—N1?/qgJ+qJ/4) (8)

is stable as long as (2I'/¢J) <1. If we define a reduced
hydrogen-bond-dipole-moment operator as the differ-
ence between the proton occupation numbers of the two
possible states 1 and | within a hydrogen bond,

pi=nit—ny, 9)

then the expectation value of this operator in the ground
state,

po=[1—(2r/qJ ], (10)

depends on the ratio of the proton tunneling integral to
the effective strength of the interproton interactions.
The above model thus predicts a small mass dependence
of the saturation polarization of an H-bonded ferro-
electric crystal. Such effects have indeed been observed
in a number of H-bonded ferroelectrics as KH,PO,,
K4Fe(CN)s- 3H,0, Rochelle salt, etc.

III. CLUSTER EXPANSION

In order to make a cluster expansion feasible, let us
divide the Hamiltonian in an unperturbed part, which
will be treated exactly, and a perturbed part, which
will be taken into account only approximately. In
the unperturbed Hamiltonian, which is linear in the
hydrogen-bond-dipole-moment operators, we describe
each proton as moving in the effective average field (A)
of its neighbors, whereas the perturbation stands for the
difference between the instantaneous and the average
value of the interproton interactions, i.e., for the dif-
ference between the total and the unperturbed
Hamiltonian:

H=Ho -1, (11)
with
N N
Ho=) Ho:=) [—I(S:#+S7)
=] q==u]
—A(na—ny)+4A%/¢J], (12)
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and
N

H'=H—H,=Y [A(na—ny)

i=1

173 (ma—na) (p—nz)— A/l ], (13)

=1

The above division is equivalent to an expansion in
terms of hydrogen-bond-dipole-moment-deviation op-
erators. It is analogous to the expansion of the Heisen-
berg and Ising models in terms of spin-deviation opera-
tors by Horwitz, Callen and Strieb.* Here, as well as in
the work of the above-mentioned authors, the ‘“best”
value of the expansion parameter A is determined in
each stage by a minimization of the approximately de-
termined free energy. This procedure is based on the
Peierls theorem!® on the minimum property of the exact
free energy (which is an extension of the well-known
variational principle for the lowest eigenvalue of the
Hamiltonian) and the requirement that in each stage
the approximate free energy should be stable with
respect to small variations in the expansion parameters.
For an approximate determination of the free energy, a
high-temperature-cluster expansion is used. Following
the usual procedure, we divide the total free energy in
an unperturbed part Fo and a correction term F':

F=Fyt+F’, (14)
where
Fo=—FT InTr exp(—BHo)=NkT In Tr exp(—BHo.:) ,
(15)
and

F'=F—Fo=kT[In Tr exp(—BH)—In Tr exp(—BH,)]
=—kT In[Tr exp(—BH)/Tr exp(—BHo)],
(16)
with 8=1/kT. Defining an operator V by the equation
exp[—B(Ho+H')]=exp(—BHo) exp(—8V), (17)
we get F/ as

F'=—FkT In Trpo exp(—BV)=—kT In{exp(—BV)),
(18)

where the average is defined through the unperturbed
density matrix:

po=exp(—BH,)/Tr exp(—BH,) . 19)

The cluster approximation consists in an approximate
determination of the correction term F’ and hence of
(exp(—BV)). To determine this average, we must first
determine the operator V, which is not simply equal to
H'’ since Hyand H’ do not commute. It should be noted
that in the case of the Heisenberg ferromagnet® H,
and H’ commute.

18 R. E. Peierls, Phys. Rev. 54, 918 (1938).
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As shown in Appendix B, the operator ¥V can be
written as:

V=H'+(8/2)[Ho,H' ]+ (8*/3)[Ho,[Ho,H'] ]+ - -.
(20)

In order to be able to expand (exp(—BV))in a cluster
series, let us first rearrange the perturbation term H’
and the operator V into a sum of links (particle pairs)
after which it will be quite easy to regroup the terms of
this series so that they refer to clusters of protons.

From Eq. (13) we note that H’ can be written as

N ¢

H=33% 0:i=2 Qa,

i=1 i=1

(21)

where the index « numbers the pairs (z7) or links in the
system:

Qa= (4/q) (it —ni+njs—n;1)
= (J/2) (s —nas) (mjs—mnja) .
Using Eq. (20) we see that V is given by
V=32 Q=2 0, (22)
1] a

with

0u'=Qurt (/20 HoQuT+ /3N HoLHoQuT

Using the cluster-expansion technique of Kubo,!® we
regroup the above expression for (exp—pV)) into a
cumulant series

1n(exp(—/3V))=1n(exp(—B 2a Qa,»:Zm Ko, (24)
where K. is determined by the number (m) of links it
comprises and hence by the magnitude of the cluster:

Ki=3% K.:(Q),

K,= Z:ﬂ K, (Qa’,Qﬁ,) ) (25)

K.= Z Kﬂ(QavaﬂI:' : 'Qﬂ’)'

B,

Here K1(Q.') is the collection of all the terms in the
cumulant series, which contain the variable Q,,
K2(Q.',Q4") the collection of all the terms that contain
two variables Q.’, Qg’, etc. Following Kubo, we have

expK1(Qa")=M1(Q") = (exp(—8Q.")),
expKa(Qa’,06") = M2(Qu',08")/ M1(Qa Y M1(Q4') ,
with

(26)

M, (Ql!liQﬂ,) = (eXP[—'ﬁ(Qa"*‘Qp')]), etc.

Every cumulant K, can be evaluated in terms of
functions M., where m’<m. The basic advantage of

9 R. Kubo, J. Phys. Soc. Japan 17, 1100 (1962).
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the above expansion consists in the fact that the
logarithm of the average of a term of 3¢V links has been
written as a series of averages over one, two, and more
links, so that the leading terms of this series can be
easily evaluated. Successive approximations are made
by taking progressively larger linked clusters; this pro-
cedure involves the diagonalization of progressively
larger energy matrices. It is important to note that the
above expansion is valid though the Q. do not
commute.

IV. ZERO-ORDER APPROXIMATION
THE MOLECULAR FIELD

Let us first evaluate the zero-order term represented
by the unperturbed free energy Fo. Here every proton
moves in the average molecular field of its neighbors,
A, and Fy is easily obtained as

Fo=—NET In2 coshB(I?+ A2+ NAY/qT . (27)

The mean value of the molecular field A is determined
by a minimization of Fo with respect to A:

0F/dA=0. (28)

Equation (28) represents in fact a consistency relation
for A and can be explicitly written as:

[(24/¢J)*+ (21/qJ)*]/*=tanh
X{B(¢J/2)[(24/9])*+ (2T/¢])* T2} .

This equation, which determines the temperature de-
pendence of A as well as of the spontaneous polariza-
tion—since (p)=2A/¢J as it follows from (9H,/9A)
=9QF,/dA=0—is identical with the expression obtained
in the usual molecular field treatment.’® The polariza-
tion at T=0 is the same as the one obtained by varia-
tional determination of the ground state [Eq. (10)].
The model shows a considerable isotope effect in the
transition temperatures, which are determined as solu-
tions of Eq. (29) for A=0:

2T'/qJ = tanh (A1) .

(29)

(30)
V. FIRST APPROXIMATION:
TWO-PARTICLE CLUSTER

In the two-particle-cluster approximation, which
corresponds to m=1 (one link per cluster), and already
includes some short-range correlations, we have

{exp(—BV))=eX1=T1.[Trpo exp(—BQa’)]
=[Trpo exp(—BQa)]%V2; (31)

the correction term to the free energy is obtained after
a straightforward manipulation as

Foy'=—kTX3qN[In Tr exp(—BH 2))
—21InTrexp(—BH )],

where H 2y and H ) are the two- and single-particle-

(32)
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cluster Hamiltonians:
Hoy=—T(S++S7+5++S5,)
—A(1—-1/¢) ma—na+ni—n;)
—(J/2)(mir—ni) (njr—nj),, (33)

Hay=—T(SH+S)—Ama—na) .
The total free energy in this approximation equals

Fay=—kTN{(g/2) In Tr exp(—BH 2))

+(1—¢) InTrexp(—BHw)} . (34)
Minimizing F 3y with respect to A,
8F (3y/6A=0, (35)

we find that the average field is determined by the
solution of the following equation:

Tr(ma—na)owy=3 Tr(ma—na+np—nilpey  (36)
where
py=exp(—BH ))/Tr exp(—BH 1)) (37
is the single-particle density matrix, and
pey=exp(—BH )/ Tr exp(—BH (2)) (38)

the two-particle density matrix. The physical meaning
of Eq. (36) is that the value of the molecular field A
which minimizes the free energy is such that the canoni-
cal-ensemble average of the dipole-moment operator
p.=ni—nq is the same when computed from either
the one-particle or the two-particle density operator.
From Eq. (36) the temperature dependence of the
ensemble average of the expectation value of the dipole
moment, i.e., the temperature dependence of the spon-
taneous polarization can be computed (Appendix C).
Some results are shown in Fig. 1. It can be seen that the
transition temperatures (i.e. the temperatures at which
the molecular field A and the associated long range order
vanish) decrease with a decreasing number of nearest
neighbors. In the limiting case, g= o, the two-particle
cluster yields the same results as the molecular field
approximation. In contrast to the molecular-field case,
however, there is no transition for a linear chain, i.e.,
for ¢g=2. The accuracy of the obtained results can be

Fic. 1. Transition
temperatures as a
function of the tunnel-
ing integral in the two-
particle-cluster ap-
proximation.

I~

o
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best judged by a comparison with the exact solutions of
the Ising model (I'=0). For instance, for g=4, the ratio
of the transition temperature, derived from the above
two-particle cluster, to the exact transition tempera-
tures is T'e,2/ T e, exact=1.275. Similar to the molecular-
field case, the transition temperatures decrease with an
increasing value of the proton tunneling integral.

The increase of the spontaneous polarization in the
vicinity of the transition temperature (Fig. 2) is, for a
finite g, significantly sharper than the one obtained in
the molecular-field case, thus demonstrating the im-
portance of short-range correlations in the neighborhood
of T.. The shape of the specific-heat anomaly

C=8W/oT, (39)
with
W=1%qN TrH;p(2)
H;j=—(T/9)(SH+Si+S++S57) (40)

=T (mir—nu) (njp—mnj) ,

and particularly its high-temperature tail (for T>T,),
are as well very sensitive to short-range order correla-
tions (Fig. 3). Whereas there is no such high-tempera-
ture tail in the classical limit (T'=0) of the molecular-
field approximation, there is one in the corresponding
two-particle cluster case. In the quantum case (I'#0),
however, a small high-T tail is found even in the molecu-
lar-field case (where above T'; each proton is assumed to
move independently of its neighbors).
In this case we have

W=N[—21%/¢J— (¢J/4))"], T<T.,

and (41)

W=NT tanh(BT"), T>T..

The anomalous-specific-heat tail in the two-particle
cluster is thus a combined effect of short-range correla-
tions, which in this approximation persist even above
T., and quantum phenomena due to proton tunneling.
A measurement of the specific-heat anomaly on a deu-
terated and an undeuterated sample of the same com-
pound could determine the relative weights of these two
contributions.

F16. 2. Temperature
dependence of the re-
duced dipole moment
in the two-particle-
cluster approximation.

—_— LiN
qJ
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Fic. 3. Anomalous %
specific heat as a 0ok
function of tempera- r
ture in the two-
particle-cluster ap- 0.t

proximation.

VI. HIGHER ORDER APPROXIMATIONS

Higher order approximations reflect the specific
properties of crystal lattices and should be based on a
knowledge of the crystal structure of the compound we
are studying. In the three-particle cluster case, which
represents the next approximation, we have, depending
on the crystal structure, two different types of contribu-
tions to the correction term: the contribution of joined
pairs of links (V-type linkages, 2Q’ term) and the con-
tribution of triangles (three Q’ term), which occur if two
nearest neighbors share a common nearest neighbor
(fcc lattice, for instance). For the case of KH,PO4, on
the other hand, the smallest cluster which is compatible
with the crystal structure is a four-particle one, which
takes into account the correlations in the motion of the
four protons surrounding a given PO, group.

Rather than to go into details of this specific case,
which is treated in the following paper, we would like
to stress that, whereas the above expansion is exact for
I'=0, it is only a high-temperature expansion for T's£0.
The two-particle cluster, in particular, breaks down at
low temperatures, if I'#£0, and shows an anti-Curie-
point (similar to the one obtained in the Peierls-Weiss
approximation of ferromagnetism), which however,
vanishes for I'=0.

VII. “OGUCHI”-TYPE SMALL-CLUSTER
APPROXIMATION

In view of the occurrence of an “anti-Curie” point in
the two-particle-cluster approximation for I's40, it seems
worth while to look for a small-cluster treatment, which,
though perhaps less accurate than the above high T ex-
pansion, would not be limited to the neighborhood of
T . and would work for any value of I" even at low tem-
peratures. Such an approximation can be relatively
easily constructed along the lines of Oguchi’s® treat-
ment of ferromagnetism.

Let us consider the case of a two-particle cluster,
where the interactions between the two protons in the
cluster are taken into account exactly, and all the other
interactions only on the average, i.e., the instantaneous
values of the dipole-moment operators p of the H bonds

2 T. Oguchi, Progr. Theoret. Phys. (Kyoto) 13, 148 (1955).



external field.

P P Fic. 4. Exactly
P Iy soluble model, con-
i 2 1 sistin of three

/ linked H bonds in an

outside the cluster are assumed to be equal to their
mean value (p):

Hmé [—T(SHS7)—3at (1—1/a)()
X ma—niy)]—3J (nn—ny) (ma—ny) . (42)

The consistency relation is obtained from the require-
ment that the mean values of the dipole moments of the

R. BLINC AND S.
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H bonds within the cluster pi= (#1t—ny) and
pa= (n21—n23) should be the same as the mean dipole
moments of the H bonds outside the cluster:

O =Hprtp) =3 Tr S (ra—na)

sm=]1

Xexp(—pH1,2)/Tr exp(—pHy,2) . (43)
In the representation of localized particles,
|1)=b11b211|0)
[2)="b111b241]0), (44)

|3)=01415211|0)
[4)=01415:1|0)

we obtain the Hamiltonian of the two-particle cluster
in matrix form as

—(1—144})(;>—1/2q —l%qf —I;)/qJ (}J

= - —-T 45

Ha=oT| s Y ey )
0 —T/¢J —T/qJ (1—-1/9)(p)—1/2q

The consistency relation, Eq. (43), can be now written
in the form

P)=2: (ca®—cia?) exp(—BN;)/ i exp(—pBN) , (46)

where the ¢;; are the eigenvectors and \; the eigenvalues
of the above matrix (45). Both A; and ¢; are of course
functions of {p). By solving Eq. (46) we can get the
temperature dependence of the spontaneous polariza-
tion at all temperatures as there is no anti-Curie point
even for I'20. The transition temperatures are in
general intermediate between those predicted by the
molecular-field method and those obtained from
Eq. (36). In particular, Eq. (46) predicts, in contrast to
the two-particle-cluster-expansion case, a Curie point
for a linear chain. Thus this treatment does not seem
to be as good an approximation as the corresponding
two-particle cluster-expansion term (34), but it has the
advantage that it works at all temperatures.

VIII. COMPARISON WITH AN EXACTLY
SOLUBLE MODEL

In order to get a better feeling for the relative merits
of the molecular-field, two-particle cluster-expansion,
and two-particle Oguchi-type approximations, let us
compare their predictions with those of an exactly
soluble model.

Let us consider a linked system of three hydrogen
bonds in an external electric field (Fig. 4) and compare
the temperature dependence of the field-induced dipole
moment, obtained by an exact solution of this system
with the one obtained on the basis of the above
approximations.

The Hamiltonian of the above system can be written
as

HA=23 [—P(S{++Si—)"ME(”if_nil)]

i=1

—3J[(mn—ny) (ma—ny)+ (nar—nsy)

X (nst—nsy)+ (nat—nay) (ny—mny)], (47)
where E is the external electric field and
e=ep(¥ir|£:| Vir) (48)

is the expectation value of the dipole moment of the
1th H bond with the proton (having an effective charge
e,) fixed in the kth site at a distance {; from the center
of the H bond.

The above Hamiltonian can be exactly diagonalized,
and the free energy and the mean value of the field-
induced dipole moment obtained as

Fa=—kT InTr exp(—BH,) ,

3 (49)
3up)=—08Fa/SE=pTr Y (na—nuy)pa,
=1
respectively, where
pa=exp(—BHa)/Tr exp(—BHa,) . (50)

In Fig. 5, the temperature dependence of the field-
induced reduced dipole moment (), obtained from
Eq. (50), is compared with the predictions obtained
from the corresponding molecular-field, two-cluster-
expansion, and two-cluster Oguchi approximations for
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F16. 5. Mean value of the field-induced dipole moment in the
three-H-bond system as a function of temperature: (a) molecu}ar-
field approximation. (b) “Oguchi” two-particle approximation.
(c% two-particle-cluster expansion approximation. (d) exact
solution.

the Hamiltonian (47). As can be seen, the exact solution
gives by far the smallest field-induced dipole moment,
whereas the two-cluster-expansion result represents a
remarkably good approximation at higher temperatures
though it fails as 7— 0. The “Oguchi” two-cluster
result is intermediate between the one predicted by the
two-particle expansion and the molecular-field method,
and shows no anomalies as 7— 0.

APPENDIX A

Let us indicate a short derivation of the interaction
term in Hamiltonian (1).

The interaction V(r,’) between two H-bonded
protons ¢ and ', which move in double minimum po-
tentials, can be written in the representation of local-
ized particles as

Ionanir Imanoy+I_mangr+Imangy, (A1)

if overlap terms can be neglected. Here
Lo=(TaWit|V(rir) | Wu¥at),
L=V, | V(rre) [ Wa¥o),
Iy=¥ Wit |V (rire) [ Wir¥or),
L=V |V (rira) [ WaWoy) .
Using the constraint (5) that there is one and only one
proton in each H bond, and summing over all proton

pairs in the crystal, the interaction Hamiltonian can be
written up to constant terms as

Hi=% Z (=Jiw)(na—ny)(mir—niy),  (A3)

(A2)

with
Jiw=[To+12)/2— (I1+1_1)/2]ic
APPENDIX B

In this Appendix, we shall indicate a short derivation
of expression (20) for the operator ¥, which has been
defined by the equation

exp[ —B(Ho+H') ]=exp(—BHo) exp(—BV) .

(A4)

(B1)
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Let us introduce a function %(s):
u(s)=exp[—B(Ho+H')s], (B2)

which is the solution of the following differential
equation:

du(s)/ds=—u(s)[BHo+BH"], (B3)
with #(0)=1. If we now define a new function v(s):
u(s)=exp(—BHos)v(s), (B4)
we may easily see that this function is a solution of
dv(s)

— = el —BHwIBH explBHusT(s),

(BS)

with 2(0)=1. Using the identity

exp(a)b exp(—a)=>b+[a,b]+ (1/2)[a,[a,0]]+- - -,
we can write Eq. (B5) as
dv(s)/8s=—B{H'+sB[Ho,H ]+ (s*/21)8?

XEHO)[HCHH,:D. : '}'U(S) ] (B6)
and obtain, after integration between 0 and 1,
exp[ —B(Ho+H')]=exp(—pBHo)
Xexp(—B{H'+ (8/2)[Ho,H"]

the desired expression for V.

APPENDIX C

Here we present explicitly the expressions from which
the temperature dependence of the spontaneous polari-
zation and the transition temperatures are calculated
in the two-particle-cluster-expansion approximation.

The two-particle cluster Hamiltonian (33) can be
transformed into a simpler form and written as

—J/2 —2r 0 —2A(1—1/g)
e —2r Jj2 0 0
2= 0 0 J/2 0 ’
—20(1-1/¢) 0 0O —J/2

(C1)
whereas the consistency relation (36) amounts to

A tanh (B[ A2+T?712) /[ A24-T2]v2
4 4
=2 '21 cica exp(—PN:)/2 exp(—pBN), (C2)
= =1

with the ¢;; and the \; being the eigenvectors and
eigenvalues of the matrix (C1). The transition tem-
peratures are again obtained as the boundary of the

region beyond which Eq. (C2) ceases to have nonzerg
solutions for A.



