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The coherent excitation of several atomic states by inelastic electron scattering and their subsequent
radiative decay is considered. General expressions are derived for the photon counting rate in a quantum-
beat experiment, and for the total number of photons counted in a level-crossing experiment. The general re-
sults are used to calculate the phase of the oscillatory part of the photon counting rate in the Hadeishi-Nier-
enberg quantum-heat experiment,

I. INTRODUCTION
' 'NTERFERENCE effects associated with the decay
~ - of coherently excited nondegenerate atomic states
have been observed and studied for some time. ' Most
of the interest in these e6ects has been concerned with
the decay of radiatively excited states. However,
several recent experiments have demonstrated the
possibility of observing such e6ects in the decay of
electronically excited states. ' 4' In this paper we derive
a general expression for the integrated photon counting
rate in an experiment in which an arbitrary number of
atomic states are coherently excited by electron impact
and the resultant luminescence is detected by an arbi-
trary system of photon counters. The result is directly
applicable to quantum-beat' and level-crossing' ex-
periments. In Sec. II we consider the excitation process
and derive the scattered wave function for the electron-
atom system. The decay process is described in Sec. III,
and the expression for the counting rate is obtained. In
Sec. IV we apply our general results to a calculation of
the phase of the oscillatory part of the photon counting
rate in the Hadeishi-Nierenberg experiment. ' The e8ect
of exchange scattering is considered in the Appendix.
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f National Science Foundation Predoctoral Fellow.' Some representative papers are: G. Breit, Rev. Mod. Phys. 5,
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Letters 3, 420 (1959); P. Franken, Phys. Rev. 121, 508 (1961);
J. Dodd and G. Series, Proc. Roy. Soc. (London) A263, 353
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tion which have been performed in France. Some representative
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Pebay-Peyroula, ibid. 257, 3130 (1963); J.-P. Descoubes, ibid.
259, 327 (1964).

II. THE EXCITATION PROCESS

The excitation and subsequent decay will be described
in terms of a single incident electron and a single
infinitely heavy atom' located at the origin. An actual
experiment, of course, involves a beam of electrons inci-
dent on a many-atom target, and it may be that difI'erent

scattering events are correlated. Our treatment is

applicable only to situations in which individual scat-
tering events are independent. It is perhaps worth

noting that by choosing the atom to be initially at rest
we are simply making a convenient choice of inertial
frame and are not neglecting eGects associated with

finite atomic velocities. Recoil effects, on the other
hand, are completely neglected.

The atomic Hamiltonian will be denoted by h, where

h includes the interaction with an external magnetic
field if one is present. The internal atomic variables will

be denoted by $, and the eigenstates of h by g,($):

hg. ($)=&e.(5) .

For definiteness, we will assume that the atom has a
nondegenerate ground state go with energy %0, and
that it is initially in this state. In order to avoid cumber-
some notation the incident electron will be treated as if
it were distinguishable from the atomic electrons. The
modifications which are necessary for inclusion of ex-
change e6'ects are given in the Appendix, The incident
electron's kinetic energy operator is T„and if a mag-
netic field is present the interaction energy operator is
—p8 e. The interaction of the electron's orbital
angular momentum with the field will change its tra-
jectory from a straight line to a path which obeys the
equation of motion dv/dt = (e/m) v&& B. It will be
assumed that the Larmor radius is large enough so that
this effect may be neglected. It is convenient to choose
the positive s direction in the direction of B. Then the
electron Hamiltonian is T,—IJBo-,.

We will use the wave-packet formalism of Goldberger
and Watson' to describe the excitation process. The

' We use the word "atom" for convenience. Our results apply
equally well to atoms or molecules.

M. Goldberger and K.. W'atson, Collisiow Theory (John Wiley
8r. Sons, Inc. , New York, 1964). See particularly pp. 95-101.
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precollision wave packet for the electron-atom system is where

X(t)= d'p ~(p—«)e-'"x=e-' 'g(*)x,

p.'= (2mB.)'t'

d =(—2m', )'",
(fib)

(Sc)

where
x= (2') "'e'i"u,go($),

x= (2~) t'ei'i'~u, go((),

E=p'/2m pBs+—Wo,

K= T, uBo,+—tt,

(2b)

(2c) f,(»",p) = —(2s-) -"m T,(p,»,p)",
(2d)

the asymptotic expression for iP+ becomes

(2e)

and r" is a unit vector in the direction of x. Hereafter we
will drop the prime on p, ' and denote it simply as p, .
Dropping terms with D,&0 and de6ning the scattering
amplitude,

g(r) = d'p a(ti)e*". (2f)

etPar

0+=x+2' 2' j.(»,u) u..g.(E),
a. e. (2n.)"'»

+(t) = d'p a(p —q)e *z'ip+, (3a)

where

0+=x+(2~) "'EZ g.(t)u..
e*"T.(u.,p)

X d'p, (3b)
h.+i»t —p.'/2m

In Eqs. (2), q is the mean incident momentum and u.
is the initial electron-spin wave function with o-,l,= sN„
where s is either +1 or —1.g(r) is the spatial packeting
factor, centered at r=0. Thus X(t) is centered at
x=O when t=O, i.e., the electron-atom collision occurs
at t=O. The complete time-dependent solution of the
Schrodinger equation corresponding to the precollision
wave packet X(t) is

where the sum P,.' P,,' includes only those u,.g,
for which 6 )0.

The scattered wave packet at large distances is ob-
tained by inserting (7) into (3a). In doing this we will

assume that the entire incident wave packet lies far
enough from any excitation threshold so that f,(»,p)
is slowly varying over the packet and may be removed
from the integral and replaced by f,(»,q). It will also be
assumed that the distance from threshold is much
greater than uB so that P,.' may be replaced by P,.
and P,.' may be interpreted as a sum over those atomic
states for which W(q' /2m+W .OWe will take q'/2m
to be less than the ionization energy so that P,.' in-
cludes only discrete states. Finally, we will neglect
spreading of the scattered wave packet, i.e., we will

neglect terms of order
~ p —q ~

' in p,» Et. —

p,» Et= p,» (p '—/2m tiBs—,+W,)t-
=p~ —(~-.—uBs.+W.)t+Lq (p—q)/p .]-

X(»—Lp.-/mjt)+O(lp —ql 2), (ga)
h, =E ( pBs,+W,).—— (3c) where

gX =g,X„ (4a)

In (3b) iP+ has been expanded in the complete set of
eigenstates of E,

e;=p-'/2m=(q'/2m —pBs+Wo) —( uBs, +W,). (Sb)—
The resulting expression for the scattered wave func-
tion of the electron-atom system is

q'..(t):—4(t)—X(t) =p' $,(r, t)e '"'g ($) (9a)X.= (2s )
—"'e'&"u,@.($)

E,=p, '/2m uBs,+W„— where
(4c

(q t' p.
(9b)e"'T (p p)

lim d'p,
h.+i»t p.'/2m—

The modifications of Eqs. (9) which are necessary in
order to include exchange scattering are discussed in
the Appendix. It is shown there that one need only re-
define f to be

(2~)'m
e'&"T.(p.'», p), A.)0;

exp[i(p.-»—e.-t)j
and T,(p„p) is the matrix element of the scattering 4,(r,t)=P f,(»,q)
matrix for scattering from x to x,. The asymptotic
value of the integral in (3b) is,

(m
=0] —e "'".T. A, (0, (5a)

fg(», q) = —(27r)'m(T, (p o»)q) ZT '"(p » q)}, (10)--"—
where Z is the number of electrons in the atom and
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T,'" is an exchange scattering matrix defined in the
Appendix. Hereafter f, will be defined by Eq. (10)
rather than Eq. (6).

III. THE DECAY PROCESS

In order to describe the decay process we will replace
h by 6,= It+K„+V„ in (9a). E„is the Hamiltonian for
the free electromagnetic field, and V„ is the interaction
between the electromagnetic field and the atom. The
physical reasoning behind this prescription is as fol-
lows. The excitation process takes place over a time of
order (m/q)(Ar) =(m/q)(Aq) '=—At where Ar is the
spatial extent of g(r) and hq is the width of a(ti). The
uncertainty in the energy of the incident wave packet
is qAq/m=(At) '. The lifetime of an excited atomic
state is I' ' (say) and its linewidth is I'. We will require
that Dt(&F '. This condition may be interpreted either
as requiring an experimental situation in which a well-

resolved temporal behavior of the decay luminescence
may be observed (At((I' '), or as requiring a situation
in which the uncertainty in the incident electron
energy is much greater than the linewidth (qhq/m))1').
During the excitation V„has little effect and may be
neglected in comparison with the electron-atom inter-
action, but after the atom is excited and the electron
has moved away V„becomes the dominant interaction
and causes the atom to decay. Since the excitation is
very fast compared to the decay we may describe the
decay process by treating the excitation as an impulse
at t=o, and this is just what our prescription of replac-
ing h by B'„does. The error associated with this ap-
proximation is an error of order At in t, e.g. , if we obtain
a decay law of the form e r' it. is in error by an amount
e ri'+~" —e r'=&I'(At)e r'. In order to describe the
decay we must include the initial state of the radiation
field in (9a); we will neglect background radiation and
take this initial state to be the vacuum state. Thus the
wave function describing the decay of the excited
atom ls

4'g, (t) =Q' p.(r, t)e '""'g.(&) I
vac).

The decay channel which will be considered here is a
single-photon emission which leaves the atom in its
ground state; it will be assumed that only this decay
channel contributes appreciably to the observed decay
luminescence. The emitted photons are to be observed

by a photon counting apparatus which operates con-
tinuously from some negative time onwards. The inte-
grated photon counting rate, i.e., the probability that a
photon has been observed prior to time t (t&0) is the
expectation value of the operator,

P=P
I
k, e)(k,el (12)

(13)

where we have multiplied by unity in the form P,.g,g, t

and used the notation g I k, e) =
I g„k,e). By assumption

a photon
I Ir, e) that is included in g~~ q can be emitted

with appreciable probability only by decay of 4d, (t)
to the ground state, so the only appreciable term in the
sum P,. in (13) is the go term. Thus,

taken with respect to 0's, (t). In (12), Ik,e) is a one-

photon eigenstate of E„with wave vector k and polariza-
tion e. The photon field will be quantized in a box of
volume Vo so that E„has discrete eigenstates. The sum
P~& & includes all photons admitted by the counting
apparatus, e.g. , the range of k in P~~, t may be deter-
mined by an optical filter, the directional range of k by
the size and location of a photon counter, and the choice
of e by a polarizer. In using (12) we have assumed for the
sake of simpLicity that the counting apparatus detects
all photons in its range of admittance with equal sensi-

tivity; if this were not an adequate approximation we
could replace P by +~i, t s(k, e)

I
k,e)(k,el, where s(k,e)

is a sensitivity function, e.g. , the dependence of s on
k might be determined by the shape of the pass band of
an optical filter. The integrated photon counting rate is

&P(t)) = (+"(t)IP I +'(t))

=&(&'&&.(t) I &.(t)) I &go, k, el e *0"'Ig.,vac)
I

'
aa

+2 Re p'&pq(t) lp, (t)&(gok, el e '~"'I gi, ,vac&*(gok, el e 'e" lg„vac)} . (I&)
gb, gab)c

In (14) the sum P,.' may be restricted to those atomic states which can actually emit a detectable photon, i.e.,
those states for which (go,k, e le '~"'lg„vac) is appreciable when

I k, e) is included in P~j, ,t. Hereafter we will con-
sider the sum to be so restricted.

We will begin our evaluation of (P(t)) by evaluating the scalar products (P,(t) I P (t)) and (P~(t) I @,(t)). The first
of these is time-independent but we will choose t to be much larger than (m/po-) p; ' so that we may use (9b). This
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gives

where
(15a)

(15b)

is the total cross section for excitation of state g„and

(15c)

is the net incident electron flux (electrons per unit area) in the direction j.The firstintegralin (15c) is defined to be
the flux; the second integral is the one that actually occurs in the evaluation of (P,(t) I p, (t)). The equality of these
two integrals follows from the largeness of t.

Evaluating (@b(t) I P,(t)) similarly one obtains

where
(psp=)"'

I
&ba =

(A(f)14.(t))= 2 F~.(&)~~'4...
8b8~

dn„ f~*(P,q)f.(r,q),

(16a)

(16b)

Fa.(&)=
(psp-)'"

dr (q pr)) (qf p
e~(iL(p.-—ps)r —(~-—~~)~j&g*l —r—f

I lgl
—

I
r——

~

„(2m.)' (pb m I J i p-. & m
(16c)

0.&,
' may be interpreted roughly as a total cross section for coherent excitation of states g& and g,. (Note, however,

that 0 q,
' is in general complex. ) Fq, (/) has the dimensions of flux, and as ~, e5 a-p—proaches zero Fq, (t) approaches

F. In order to see what is involved in this limit we will put Fb,(t) in a different form. Inserting (2f) into (16c)
and carrying out the integral over r, one obtains

(2s) 'q q(e —e) t' e q eq)
F~.(&)= d'P'd'P a*(e')o(e) exp i ~5—~.-+ & &I p~ p. +- -—

(p~p )"'- m E ps pl
The 8 function may be removed by integrating over the component of p' which is parallel to q. This gives

fp ~'"
F&.(&)= (2~)-'I —

l

g'Q Pll fft

d p,
' d p a*(y~'+y„')a(p) exp i 65 t +

ns tn
(18a)

where lo&' is perpendicular to j and

.ps(
~«'=~—

I p.-p~+—
qE p;3

(18b)

Expanding (18a) in powers of co/W, one obtains

GO Ea Eb y

W=-,'(e-+or) .

In order to investigate the limit ~;—~5 —+ 0, we introduce the variables

(19a)

(19b)

Fq,())= (2s) 'l. l+O((g/W) j d'pid'pg(p)a*(y, '+y„—agL(p„/~W) —(m/q) jL +O(~/W)])

where y„=(y j)j.
Xexp —i co —pff 28' —m q 1+0 o) 8' t, 20

m

7 The results we are about to derive can, of course, be derived directly from (16c). However, they emerge much more cleanly
from {20).
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We are now able to investigate the conditions under
which it is a good approximation to set co=0 in Fb, (t).
First of all, we must have

criterion for the observability of well resolved beats in a
quantum-beat experiment. Let us agree to restrict our

observations to the erst few beats, so that

co/&V&(1 (21) cot&0(1) . (26)

for our expansion to be sensible. In order to neglect the
first-order terms in the argument of u*, we must have

Then (24a) reduces to

qAq/m&&W, (24b)
ioAq/IV«hq, (22)

oom/q&&Aq . (23a)

In order to set the exponential factor in (20) equal to
unity, we must have

(coqAq/mW) t&(1, (24a)

(o~o/IV) (&&1. (25)

qAq/m)) oo, (23b)

Inequality (22) is the same as (21), and (23a) and (24a)
taken together imply (25), so we are left with three inde-
pendent criteria L(21), (23a), and (24a)] for the small-
ness of oo. Inequality (23a) may be written as

(27)o&/I'& 0(1),
since observations cannot be performed after the decay
is completed. Assuming (23) and (26) are satisfied for
all pairs of states in the (restricted) sum P,.', we may
now put

(2ga)&4 o(i) I4.(i))=F~o. ,

but this is equivalent to our previous assumption that
the entire wave packet is far from the threshold.
Finally we note that (23b) and (24b) taken together
imply (21). Thus (23) and (26) are the only new condi-
tions which must be satisfied in order to set Fo,(t)
equal to F. Note that a suAicient condition for the
validity of (26) is,

or
D$(&.co i. (23c)

fg0 Qg, ~ 0 QQ Usgs~ ~

8 $8ix

(2gb)

This inequality has a simple physical interpretation.
The inequality qhq/m&oo must be satisfied in order for
interference e8ects between states g and gg to be ob-
servable at all, i.e., in order to have &Po(i) lg, (t))40.
The stronger inequality (23b) must be satisfied if the
interference e8ects are not to be dependent on the de-
tailed structure of the incident-electron wave packet.
This is shown most clearly by (23c) which is an obvious

It remains to calculate the matrix elements of e '~"'

which occur in &P(t)). This is done in Goldberger and
Watson, ' and only the results will be presented here.
We will consider only the case in which each state in the
(restricted) sum P,.' decays to the ground state through
an allowed dipole transition and the dominant con-
tributions to the linewidths arise from dipole transitions.
In this case,

where

2xe' '~' e P
(go, k,e

l

e-'""'l g.,vac) =-
&gol

Uok tn

1 exp(i—I k (W ——Wo)+ il', /2]t)
)e

—i(wo+oit

k (Ws W—o)+i—I",/2
(29a)

(29b)

is the total momentum operator for all the electrons in the atom, and

gb
IVa &Wa

e'(W, —Wo)

2

e P
lg. )

'yn

(29c)

is the natural linewidth. Using (15a) and (29a) and changing the sum g p~ e in (14) to an integral, the noninter-
ferential part of &P(i)) becomes

e2 e P
&P(i)).=F 2' .(q) dfl. Z, &gol lg.)

o. p e (27r)' m

1—exp(i[k —(W.—Wo)+il', /2]t) '
dkk

k —(W —IVo)+iI', /2

We will assume that the filter used in the experiment passes all radiation with a frequency in the vicinity of 5',—0'()
(for all g, included in P,.'). By "vicinity" we mean a frequency range much wider than I',. This allows us to re-

'Reference 6, Chap. 8. Our Eq. (29a) is a special case of Goldberger and Watson's Eq. (8.119b), p. 451. See also the discussion of
radiative decay on pp. 460—469.
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place fr dk k by (W —Wp) f dk in (30). The result of this replacement is

pP
&F(t)&-=F 2' .(q) (1—e ")r.

where

(31a)

e'(W —Wp) P
Fr.= dflk Z (gol

e P
lg& . (31b)

Using (28a) and (29a) the interferential part of (F(t)& becomes

2

(F(t)&,=2F Re Q' ob, (q) dflk p &gol
p (2~)'

b&a

e P e.P
lg&

t I—eXp{i[k—(Wb —Wp)+ iF b/2]t} ~
* 1—exp {i[k—(W.—W,)+iF./2]t})

X dkkl
I

'
I. (32)

k (Wb—Wo)—+iFb/2 I k —(IV, W—p)+iI'o/2

The integral over k in (32) may be put in the form

[Wb —Wo+i(I'b+I', )/2] ' dkk([k —(Wb —lVp) —iI'b/2] '—[k—(IV IVo—)+iF,/ 2] ')'

X (1—exp{i[k—(Wb —Wo)+iF b/2]t })*(I—exp{i[k—(IV,—W„)+iI',/2]t }). (33)

The over-all multiplicative factor of k in (33) will be replaced by Wb —Wp when it multiplies [k—(Wb —Wo)
iFb/—2] ' and by IV,—Wo when it multiplies [k—(W,—Wp)+iI'o/2] ' With. these replacements (32) becomes

where

io b.(q)Frb.
(F(t)&,=2F Re g' (1 e'tsb —s &'e tt '+r

pb. p. Wb W,+—i(I'b+ I',)/2
b&a

e'[-,' (W b+ W.)—Wp] eP eP
pP dOk 2&go l Igb)*&gol Ig

(34a)

(34b)

o b.(q) F~b.rP.
&F(t)&=F P' o,(q) (1—e ')—2 Im g' (1 e't—~b ~—"e 'tr'+"")

F. ", IV,—W.+i(F,+F.)/2b&a

The differential counting rate observed in a quantum-beat experiment is

d&F(t)) =F{P' (q)oFr, e ""+2Re P'ob, (q)F b,e~&~b s' &'e bt b+"~&'}.
g6, ga
b&a

The total number of photons counted in a level-crossing experiment is

Adding (31a) and (34a), one obtains the follwing expression for the total integrated photon counting rate:

(35)

(36)

o.(q) Fr.
&F(")&=F Z'

t7tx Fa

ob.(q) Frb.—2Im P'—
p~, p. Wb —W,+i(Fb+F,)/2b&a

(37)

In order that (26) will not be violated when we put t= po in (37) we must assume that (27) is satisfied.
The expression for the counting rate must be modihed if there are several possible initial and final states. The

cross sections defined by (15b) and (28b) depend on the initial electron spin orientation. For an unpolarized
incident electron beam these should be replaced by their averages over initial spin orientations,

1 ~ . — 1Oa 2 ~e &aj &ba 2 ~e &ba ~ (38)

There may be more than one possible initial atomic state. We will denote the initial states by a Greek subscript,
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and let p, be the probability that g is the initial state. Finally, there may be several possible final states which
we will denote by a primed Greek subscript. The statement that g ~ is a possible final state means that when

P,.g,g, t is inserted into (P(t)) Las in (13)7 the term g .g ~ gives an appreciable contribution. The generalized
form of (35) for this situation is

a'a ~i,aa(q)i'Pa i,a
(P(&))=P P P P P'0, (q. ) (1—e r. ') 2 Im P' (I ei—&ir' ir i'e 'i '+ i') (39)r. ~ . W,—W.+ i(r,+ r.)/2

b&a

o., and o &, are the same as o. and o-&„respectively, ex-
cept that the initial atomic state is g rather than go,
and I', and I" ~ g are the same as I'" and I', t„
respectively, except that the final atomic state is g ~

rather than go.
In any given experiment there will be corrections to

(35) Lor (39)7 arising from the finite extent of the tar-
get and the finite velocity of the atoms. The operator I',
as given by (12), is not a strictly correct description of a
photon counter, e.g. , a counter measures the position of
a photon, but does not measure the direction in which it
is traveling. However, if it is known that the photon
was emitted at the origin, then when the photon is
counted it is also known that the portion of the photon
wave packet intercepted by the counter consisted of
plane waves whose wave vectors lay within the solid
angle subtended by the counter at the origin. So I' is an
effective measurement operator valid for a particular
atomic position and velocity. By performing a spatial
translation and a velocity translation one can con-
struct an operator I'R v valid for an atom at position R
and moving with velocity V. The counting rate is then

(P(/)), = d'R d'V p(R)F(V)(PR, v(t)), (40)

where p(R) is the density of atoms in the part of the
target intercepted by the beam and F(V) is the atomic
velocity distribution, both normalized to one. With re-
spect to such corrections we only wish to note that the
Doppler e6ect will be unimportant if the range of k in
g~& q is sufficiently greater than the Doppler widths
of the lines involved in the experiment.

F is to be interpreted experimentally as the net beam
flux, and (P(t)) as the integrated counting rate per atom
in the part of the target intercepted by the beam. In a
level-crossing experiment the total duration of the beam
may be much greater than the value of ht for individual
electrons. The total number of counts is still given by
(37) Lor the modified version of (37) obtained from
(39)7 in this case since the increase in the number of
counts with increasing beam duration is accounted for
by the increase in F with increasing beam duration.

quantum-beat experiment. ' ' We will not consider cor-
rections arising from finite target volume or finite atomic
velocities. Equation (36) will be used as it stands except
that o and o-&. will be replaced by o-, and o.&,
respectively.

In the Hadeishi-Xierenberg experiment go is the
7'50 ground state of Cd. The atom is in a weak mag-
netic field (0.88 G) and beats are observed between the
7'I'~, my=&i excited states. The experimental con-
figuration is shown in Fig. 1(a). The incident electron
beam is perpendicular to 8, and the emitted photons
are intercepted by a counter which subtends a small
solid angle about the s axis. Denote the mal=+I( —1)
excited states by g+(g ). Let W+ and W be the ener-
gies of g+ and g when B is in the positive s direction as
in Fig. 1(a).Then the interferential part of the differen-
tial counting rate is

d(P(t));/dt =2F Reo ~(q) I' +e'&~=~+~'e ' (41)

where we have put I'+= I' = I'. In Fig. 1(b) another ex-
perimental con6guration is shown; it is obtained from
Fig. 1(a) by a 180' rotation about the x axis. Clearly the
counting rate for the situation pictured in Fig. 1(b)
is the same as that for Fig. 1(a). Let us calculate the
counting rate for Fig. 1(b) using (36). For a sufficiently
weak fieldg+, g, 0 +(q), and I'~ + are essentially Geld-
independent. Further, I'~ + is the same for both situa-
tions pictured in Fig. 1 since it is invariant under replace-
ment of k by —k. The energies of g+ and g depend
linearly on the Geld, and the effect of reversing the field
is to replace 8' —5'+ by 8'+—$F . Thus the counting
rate calculated from Fig. 1(b) is

d(P(t)),/dt=2F Reo +(q)1' +e"~+-~-"e "' (42)

Comparison of (41) and (42) shows that

1m' ~(q)I'i' ~=0,
aild

d(P(r));/dh=2Fo +(q)I'~ +e r' cos(W+ —W )t. (44)

According to (44) the oscillations should start out at
either a maximum or a minimum. Extrapolation of the
data in Hadeishi and Nierenberg s Fig. 2 to t=0 shows

IV. THE HADEISHI-NIERENBERG
EXPERIMENT

As a simple application of our general considerations
we will calculate the phase of the interferential part of
the photon counting rate in the Hadeishi-Xierenberg

'Hadeishi and Nierenberg state that in their experiment the
incident-electron energy was close to threshold while we have
required that the incident-electron wave packet lies far from
threshold. However, their criterion for an energy close to threshold
was e,((W„which clearly does not conflict with our criterion
(24b). In fact, (24b) was we11 satis6ed in the Hadeishi-Nierenberg
experiment (T. Hadeishi, private communication).
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Torget Photon Counter

Watson. " We first replace the initial unsymmetrized
wave packet X(t) by an antisymmetrized wave packet
X,(t). Since the atomic wave functions g, ($) are already
antisymmetrized we need only antisymmetrize with re-
spect to interchange of the incident electron and each of
the atomic electrons:

X,(t) = (Z+1)"'SX(t) (A1a)

Electron Beam incident
in X direction

where 8 is the projection operator onto antisymmetrized
states,

(a)
S= (Z+ 1)-' g S,Q;.

j=0
(Aib)

Photon Cou Target

Electron Beom incident

in X direction

Here Z is the number of electrons in the atom, 80=1,
l);~0= —1, Q0=1, and Q,go interchanges the incident
electron's variables and the jth atomic electron's varia-
bles. Q; is Hermitian and unitary so adjoints and in-
verses will not be indicated explicitly. Let t, be a large
negative time at which the electron wave packet does
not overlap the atom. Let II=E+V where V is the
electron-atom interaction. Then since all permutations
commute" with H the symmetrized solution of the
Schrodinger equation is

,(t)=e''H" "X,(t.)=(Z+1)'"Se '~" "'X(t,)

=X*(t)+ d'p (p—«)
-' V'*-, (A2a)

Fro. 1. (a} Experimental configuration of the Hadeishi-
Nierenberg experiment. (b} Experimental configuration obtained
from the Hadeishi-Nierenberg conhguration by a 180' rotation
about the x axis.

that the oscillations start at a maximum which indicates
that (r +(«) I'~ ~ is positive.

Note added in proof It is incorrec. t to neglect wave-
packet spreading, i.e., to use the approximation (8a).
If @, LEq. (9b)j and (g(, I

qh, ) LEq. (16a)j are evaluated
without the use of (8a) the same results are obtained
except that t no longer need satisfy inequalities (24a)
and (25). Inequalities (26) and (27) are also removed,
but (24b) is retained.

=(Z+1) '" Q I),Q, Tx. (A2b)
~-0 E'+i g—E

X.(.) = (Z+ 1)"'S)t' (A3)

In general the states X, ~ ) do not give rise to a simple
expansion of the identity, but it is readily verified that

We will expand %,(„)(t)—=4', (t)—X,(t) in antisym-
metrized eigenstates of E:
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APPENDIX: EFFECTS OF EXCHANGE
SCATTERING

whenever f, is of the form

f,= (Z+1) 't'Sf (A4b)

where f is an unsymmetrized wave function in which the
incident electron is localized far from the origin and the
atomic electrons are localized near the origin. The nature
of the sum P, in (A4a) is defined by P, X,X,t= 1; it is
displayed explicitly in (3b). For sufliciently large posi-
tive times %,(„)(t) is of the form (A4b) (we assume the
excited atom is not ionized) and admits the expansion

In this Appendix we will justify the use of Eq. (10). "«&«e~«o, chap. 4
This will be done in a rather brief manner since much of

' This is not strictly true since E does not include the inter-
action of the incident-electron s orbital angular momentum with B.what is said here is also contained in Goldberger and It is assumed that this is of no physical significance.
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with k/0. 4, („)()') is thus

+.(-)(&)= (Z+1)'"
(A4a). Before carrying out the expansion we will put
P+, (.,) in a more convenient form by using the operator
identity

Q,[E+iv E$—'T'= [E+iv E;—] 'T);Q, , (ASa) {T.(p.,p) —ZT.'"(p.,p) & (A7)

where j' is arbitrary, and

Tp, = V,+V) [E+('g—Hj 'V;,

V~ = Q~VQ),

E,=H —V, .

This leads to the expression
(A9)

(Z+1) '
&x (.) Ik' (-)) = 2 &.~,&Qkx. l T»IQ, x)E+gr/ —F

which is obtained from (AS) by replacing k with FX„and
including the initial state of the radiation held. In the
same way that one verifies (A4a), it is readily verified
that

= [A+i))—E,j-'

xsZ
~ E+jg—E

Following the same line of development as in Sec. II,
(ASb) this may be put in the form

(ASc) @,, „(t)= (Z+1)'"M'.,(t), (Ag)

(ASd) where 4'.,(t) is given by Eq. (9) with f, defined by (10).
The decay process is now described by

@,(s,) (t) = (Z+1) '('M g, (/)

where
&&{T (p,p)-ZT. "(p.,p)),

T.(P.,P) = &x. l
T

I x),

T.'"(P.,P) = &x.
l
To~

I x),

&~(~))=(+.(.)()') I~I + (~ )(~))
= (+do(&) I

&
I +dc(&)) (A10)

(A6b)
Thus the symmetrization in (A9) may be ignored for

(A6c) the purpose of calculating the photon counting rate.
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Superconducting Transitions of Amorphous Bismuth Alloys*t'

J. S. SHIER) AND D. M. GINsBERG)
Department of Physics and materials Research Laboratory, U'niversity of Illinois, Urbana, Illinois
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Measurements have been made of the critical temperatures T, of binary-alloy balms composed of amor-
phous bismuth with lead, thallium, or antimony in concentrations up to 13 at.%. The curves showing T, as
a function of impurity concentration are nearly linear, as expected for a superconductor with no crystalline
anisotropy. The slopes of the curves are not simply related to the valence or free-atom size of the impurity
atoms. It is suggested that this may be explainable by extending Faber and Ziman's theory of the breakdown
of Linde's rule for liquid alloys. The transitions of the Qms into the superconducting state are extremely
sharp (~5 mdeg wide). This indicates strongly that the electromagnetic coherence length does not limit the
sharpness of the transition.

I. INTRODUCTION

HE superconducting critical temperatures of many
different alloys have been measured in the last 50

years. However, only in the last few years have we had
the theoretical knowledge required to examine the
fundamental signilcance of the data. All of our present
theoretical understanding of critical temperatures has,

*This research was supported in part by the Advanced Research
Projects Agency under Contract No. SD-131 and in part by the
National Science Foundation.

t Based on the Ph. D. thesis of J. Shier, University of Illinois,
1966 {unpublished).

f. Present address: Los Alamos Scienti6c Laboratory, Los
Alamos, New Mexico.

$ A. P. Sloan Fellow during part of this research.

of course, arisen from the BCS theory, ' and from
elaborations on it. Two years after this theory was
presented, Anderson made a major advance by suggest-
ing two mechanisms which usually dominate the shift
in the critical temperature T, of a metal as impurities
are added. ' He suggested that nonmagnetic impurities
depress T, because of a decrease in the e6ect of crystal
anisotropy on the electrons. This is called the anisotropy
effect. He also showed that magnetic impurities are
expected to cause an additional depression of T„be-
cause of their tendency to break down the electron pair-

' J. Bardeen, L. N. Cooper, and J. R. Schrie6er, Phys. Rev, 108,
1175 {1957).' P. %. Anderson, J. Phys. Chem. Solids 11, 26 {1959).


