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CHARLEs R. Wxr.Lis

Boston University, Boston, Massachusetts

(Received 23 December 1965)

Ke derive the kinetic equations for the coupled single-particle density matrix p and the electromagnetic
density matrix R to lowest order in the dirnensionless coupling constant P'—= (oui/co&)~. The laser frequency
fdl is (~) I~2(Jtrp~)ll~~o where J(, is the number of two-level systems per unit volume, ro is the classical elec-
tron radius, ), is the wavelength of the radiation, and k~0 is the two-level energy difference. The Doppler fre-
quency co& characterizes the center-of-mass motion. For gas lasers P' is much less than 1 and, consequently,
we generalize and use the Bogoliubov derivation of kinetic equations for weak interactions. Ke 6nd solutions
when the average Geld vanishes and which include spontaneous emission correctly. The single-particle den-
sity matrix and the radiation density matrix are coupled through their second moments. When we substitute
the solution of the second-moment equations into the density-matrix equations, we 6nd that each density
matrix satis6es an uncoupled linear equation with known time-dependent coefficients. We introduce and
discuss dissipation from the density-matrix point of view. W'ith the use of the density-matrix formalism we
indicate that the correct expansion parameter for higher order kinetic equations is p'.

I. INTRODUCTION
' 'N this paper we derive to order P' (the dimensionless

coupling constant deiined below) and partially solve
the kinetic equations for the single-particle density
matrix and the electromagnetic-field density matrix.
Our system consists of X two-level systems interacting
with radiation in a cavity. Ke include dissipation,
pumping, and center-of-mass motion but we do not in-
clude noise. In a previous paper' we showed that the
center-of-mass motion of the atoms in a gas laser is so
rapid that the nonlinear differential-integral equations
for the average electromagnetic fields are adequately
represented by nonlinear differential equations. %'e then
were able to solve these equations exactly in the self-
consistent-fieM approximation which we refer to as the
SCFA. The intuitive reason for the success of the slowly
varying condition on the average electromagnetic fields
(with the fast unperturbed time dependence removed)
is that there are two dynamical processes that compete
with each other. These are a rapid frequency shift
ru„= k v produced by the velocity of the center of mass
and a change in the average electromagnetic field due to
the interaction with matter. In gas lasers the measure
of the center-of-mass motion co~ is greater than the fre-
quency co~ which measures the electromagnetic-matter
interaction. The definition of ~1. is (4~) '~'(KroX')'~'u

where JL is the number of two-level atoms per unit
volume, ro is the classical electron radius, and X is the
wavelength of the radiation. Consequently, P=—(col/cubi)

is much less than 1 and the rapid motion of the center
of mass causes a fast oscillation in phase and a cancella-
tion of the nonlocal time dependence during the time
that it takes for the interaction to produce a change in
the average field.

In this paper we do not directly apply the slowly

*The research reported in this paper was sponsored in part by
the U. S. Air Force Cambridge Research Laboratories, Once of
Aerospace Research.

I C. R. Willis, J. Math. Phys. 6, 1984 (1965);hereafter referred
to as I.

varying condition, but use instead the essentially
equivalent Bogoliubov' asymptotic condition and ex-
pansion procedure based on the smallness of P'. We are
thus able to go beyond the results of I in several differ-
ent ways. First, we treat the full density matrix, not just
the lowest moments of the density matrix, and thus we
can solve the coherence problem for our model. Second,
this paper includes spontaneous emission which does not
aBect quantitative values appreciably, but provides the
trigger for the approach to the steady state and main-
tains the commutation relations. Third, the density-
matrix method allows us to carry out a consistent treat-
ment of dissipation. This helps to avoid errors that are
sometimes made when phenomenological decay con-
stants are introduced in nonlinear operator equations.
Fourth, previous laser theories" ' have been based on
the existence of a nonvanishing electric field. We show
that the steady state is almost the same whether the
average field is zero or nonzero. There is a slight diGer-
ence in the dependence of the steady state on the relaxa-
tion times. The fifth purpose of this paper is to provide
the foundation for the calculation of higher order terms
in P which we will present in a second paper. In this
paper and in the second paper there is no requirement
that the system must be near threshold. As long as
P'«1 we can be as much as a thousand times above
threshold. Previous theories including those of the
author have missed the largest term to order P' because
the early introduction of average values wiped out the
quantum interference terms.

In Sec. II we generalize the Bogoliubov' expansion
procedure and use the generalization to derive the
equations of motion for the coupled single-particle
density matrix and radiation-density matrix to order
P'. We solve the coupled moment equations in Sec. III.

2 N. N. Bogoliubov, in Shak'es in Statistical mechanics, edited
by J. De Boer and G. E. Uhlenbecl {North-Holland Publishing
Company, Amsterdam, 1962), pp. 5-118.' W. E. Lamb, Phys. Rev. 184, A1429 {1964).

176, 58 (1963).
'H. Haken and H. Sauermann, Z. Physik 173, 261 (1963)
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With the solution of the moment equations we uncouple
the equations of motion of the matter and radiation
density matrices and show each matrix satisGes a linear
equation with known coefficients. We do not introduce
dissipation in Secs. II and III in order to see what role
exact dynamics plays as compared with dissipation. In
Sec. IV we introduce dissipation and solve the moment
equations approximately but quite accurately. We
discuss some important features of the higher order
terms in the solution of the density matrix of the system
in Sec. V.

II. KINETIC EQUATIONS FOR THE
RADIATION AND SINGLE-PARTICLE

DENSITY MATRICES

Our Hamiltonian for ~V two-level systems interacting
with the electromagnetic Geld is

H(N) =h(N)+Hr+H;+H. . . , (2.1)
where

h(N) = (hpip/2)P o; Hi ——hQ(a~a+-', ),

H;=hippy yl'(X )(a&o +ao t},

&fw
ih +[fbi, h(N)+Hf+H, (t)]=0

Bk

(2.3)

The definition of H, (t) is

H, (t) = hoop P I'[X.(t)$(ato.+ao.t),
where X (t) is the solution of Hamilton's equation of

motion for the center of mass with the Hamiltonian
EI,

When we take the trace of Eq. (2.3) over ail variables
except the radiation variables, we obtain the equation of
motion for the radiation density matrix E

BE
i h +[R,H—r]

B3

= tr, ,,...~ dx, . dP~[H;(t), fw'j, (2.4)

motion, H, , from the density matrix by the following

transformation:
Lc.m. tPN

where
BII, B BH,—iL,

a BX~ BPrtt BPrtr BXrr
and

a 2m a p a i

P 2
N M

H, =Q + ', Q Q V(-X —Xp)+P P U(X —it;). where

R—= trr, p, ...ii dXr. . dPiif~.

The a~ and a are the usual creation and annihilation
operators for a single mode of the electromagnetic Geld
in the cavity. To minimize the number of subscripts we
consider only a single mode. The operators for the
internal degrees of freedom of the ath atom are

Oat= ) &a= ) Oa=

We drop the nonresonant terms from H,. as we did in I.
The definitions of y and I'(X ) are

The symbol tr& 2 ...& represents a trace over a complete
set of variables for the internal degrees of freedom12. N.

Similarly the equation of motion for the single-
particle density matrix is

Bp
«i—+[t,h(1)j

= trp, ...ii tr, dXi dP&[H, (t),&3, (2.5)

y = (hoop) '(hQ)'t'e(a
~

s r
~
b) (4ii/V)'"

I'(X ) =E(X )V"',
where

p—= trp ...ii tr, dXi dPiif~
where E(X ) is the normalized eigenfunction of the
cavity corresponding to the frequency 0, and V is the
volume. We treat the center of mass classically as 1V

atoms interacting with each other and with M pump
atoms through two-body forces, V(X —Xo) and
U(X —it, ), respectively. The X is the coordinate of
the center of mass of the nth atom and q, is the center
of mass of the ith atom.

The equation of motion for the density matrix of the
total system is

ih(BF~/Bt)+[Fbi, H(N) j=0, (2.2)

where [A,Bj is the commutator of 3 and B.We remove
the time dependence generated by the center-of-mass

and tr, represents a trace over a compl. ete set of vari-
ables for the radiation oscillator.

The equation of motion for the center-of-mass dis-
tribution function in the interaction representation is

(X 1
' ' Pjv, t) = tri, p, ...iv tr, [H; (t),fii j.

Bf

In this paper we assume only free-particle motion
with a Maxwellian distribution of velocities; conse-
quently, we do not need to consider the center-of-mass
distribution function further. However, if we wish to
treat the eGects of collisions carefully we have to include
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a careful analysis of the center-of-mass distribution
function.

We use Bogoliubov's' approximation scheme to solve
Eqs. (2.4) and (2.5) to order P. Bogoliubov developed
a systematic approximation scheme to solve for the
distribution function of many-body systems. He found
a class of solutions where the time dependence of many-
body distribution functions were functions of the
single-particle distribution function and then found a
nonlinear kinetic equation for the single-particle dis-
tribution function. We need to make two generalizations
of Bogoliubov s original derivation. First, we need
the quantum-mechanical generalization which consists
simply of replacing the Poisson brackets of A and 8 by
(i/k) times the commutator of A and B Since. we are
interested in two sets of variables, the internal variables
and the radiation variables, we must have two difI'er-
ent single variable density matrices R and p. This
second generalization to two sets of variables is also
straightforward.

Bogoliubov considered the problem of g particles in
a volume 0 interacting classically through the potential
energy P(q, —q,) where q; is the position of the fth
particle. He showed that if asymptotically the correla-
tions between particles vanish, then the equation of
motion for the single particle distribution function Ii~
to order e' is

BFg
(t,Xg) = [Hp, Fg]

R

[p(q) —q2); F) (t,X))Fg(t, X2)]dx2

term corresponding to the linear term in Eq. (2.6)
is zero.

Since the generalizations of the Bogoliubov derivation
of Eq. (2.6) are straightforward, we give only the results
here:

az—= ——[Hr,R]—$'Sa&0' tr) dXdP
Bt A

X d [H;,[H;( ),Rpa, jj, (2.7a)
0

Bp—= ——[k(1),p]—y'a&0' tr, dXdP
R

X dr[H„[H, (r),RpG:)]], (2.7b)
0

where S~(X,P) is the single-particle center-of-mass dis-
tribution function which we take to be Maxwellian.
The definition of H, (r) is

H, (r) =g I'[X,(r)](uta e'~'+ca, te '~'), (2.8)

where 6—=&ae—Q. In H, (r) we use

pilaf rgag
—iHJ' r pter

—iQr
7

Zih(1) rap
—ih(1) r 0 gioeor

and. their complex conjugates.
The time integrals in Eqs. (2.7a) and (2.7b) are

2

+— 4'(q). q2)

cur)
—'C= e'~'( 'I [X(r) ]I'( X))„dr

0

(2.9)

F,(t,xg)F, (t)X2) dXg, (2.6)

where X—= (q,P), w= 0/Jq, e is the sm—all dimensionless
interaction constant and F~(t,X) is the single-particle
distribution function. The notation in this paragraph is
Bogoliubov's' notation and Eq. (2.6) above is his
Eq. (10.18). In the classical problem the term linear in
e vanishes when the single-particle distribution function
is independent of position. The term in Eq. (2.6) pro-
portional to e' consists of a double commutator of the
interaction potential evaluated with a time displace-
ment 7-. The propagation in the time v is by means of
the unperturbed Hamiltonian.

Here we consider solutions in which the center of mass
distribution is spatially homogeneous. Consequently
when we perform the spatial integration over the po-
tential H; in the term corresponding to the term linear
in e in Eq. (2.6) we obtain zero. This means that the

(r[X(&)]r(X))..
sink(X —Vr) sinkXP&(X, V)dXdV

( mV'
=(&ao/k)(sin'kX), coskV exp~ dV'

0 &2keT

Mgp T= (sin'kX), „exp
2

(2.10)

where coD=k(keT/ )"', ke is Boltzmann's constant,
and T is the temperature. The Doppler width co~ is the

and its complex conjugate. We introduce a factor coD '
so that C is dimensionless. The average in Eq. (2.9) is
over the center-of-mass distribution function 5~. For
free-particle motion X(r) =X(0)—Vr For definite. ness
we consider a rectangular cavity, thus I'(X) =sinkX.
Consequently, the average in Eq. (2.9) is
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largest frequency in the problem excluding 0 and cop. We
consider a homogeneous system so that {sin'kX}ply

We substitute Eq. (2.10) in Eq. (2.9) and obtain

1
C= C—tt+t'Cz= - exp(t'A{ ',—P-)di

2 p

(2.7b), we obtain

az—=—[Ht,R]
Bt

~2@~ 2

trq([ata+aat, [Cata+C*aa t, Rp]J) (2.12a)

exp +2'i sining

Xexp( (df, (2.11)
k 2)

w"«e &= (~0—&)/con and a bar over a frequency or
relaxation time indicates it has been made dimension-
less with co~.

When we substitute Eq. (2.11) in Eqs. (2.7a) and

Bp=—[h(1) pJ
at fi

P GOp

tr, ([ata+aat, [Cata+C*aat, Rp]J) . (2.12b)

Kith the help of the commutation relations for the
radiation and matter operators we evaluate the double
commutator in Eqs. (2.12a) and (2.12b). After a little
algebra, the result is

La a+aat~[Cata+C «t,Rp]5 =C{atatR[a,[a,p]]+at[at,R][a,pa]+ [at,atR][a,pa]+au tR[a t, [a,p]]
+a[a',R][at,pa]+[aatR)[a, p]a'+ [a,[at,R]5paat}

+C {ataR[a,[at)p]]+at[aR][a)pat]+ [at,aR][at,p]a+ [at, [a,R]]pata

+aaR[at, [at,p]5+a[a,R][at,pat]+[a,aR][at,p]at}. (2.13)
W"en we ta« th««ce of Eq. (2.13) over the matter variables and substitute the result in Eq. (2.12a), we obtain

BR/Bt+ (t'/k) [Ht,R]=—V'& p'

(C{n+[u)atR]+n ([a)Lat&R]5 [a,atR])}-
G)D

+C*{n+([aR,at]+ [at,[a,R]]) n[a,R—at]}), (2.14)

wh«e n+= (ata) and n —= (aa t). Since a and at satisfy anticommutation relations, we have n++n = 1.The symbol
+ represents the average occupancy of the excited state per atom and n represents the average occupancy of the
ground state per atom.

In order to obtain the equation of motion for p we ta« the trace of Eq. (2.13) over the radiation variables and
substitute the result in Eq. (2.12b). This yields

P Mp
8p/itt+ (i/ttt) [k(1),p] = — (C{(atat) [a,[a,p]]+[a,pa] tr~ t[at,Ra]+ (aat) [ a[tpaJ]+ [at,pa] trina[a, R]}

+C*{(aat)[a [at p]]+[a,pat] tr,at[a,R]+(aa)[at, [at,p]]+[at,pat] trina[a, R]}). (2.15)
The second and eighth terms on the right-hand side of Eq. (2.15) vanish. The erst and seventh terms are propor-
tional to —2(atat)a pa. and —2(aa)a tpat, respectively. The equation of motion for (atat) is obtained by multiplying
Eq. (2 14) by atat and performing the trace. The resultant equation is linear and homogeneous in (ata"). Conse-
quently, when we assume (atu") vanishes at t=D, it remains zero for all time. The same is true for (aa). Thus,
Eq. (2.15) reduces to the following form when we assume R is diagonal at t=0

Bp—+-[&(1),p]=—
8$ Pi

+2fd p2

(C{(aat) [at, [a,p]]+[at,p]}+C*{(a a)[a,[a. ,p]]—[a,pa ]}). (2.16)

The Eqs. (2.14) and (2.16) constitute a complete, closed set of equations whose solutions represent the solution of
Eq. (2.2) correct to order y~.

III. MOMENT EQUATIONS AND LINE SHIFTS
The right-hand sides of Eqs. (2.14) and (2.16) consist of real and imaginary parts. The imaginary parts are

commutators and represent time-dependent shifts of the unperturbed Hamiltonian which reduce to frequency shifts
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in the steady state. In order to see this we take the imaginary part of the right-hand side of Eq. (2.14) which is

p jV(do
2i Cz ((0.)( [a,a)R) —[aR,a)j [—a, [a),R])}+n+( [a,[at,R)]—[a),[a,R))))

2+~ 2

2iCr(")[a)a,R], (3.1)

where we use [a,[a),R]]= [at, [a,R]]and (0 ter 00—))= (0). We combine Eq. (3.1) with Eq. (2.14), and the result is

8E COI„—+i 0+2C ('(t))) ia,R
R (dD

Cz(—n+—([a,a~R]+[aR&at]+[at, [a,R]])+n ([a,[a~,R]] [a,atR—] [aR,a—t]})=8R/8t—, (3.2)

where coJ.'=—p'%coo'. By repeating the same procedure for the particle density matrix, we obtain

ap
—

cur, ' (a)a(),'))—+j no+ CI 0' p
&V

L
Ca((aa')[a', [a,P]]+(a'a)[a,[a',P]]+I:~',Pa] I:~,—P&'))=~Pl~~ (3 3)

+MD

Thus, in the steady state the imaginary part of C gives rise to a shift in the frequency of the electromagnetic field
and a shift in the matter frequency.

The kinetic equations, Eqs. (3.2) and (3.3), for R and P are coupled to each other through second moments. The
equation for the radiation density matrix R depends on the density ma trix P through the second moments n+=—(o.ta)
and n = (oo.t). The eq—uation for the rnatter density matrix depends on R through the second moments (a&a)
and (aat).

We obtain the moment equations when we multiply Eq. (3.2) by ata and Eq. (3.3) by o.to and take the appro-
priate traces

CR(n+ tr, (a)a[a,a)R]+a)a[aR, u)]+a!a[a),[a,R]])
GOg)

+n tr, (a)a[a, [at,R]]—a~a[a, atR) —a~a[aR, at]) ),
2&1,

Ca(n~(8+1) —n b), (3.4)

2' g
Ca(n+(8+1) —n 8),

3lcog)
(3.5)

where 8—= (ata). Thus, the coupled second moment
equations are rate equations with spontaneous emission
included properly.

An important property of Eqs. (3.4) and (3.5) which
holds also when dissipation is present is that the only
moments of R and p that appear are second moments,
(a)'a) and (oto.). Consequently, if we solve the coupled
second moment Eqs. (3.4) and (3.5) and substitute the
results into Eqs. (3.2) and (3.3), we obtain a linear
operator equation for E. with known time-dependent
coeKcients. Similarly, we obtain a linear operator
equation for p with known time dependent coefFicients.
Thus, the solution of the second-moment equations
uncouples the single particle and radiation density
matrices.

As we show in the next section, the only effect that
the introduction of dissipation has on the equations up

to this point is to add linear terms with constant coefFi-
cients. In the absence of dissipation, Eqs. (3.4) and
(3.5) have a constant of the motion

8+Xv+= const= iV. (3.6)

28'
8'=2/'Ca — + 1——8+1

X
(3.7)

We set the constant equal to X to include the usual gas
case where at t=0 we have 8=0, and thus Eq. (3.6)
actually defines the number of two-level systems. Ef we
had permanent two-level systems, the constant could
be any integer. The constant of the motion, Eq. (3.6) is
generally not valid in the presence of dissipation.

't)Vhen we substitute Eq. (3.6) into Eq. (3.4), we
obtain
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where the prime indicates differentiation with respect
to the dimensionless "time" cu~t and P' is the dimension-
less coupling constant (coz/con)'. The steady state solu-

tion of Eq. (3.7) is

n+ = ', (1-1—/N) .

The steady state consists of 2 (X+1) units of energy in
radiation and ~~(X—1) units of energy in matter. The
difference is due to spontaneous emission.

The time-dependent solution of Eq. (3.7) approaches
the unique steady state Eq. (3.8) monotonically and is

b,L1—exp( —A r)j (X+1)
8(r) =

1+6, exp( —Ar) 2

where h(0) =0 and A—= (4P'Ca)$ '=4Ca+cvPcon 'is in-

dependent of S.That A is independent of X reQects the
fact that A arises from spontaneous emission. %hen
spontaneous emission is omitted as in average fieM
theories, ' "there has to be a nonvanishing initial energy
density h(0) to get the laser started. We observe that in
a time t&&(AcuD) ' the second moments reach their
stationary values. Consequently, for t&&(AcoD) ' we
have two uncoupled linear differential equations with
constant coefficients for the density matrices R and p.

The steady-state frequency shift is

AQ= 2Cr&o),4D—z (0D = 2Crp &Jo clpD

which is less than O.i sec ' for a He-Ne laser and is un-
observable. This line shift is due to spontaneous emis-
sion. If we omit spontaneous emission the population
inversion (&o). is zero and the frequency shift vanishes.

In the next section we show that the introduction of
dissipation does not appreciably affect the qualitative
behavior derived in this section. The approach to
equilibrium is more rapid, the line shift is observable
because of the increase of (o), caused by the introduc-
tion of dissipation, and the density-matrix equations
uncouple. The only qualitative change is that in the
presence of dissipation a threshold inversion density
has to be overcome in order to obtain laser action.

IV. INTRODUCTION OP DISSIPATION

The problem of dissipation in lasers has both a simple
and a diScult aspect. In the moment equations the
introduction of dissipation simply adds linear terms with
constant coeKcients. On the other hand, the introduc-
tion of dissipation in Eq. (2.2) for the density matrix for
the entire system is a dB5cult problem. %e do not
attempt to give a solution of the problem here, but we
content ourselves with a discussion which is suQicient to
indicate what needs to be done to obtain a solution.

In phenomenological treatments three relaxation

times are introduced into the moment equations. They
are T„, the radiation relaxation time; Tq, the relaxation
time of the average population inversion; and T2, the
relaxation time of the average polarization. %hen we

return to the original equation for the full density
matrix, Eq. (2.2), we need to know the details of the
physical mechanism that causes the dissipation to
understand how these relaxation times arise. For
definiteness we consider our system of matter plus
radiation to be in weak interaction with reservoirs.
Consequently, the new Hamiltonian of our system plus
reservoirs is

H=H(X)+H(, +H,+ejVj+e V, (4.1)

where Hf, and H, are the Hamiltonians of the field
reservoir and matter reservoir, respectively. The inter-
action potentials between our system and the field and
matter reservoirs are efVf and e V where ey and e are
dimensionless coupling constants. In most mechanisms

Vf and V do not commute with the internal radiation
matter interaction H;.

Several authors' 7 have shown that the equation of
motion for the density matrix of a system in contact
with reservoirs to lowest order in the coupling constant is

BFg z

+ [Fjj, H(—1V)+ej'Uj+e 'U]-
Bt

oj +j~N+&mxmFN , ) (4 2)

where the quantities Uf and U are functions of system
operators and reservoir parameters such as temperature.
The U's represent shifts in the system Hamiltonian due
to the interaction with reservoirs. The operators' Kf and
K are relaxation operators which have the property
of maintaining the Hermiticity, normalization, and
positive definiteness of F~. The operators Kf and K
are four index operators in the sense that

where [e), ( g), jy) and [5) each stand for an eigenstate
of the radiation-matter Hamiltonian H (N). Although in
some problems the operators Kf and K reduce to two
index operators, the laser problem requires four index
properties for two reasons. First, if average variables
such as &u), &a&), &o), and &o~) are nonzero, their relaxa-
tion is caused by the off-diagonal parts of K~ and K

' R. K. Wangsness and I'. Bloch, Phys. Rev. 89, 728 (1953).' C. R. Willis and P. G. Bergmann, Phys. Rev. 128, 391 (1962).
7 W. Weidlich and F. Haake, Z. Physik 185, 30 (1965);186, 203

{1965).' C. R. Willis, Phys. Rev. 127, 1405 (1962).
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because a, a~, o., and o.~ have only off-diagonal matrix
elements. The second related reason is that the relaxa-
tion mechanism for nondiagonal operators may be
different than for diagonal operators. The most common
example of different relaxation times is the Tq relaxation
time for diagonal matrix elements and the T2 relaxation
time for off-diagonal matrix elements of spin systems. In
lasers we have the same distinction with Tj for diagonal
matrix elements and T2 for the off-diagonal polarization
matrix elements of o. and o~. Although the radiation
relaxation time is usually taken to be T„ for both
diagonal and off-diagonal matrix elements of the
radiation operators, this need not be the case.

We do not have to solve Eq. (4.3) if we are only
interested in moments of the density matrix which
depends on the detailed structure of the operators Xf
and K . We need only the following moments of Kf
and K

A(a~a) (a"a) (&)= ef' trataKfFN = 2 =2, (4.4a)
T,

'

(a)=&f2 traKyF~ ———,
T,

'

a(oto) (a.~o) n~
=e 'tro-(o.K F~=

Tg Tg

(o)
=e ' tro.K FN ———,

T2'

(4.4b)

(4.4c)

(4.4d)

where the symbol 6(. )/At is the contribution to the
time derivative of ( ) from the relaxation operators
E. The factor 2 in Eq. (4.4a) is a consequence of the
fact that if (a) has a relaxation time 2'„ then (a~a) has
a relaxation time (T,/2). Higher order moments can
have different relaxation times depending on the de-
tailed structure of the K's.

The most dificult problem introduced by dissipation
is the noncommutivity of Vf and V with II;.Although
Eq. (4.3) is formally correct, we must know the eigen-
states of the Hamiltonian H(X) for the full system
which includes 8, in order to explicitly carry out the
evaluation of the matrix elements of Xf and K . If
oP and o ' were very much smaller than P', we could
carry out the Bogoliubov procedure of the previous two
sections on the left-hand side of Eq. (4.3) and use the
unperturbed-system Hamiltonian to evaluate the K's.
In a He-Ne laser this is not possible because near
threshold P'~5)&10-' and o '~6)C10 '. Consequently,
we must return to the full Hamiltonian, Eq. (4.1), and
carry out the expansions in powers of P-", eP, and e ' at
the same time. In the lowest order of the parameters
P, or, and o„ the derivation is straightforward and the
effects of the different expansions do not interfere with
each other. The equations for the radiation density

matrix R and the matter density matrix p are

BR COg

+i 0+2Cr (n+ n—) a~a+sf'Uy, R
Bt GOD

6E.+—or'KfE (4 Sa)
b&

""
1+—i (ap+C, 8 o+e„'U, p

Bt EcoD

Sp
+o '—E p, (4.5b)

St

where 5R/St and Sp/ot are given in Eqs. (3.2) and (3.3).
Now the operators Kf and X can be explicitly calcu-
lated because they are functions of the unperturbed-
system Hamiltonian only.

The next terms in the expansion of the density matrix
after P', er', o ' are o ', o 't3', P4, oft', and of' in decreas-
ing order of magnitude. The terms e 'P' and ef'P2 arise
because IJ; does not commute with Vf and V . The
structure of the terms o 'P' and er'P' depends sensitively
on the form of the interaction with the reservoirs. The
problem of higher order terms is not academic because
the experimentally observed Lamb dip requires the
P4 term.

After this lengthy discussion of dissipation, we con-
sider here only the explicit effects of dissipation on the
moment equations. However, problems of coherence re-
quire more knowledge of the solution of Eqs. (4.5a) and
(4.5b) than the knowledge contained in the moment
equations.

When we take the moments of Eqs. (4.5a) and (4.5b),
we obtain with the aid of Eqs. (4.4a) and (4.4c) the
following:

8' =2''Ca(ni (8+1) (1—m+) 8—)—28/E„,
2P'-

gz+' = ——Ca f m+ (6+1)—(1—e+) 8)E

(4.6a)

—(e+—1)/Tr, (4.6b)

where the prime indicates differentiation with respect
to the dimensionless time cuDt. The bar over T„and T~
indicates they are multiplied by cvz and are dimension-
less. The one in (n+—1)/Tr represents the eRect of the
pump which we need in order to supply the energy lost
in dissipation. If we had cV permanent two-level systems
the value one could be replaced by any value between
zero and one. In gas lasers the pump actually defines the
number of systems through the one in (n+ —1)/T&.

We observe that our treatment of the Doppler motion
introduces irreversibility into Eqs. (2.14) and (2.16).No
pump is needed to compensate for the center-of-mass
dephasing; however, when we introduce relaxation
times for the energy of the radiation and matter, we
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need to introduce a pump to compensate for the loss.
Consequent y, we have two types of irreversibility in
the laser problem. 8= (2)2'6 )' 1———

The steady-st+to solotloos to Eqs. (4.6 ) a 6 (4.66) )2 ty T,
are

8.+N(2T)Crdp2) '
6+

28,+1+N(2T)CRp2)

X T,
g =— +

4 T, 6 2T,C,d')

(4.7a) X 162(—)(
—1)

8T, T, 1 1
X 1+ 1+

' —"+-
NTT TT N 2TTCrdp'I

= (T,/2T, )tN N,g+—'„(4.7-b)

where Nr= (P2CrdT„) ' is the threshold inversion num-
ber of atoms needed to start laser action. The approxi-
mate sign in Eq. (4.7b) holds when N))1. The steady
state energy density in Eq. (4.7b) differs from the SCFA
of I by only the zero-point energy.

When we substitute Eq. (4.7b) in Eq. (4.7a) and use
the de6nition of the line shift, we obtain

rM—=2Cr((r), (dr. 'ddn
—' ——Cr(C22T, )

—'. (4.8)

The steady-state results, Eqs. (4.7a), (4.7b), and
(4.8), are exact and require no approximations. When
we consider the problem of the approach to the steady
state in the presence of dissipation we must solve the
time-dependent Eqs. (4.6a) and (4.6b). These are
dificult to solve because there is no longer a constant
of the motion. The system of Eqs. (4.6a) and (4.6b) is
equivalent to a second-order differential equation with
time-dependent transcendental coeKcients. %e can 6nd
a fairly accurate qualitative description of the approach
to the steady state for two ranges. First, if g greatly
exceeds threshold, we can treat the dissipation as a small
perturbation on the dissipationless solution in Sec. III.
For the important region from threshold to about twice
threshold we can solve the following equation which we
obtain when we add Eqs. (4.6a) and (4.6b)

8 2h N(n+ —1)—{8+Ne+} = ——— . (4.9)
Bt T.

An approximate solution of Eq. (4.9) is

n+ = 1—(2 HATT) (Nr T,)-'
XL1—(2TT) (N —Nr) (NT„)—'j (4.10)

which is valid as long as the second term in square
brackets is small compared with j.. For a He-Ne laser
the second term in square brackets is about 0.06 when
N is twice threshold. When we substitute Eq. (4.10) in
Eq. (4.6a) and solve the resultant equation, we obtain

g
—Br

= (2/T„) (1/Nr) (N Nr) —.
In the SCFA of I we needed an initial field to start the

approach to the steady state. Once a small field ap-
peared the rate of approach was the same as the ap-
proximate value of B in Eq. (4.11). Here, however,
spontaneous emission provides the trigger and the only
condition is that Ã be greater than Xz. %hen we com-
pare 8 with 3, the rate of approach to the steady state
in the absence of dissipation, we find B= (N —Nr)A.
Thus, for X 0.1X~, the rate of approach to the steady
state is about 10' times faster in the presence of dissipa-
tion. When we substitute Eq. (4.11) into Eqs. (4.5a)
and (4.5b), the coupled density-matrix equations un-
couple and R and p satisfy linear differential equations
with time-dependent coefficients. For t& (conB) ' the-
time-dependent coeKcients achieve their stationary
values and R and p satisfy uncoupled linear equations
with constant coefficients. %hen g is about equal to
0.1Nr the quantity ((dnB) ' is about 10 ' sec.

where
(ydD(dn ')ataRata Q Q(r((y t(y (r()t(yp), (5.1)

dT ~&hrg~ih(sm —rt)l

V. HIGHER ORDER TERMS

Ke now show one of the advantages of the density-
matrix method of this paper over the operator equations
of motion approach" ' by discussing qualitatively the
contribution of higher order terms to (BR/Br). Since P'
is so small for gas lasers, it would seem that there would
be little need to calculate the pd terms of the equations
of motion for R. However, the Lamb dip which Lamb
predicted and which has been observed experimentally
requires knowledge of higher order dynamically induced
correlations.

The fourth-order contribution to (BR/Br) consists of
many terms. Each term consists of a product of R with
four radiation creation and annihilation operators
multiplied by the sums of average values of four
polarization operators which in turn are multiplied by a
threefold time integral over the center-of-mass coordi-
nates. A typical contribution to (M/R) in fourth
order is

b(T) = 8, —h h,. for t) (a)g)B) '(4.11)—
1+8 e—B' x {r[x.(.,)grpx, (.,)fr[ x.(.,)1rpx. (0)J},
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and in D the average is over the center-of-mass distribu-
tion function Fi(X,V) as in Eq. (2.10).The other terms
to fourth order have the same structure and differ only
in the order of operators.

When we separate the n=P term of Eq. (5.1) from
the rest of the sum, we obtain

(y4roD 'D)ataRata/X(X 1)(—o to orrto p)

+X(rr to o to ))
= (ProD 'D)—ataRata[1P(o. to )(opto p)+ X(o.~a.)$
= (y'&aD 'D)ataRata)X'rr '+Nn+5, (5.2)

where we use 0. ta- 0- ~cJ =o. to . The breakup of the
term (o to oo~oo) follows from the Bogoliubov' expan-
sion procedure for the kinetic equation where p2(a, P)
=pi(a) pi(P). In a laser X is large so the second term in
square brackets is usually negligible compared with the
first term. This suggests that P' is the correct expansion
parameter.

The $4%' terms arise when two different particles
within a wavelength of light apart exchange a virtual
photon in a time small compared with ~D

—' which is the
time an atom with the average thermal velocity takes

to move a distance equal to a wavelength of light. The

pe terms represent a second-Born-approximation
scattering between a single particle and the radiation
held. The second-Born-approximation terms are pro-
portional to y'X instead of y'X' because the funda-
mental process involves a single particle instead of a
pair of particles.

In a second paper we explicitly evaluate and sum the
y' terms in (BR/Bt) and the coupled (Bp/Bt) The.
explanation of the Lamb dip and the steady state to
order f4 suggested by this section differs fundamentally
from Lamb' s' explanation. Lamb retains only the pe
term because he follows the detailed behavior of a single
particle. He does not obtain the y4Ã' terms because his

theory starts with average values that preclude the
development of the dynamically induced particle-
particle correlations which give rise to the pe' terms.
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Erratum p= p +pa, p;=, and p
2~r.T'

Ttr& eac2

Theory of Superconductors Containing Magnetic
Impurities, PETER FUI.DE AND KAzUMI MAXI
LPhys. Rev. 141, 275 (1966)).The x&(t) parameter
used in this paper is based on the original theory of
type-II superconductors given by one of the authors
(K.M.).' This theory has recently been corrected
by Caroli, Cyrot, and de Gennes. ' The x2(t) param-
eter in this revised formulation depends not only
on temperature but also on the concentration of
the magnetic impurities. The explicit form of xm(t)

is given by'

F2(t) = f(p)'"g(p) ',
2t:7f (3)j'"

00

f(p)=Z"~ (~+k+p)' (rr+k+p)'

and
' K. Maki, Physics 1, 21 (1964).
~ C. Caroli, M. Cyrot, and P. G. de Gennes (unpublished).

The temperature dependence of p is determined
by the equation

T
+4(l+p) —4(l)=0,

Tc0
(4)

where P(s) is the digamma function.
From the above expressions, we see that xg(t)

depends on the concentration of magnetic impurities
through parameter p;. LThe effect of magnetic im-

purity and the external magnetic field is not addi-
tive as is seen from Eq. (2).) Therefore, our con-
clusion that the jump in the specific heat at the
transition from the mixed state to the normal state
is a function of temperature only, is incorrect. The
effects of the magnetic impurity and the magnetic
field on the jump of specific heat is different, though
this difference is appreciable only at low tempera-
tures. (The magnetic impurity gives rise to a larger
jump in the specific heat than the magnetic 6eld. )


