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Alfven waves in bismuth have been studied in the frequency range 300 to 2000 Mc/sec, for propagation
along the magnetic Geld. All the measurements were done on the same single crystal, and it was found that
at the higher frequencies the real part of the dielectric constant is greater than the imaginary and that at
lower frequencies the reverse is the case. This frequency dependence had a marked effect on the real part of
the refractive index of the medium, which allowed one to measure, in addition to the usual charge-carrier
mass density, some mean relaxation time of the charge carriers. The mass densities are in reasonable agree-
ment with theory when the effective masses of the holes and electrons for bismuth from some previous ex-

perimental results are used, though there are some inconsistencies, which are discussed. A detailed analysis
of the relaxation times proved impractical, but the magnitudes of the values agree well with other experi-
mental results. The effect of Shubnikov —de Haas oscillations on the transmission was also studied.

I. INTRODUCTION

' 'T has been pointed out by Buchsbaum and Gait'
~ - that Alfven waves, 6rst proposed to explain certain
phenomena in astrophysics, ' could, under certain con-

ditions, propagate in solid-state plasmas. These authors
re-interpreted the earlier cyclotron-resonance work of
Gait e( al.' in terms of Alfven waves. Since then a number
of experiments studying both the reflection and trans-
mission of Alfven waves have been reported by various
workers including %illiams, 4 williams and Smith, '
Kirsch and Miller, ' Kirsch, v Khaiken et a/. ,

' Khaiken
et al. ,' Bartelink "Kawamura et al "and Faughnan"
Review articles on Alfven waves and the closely related
subject of helicons have been written by Buchsbaum'3

and Bowers. '4

YVith the exception of Bartelink, these workers have
been concerned with either the Alfven-wave velocity
(dielectric constant of the medium) or the Doppler-
shifted cyclotron resonance of the charge carriers, and
so have worked at relatively high frequencies where the
damping of the Alfven waves is small. On the other
hand, Bartelink worked at low frequencies where the
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waves are heavily damped. The purpose of the present
work is to study the propagation of the Alfven waves
in the intermediate-frequency region and to investi-
gate not only the real part of the dielectric constant
but also the imaginary part. As all experiments were
performed on the same single crystal this allows one to
study not only the mass density of the charge carriers
but also their relaxation time. The manner in which the
Shubnikov —de Haas effect affects the damping of the
waves is also studied in some detail.

Section II presents the theory of Alfven-wave propa-
gation in both anisotropic plasma and an anisotropic
plasma. The results for the anisotropic plasma are
applied to bismuth and the eGects on the propagation of
a 6nite relaxation time, both isotropic and anisotropic,
are discussed. In Sec. III the details of the experimental
technique are described. The results are presented in
Sec. IV and the discussion of these results is in Sec. V.

II. THEORY

i. Alfven Waves

All the measurements to be discussed in this paper
were made where anomalous-skin-effect conditions do
not prevail, so that the classical Drude-type theory can
be used to discuss the results.

From Maxwell's equations we obtain the wave
equation

V & (V ~ R) = (oPjc') e E

where the complex dielectric constant is dehned as

e = e(—jo/cveo(mks units)

with e~ being the lattice dielectric constant and a the
complex conductivity tensor. In the present experi. -
ments, a~ which is of the order of 100 can be neglected
in comparison with the second term in Eq. (2).

Assuming a plane-wave solution, the wave equation
takes the form

h & (k &R)+kp'e E=O,
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where kpP =pp'/c'. H the direction of the steady magnetic
field 8 and the direction of propagation are both chosen
along the z axis (ir~~8), the dispersion equation is

6gy = 6y~ = 1 40ye MC04.e

(dpi'

GOGOch

=i(q/ppB4o) ( n—,+np),
p/4op pp 2/~p

(9)

(10)kp2& —k2 kp2& 0
0 =0.

kp'e„
(4)

where

4p„= (qB/m, ) (electron cyclotron frequency),

pp, s= (qB/m 4) (hole cyclotron frequency),

4py.'= (n.q'/porn, ) (electron plasma frequency)',

4pyh'= (npq'/ppmp) (hole plasma frequency)'.

This can be solved using Eq. (2) and neglecting e&

to give

4 =k'/kpP = (1/icopp)-,' (o„+o „„)
aP(o o)'——o ']'" (5)

This equation defines the dielectric constant due to the
charge carriers. It is also possible to obtain a solution
when k is not parallel to 8 but the above equation
covers the only case considered in this work.

In the classical skin-effect limit, the complex con-
ductivity can be obtained by solving the equation of
motion for the charge carriers.

dv q8 qE
In- —+—xv+ylll v= —,

df Plp SSp

14p(n m, +npmp)c' '" 1+Li+(1/ppr)')'~P '"
, (11)

When
~
p,v~))p, one gets as a propagating wave a

circularly polarized helicon. In a compensated material
such as bismuth n, =np and p, ))~p,v~, so that the
propagating wave is a linearly polarized Alfven wave.

The experimentally measured quantity is the re-
fractive index p, the real and imaginary parts of which
are

ii. Isotropic Plasma

For an isotropic plasma of electrons and holes the
dielectric constant can be written, in the limits cu„r
and ~,hv))1 and co„and ~,h&&co, as

t~~= Gay=

4

M pe COpg z
+ 1——

Age Mph C07

(neme+npmp)
1——

7

Q pa 2 MT

44p (n,m,+nj,mI, )
C2 1——

782 G07'

"B.Lax, K. J. Button, H. J. Zeiger, and L. Roth, Phys. Rev.
102, 715 {1956).

where m is the effective mass of the charge carriers in
terms of the free electron mass mp, v is the drift velocity
of the charge carrier, 8 the large static magnetic field
and v= 1/r is the—collision frequency and r the relaxa-
tion time of the charge carriers (both of which are
assumed to be isotropic).

This equation has been put in the form

4r/op= (m+b X 1)—',
where 1 is the identity matrix,

b= qS/(v+ico)mp,

op nq'/(——v+i4p)m p,

and solved by I.ax et c/." However, these results
are cumbersome and a better understanding of the
physics involved is obtained from the equations for
an isotropic plasma. The formulas for an isotropic
plasma will not of course apply to bismuth, and more
complicated formulas will have to be developed later.

i 14p(n, m, +npm4)c' '~'

2' T

1+(1+(1/4or)']'"
(12)

If the real part of the refractive index is measured at
two angular frequencies, preferably with one greater
than and the other somewhat less than 1/r, one can
obtain both the mass density (n,m, +npmp) and the
relaxation time.

These formulas now have to be extended to cover the
case of bismuth, which is anisotropic. Before this is
done, a brief description of the Fermi surface of bismuth
is necessary.

iii. Fermi Surface of Bismuth

The model of the band structure most frequently
used to discuss experiments is the tilted ellipsoidal
model, which has recently been reviewed by Hoyle
and Smith. "In this model the electrons are described
as being located in k space by three ellipsoids'~ slightly
rotated about the binary axis out of the plane perpen-
dicular to the trigonal axis. The energy of an electron
within an ellipsoid is given by

E= (5 /2mp)(nykP+npkP+npkP+2n4kpkp), (13)

where k~, k2, and k3 are the wave-vector components
parallel to the binary, bisectrix, and trigonal axis,
respectively, and the 0.'s are components of the re-

"W. S. Boyle and G. E. Smith, in Progress At' Semicotufuctors,
edited by A. I". Gibson (Heywood and Company, Ltd. , London,
1960), Vol. 7."A. L. Jain and S. H. Koenig, Phys. Rev. 127, 442 (1962).
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ciprocal mass tensor. LThe bisectrix axis (2) is at right
angles to both the trigonal axis (3) and one of the three
binary axes (1).] The eRective mass tensor for an
electron in such an ellipsoid is

mg 0 0
0 m2 m4

.0 m4 mg.

where m~, m2, m3, and m4 are in units of the free-
electron mass. The two remaining ellipsoids are ob-
tained by 120' rotations about the trigonal axis.

The hole band is much simpler, consisting of a single
ellipsoid of revolution about the trigonal axis, the energy
of a hole being given by m'. (dv/dt)+qB x v+(m'jr) v=qE (19)

ized by assuming a mobility tensor of the form

P, 0 0
Pp P4

P4 Pp.

which has an inverse of the form

0 0
p2 p4
V4 Vs. .

The equation of motion of an electron in a large static
magnetic field, an alternating electric field (E=Epe'~c)
aad for an isotropic relaxation time v is given by

( &2 &P &22 &32)

(2mp Mi M'i M l
which can be generalized to

(icp/q)m' v+B xv+y v=E (20)

where M~ and, M3 are the effective masses of the holes,
again in terms of the free electron mass. v= L(icpm'jq+y+B x I]-'E. (21)

iv. Anisotropic Theory

The magneto-conductivity using the model discussed
above has been calculated by Lax et al "from E. q. (7),
with an isotropic relaxation time. The conductivities
to be substituted in Eq. (5) are the high-field limits of
the results of Lax et al. LIn the anisotropic case even
where n, =n~ the dielectric tensor is not diagonal, but
with B along the principal axis, nf(m) is unaRected by
the off-diagonal terms in the high-field limit. ] The ex-
pression for the velocity of the Alfven wave (pg) can
now be written as

m' in the above equations is mrna. There is now a one
as to one correspondence with Kq. (22) of Lax et al.
and, using the fact that J=nev, with Eq. (7) in this
paper. This correspondence can be used to calculate the
high-field limits of the conductivity tensor and hence
the dielectric tensor.

The correspondence of Eq. (22) of Lax et al. and
Eq. (7) with the above Eq. (21) is

m = (icpm'/q+ y),
b=S,

ao=ng )

where

i'' B'/tc pm pn f——(m) F,

F= p LI+(1+(1/~r)')'"1

(15)

(16)

and the high-held limit corresponds to

Bf))
/

imcp' /q+y[ .

From the above, one obtains for the dielectric-tensor
components

and nf(m) is the mass density of the medium, where n
is the number of charge carriers per cubic meter and
f(m) is a function of the effective masses of the holes
and electrons obtained from the results of Lax et al,.

It can be seen from Kqs. (4) and (5) that the dielectric
constant and hence the function nf(m) depends not
only on the direction of the magnetic field but also on
the direction of the electric field of the incident wave.
The expressions for nf(m) for all the configurations
used in these experiments are shown in Table I.

However, because of the anisotropy of bismuth it
is obvious that the relaxation time of bismuth is not
isotropic, so that the procedure outlined above is only
determining some mean relaxation time or, to be more
precise, the ratio of the real to the imaginary part of the
dielectric constant.

The procedure due to I.ax et al. can be generalized to
take into account an anisotropic relaxation time or an
anisotropic mobility tensor (which is not just a constant
multiple of the mass tensor). This procedure is general-

nq fPicpm'/q+y]

where the f(icpm'/q+v) for each orientation of the
electric and magnetic field is obtained from Table I
replacing the m; (and M;) in these formulas by

pccmc jq+'rc.

It is seen that since the equations for f(udm'/q+&)
are not linear one obtains cross terms, and cannot
separate a real part of the dielectric constant involving
only terms in cp/mq cfrom the imaginary part involving
only terms in p;. This, naturally, greatly complicates
the analysis of the results.

It should be remarked here that so far, quantum
eGects have not been taken into account. These arise
because in the presence of a magnetic field the electrons
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TAai.E I. Expressions for nf(m), the values of
t nf(m)]'/ and 7 measured. The values of 7- in brackets indicate the maximum possible

uncertainty in 7. for these experiments. (Note that M1=.V2 due to the symmetry of bismuth. j

ajtaxis

1
1

2
2

3
3

Effaxis

Dielectric
constant

&22

433

&ll

633

&11

622

nf(m)

n fm3 —2m4 /(m1+3m2)+3f 3}
n(-', m2+ (8/3) mlm2/(m1+3m2)+M2}
n(m —m '/3m —-', m '/(3m +m )+u3}
s{3m1+ (8/3) m1m2/(3m1+m2) +3II1}

2~( (m1+m2) m4 jm3+2~2}
-', n f (m1+m2) —m4'/m g+2M1}

Lnf (m) 1'/2

X10~

0.429
0.363
0.461
0.146
0.315
0.304

Relaxation
time v (nsec)

0.21(0.24-0.18)
0.55 (1.0-0.35)
0.37 (0.50-0.28)
0.15(0.17-0.12)
0.27 (0.34-0.23)
0.22 (0.27-0.18)

quantize into the well-known Landau levels which, due
to a changing magnetic field, pass through the Fermi
surface giving rise to oscillations both in the relaxation
time of the charge carriers and the mass density itself.
The effect of the changing mass density is small, and
as will be seen later, does not greatly inhuence the
results. The effect of the changing relaxation time
(Shubnikov —de Haas effect) also clearly shows up in
the experimental results. The fact that the relaxation
time is an oscillating function of the magnetic field
means that the relaxation time measured is an average
over the magnetic field range in which the experiment
is done.

III. EXPEMMENTAL DETAILS

All the measurements described here were made on a
single sample of bismuth, which was a cube, oriented
along the principal axes, with a 7-mm edge. The sample
was spark-cut from a single crystal, which had been
grown from bismuth of quoted purity better than
0.999999 (purchased from Cominco Company) using
a traveling-zone technique. The surfaces of the cube
were spark planed and the damaged layer removed
chemically. The alignment along the trigonal axis was
to better than 1', along the other axes to better than
2'. A residual resistivity ratio p293/p4. 2 of 120 was
measured, with the current along the trigonal axis, in
a sample cut from the same single crystal adjacent to
the above mentioned cube.

A block diagram of the apparatus used is shown in
Fig. 1 and a schematic diagram of the sample holder is

shown in Fig. 2. A signal (300-2000 Mc/sec), which was
Inodulated at 1000 cps, was fed from the oscillator
through an impedance matching device (trombone
line and stub) into a strip line and then through a
short length of waveguide beyond cutoB (in the TEa'
mode) to the surface of the sample where it excited an
Alfven wave. The strip line and waveguide ensured an
electric field of known orientation. As the sample was
larger than the waveguide (SX2-,' mm) it completely
covered the end of it. In order to cut down the leakage
signal, the sample was glued against the sidewalls of
the waveguide with silver paste and an iris was glued
with silver paste between the sample and the pickup
coil. The signal (Alfven wave) transmitted through the
sample was detected by this pickup loop and fed. through
a 10-dB matching pad into a mixer, i.f., and video
amplifier before going into a phase-sensitive detector.
ft was also possible to couple a reference signal (used to
measure the relative phase of the transmitted signal)
into the mixer via an attenuator and phase shifter. The
output of the phase sensitive detector drove the y
axis of an x-y recorder, the x axis of which measured the
current in the 40-kG superconducting coil used in these
experiments.

For a given frequency, as the magnetic field and
hence the number of wavelengths in the sample changes,
it is possible, if the attenuation is low enough, to get
Fabry-Perot or standing-wave resonances. However,
in these experiments, this eHect was only observable
with low frequencies at the highest magnetic fields
used, so that a reference signal had to be added in
order to obtain interference or phase oscillations corre-
sponding to a change of one wavelength in the sample.
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FIG. 1. Block diagram of apparatus used in the experiments.
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FIG. 2. Schematic cross-sectional diagram of sample holder.
a is the waveguide beyond cutoff excited from the left by a strip
line. b is the sample. c is a sprung Plexiglass sample holder. d is the
iris. e is the pickup loop. The small arrow indicates the direction
of the electric field (L), the large that of the magnetic field (8).
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When no reference signal vras added, it was possible
to observe the transmission envelope at higher fields.
Interference oscillations with the unavoidable leakage
signal were observed vrhen the magnetic field and hence
the transmitted signal were too lovr.

When a reference signal is added, maxima occur vrhen

(%+5)=dpf/c,

where E is the fringe index, d the sample thickness, f the
frequency of the electromagnetic wave, and 5 is an
arbitrary phase factor depending on the relative phase
of the reference signal. Propagation is normal to the
surface so there is no cose term.

The simple theory for an infinite medium is used.
here with no account being taken of the fact that the
sample is finite in the directions perpendicular to the
magnetic field. This can be justified by noting that the
sample has a very high refractive index, typically 100
or more, which ensures that the wave propagation is
always normal to the surface except for diRraction
effects. However, when diffraction effects are calcu-
lated it is found that even for the shortest wavelengths
observed in the medium, the central maximum of the
diffraction pattern completely covers the opening of the
iris. It should also be noted that any vrave striking the
surface at all obliquely will undergo total internal
reaction, and because of the high attenuation in the
medium, play no further role.

The refractive index p, for an anisotropic medium as
a function of magnetic field, can be found from Eq. (15).
From this it can be seen that if one plots S versus
1/8, the slope of the resulting straight line gives
Pnf(m)F]'12. Therefore by measuring the slope of the
line for two different frequencies both nf(m) and r
can be deduced (in the isotropic r approximation).

However, as previously shown, an analysis of
bismuth for an anisotropic relaxation time involves
cross terms, and hence this simple procedure for the
separation of the real and imaginary parts is not valid.
Calculation of f(m) using the effective masses of Smith,
Baraff, and RowelV' (hereafter referred to as SBR)
shows, however, that for e22', &33', and ej~' (the super-
script refers to the direction of the magnetic held)
the contribution to f(m) from the nonlinear terms is
1% or less. Therefore for these orientations, the effect
of the nonlinear terms should be negligible, so that the
procedure of separating real. and imaginary parts
outlined earlier should be valid. For &33' the cross term
contributes 17% of f(m) so the procedure is less accu-
rate. For &~i' and &22', where the nonlinear term is the
negative one and has a magnitude of 30% of the sum
of the positive terms, the procedure is questionable.

Data were taken at both 4.2'K and 1.5'K. All
measurements of relaxation times and mass densities
shown in Table I was taken at 4.2'K. The data taken

at 1.5'K were principally to show the effect of the
quantum oscillations (Shubnikov —de Haas and mass
density) more clearly.

IV. RESULTS

Figure 3 shovrs a set of interference fringes at 1.5'K
vrith the magnetic field parallel to the bisectrix axis
and the electric field parallel to the binary axis at a
frequency of 1.705 krnc/sec. These results clearly show
the type of curves obtained. The lovrer temperature
enhances the modulation due to the Shubnikov —de Haas
effect.

Figure 4 shows that when the fringe indices of the
maxima and minima are plotted against 1/8 one does
not obtain a straight line but that the experimental
points oscillate slightly. This is due to the mass density
changing vrith the magnetic field. The line dravrn
through the points is a least-squares line, the slope of
vrhich is used to determine the mass density.

The oscillations obtained here are in qualitative
agreement vrith those obtained by Williams and Smith. '
As these authors have already dealt vrith the matter in
some detail it will not be further discussed here. The
value obtained for the mass density does however
depend very slightly upon the range in which the data
is taken, providing, of course, the range is sufFiciently
large.

The accuracy with which the refractive indices are
measured depends upon the frequency range. At the
higher frequencies (1500—2000 Mc/sec) there is a rel-
atively large number of maxima and minima and
therefore a very small (less than 1'%%uo) standard deviation
when these points are fitted to a straight line (X
versus 1/8) using a rrns procedure. It is also observed
that the refractive indices obtained for different phases
of the reference signal differ by at most 1%. As other
sources of error do not total more than 1%, the total
error at these higher frequencies is less than 2%.

At the lower frequencies (300—500 Mc/sec) there are
fewer maxima and minima and hence the resulting
straight lines have a larger standard error. To improve
the accuracy of the results, data is taken for a large

I'zG. 3. Interference fringes
in the bismuth sample at 1.5'K.
The magnetic Geld was parallel
to a bisectrix axis and the
electric Geld was parallel to
a binary axis. The frequency
was 1.705 Gc/sec.

"G. E. Smith, G. A. Bara6, and J. M. Rowell, Phys. Rev.
1BS, A1118 (1964}.
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number of different reference phases. The refractive
indices obtained for the same frequency and different
reference phases deviate from the mean by no more than
3%. When a 1%error due to other sources is included,
the results for the refractive indices at the lower fre-
quencies have a maximum error of 4%.

At lower frequencies and higher Gelds, when the
wavelength in the sample is 2d (d = 7 mm) or occasionally
d, some eRects due to standing-wave resonances become
apparent. This sometimes has the eRect of causing a
double peak or of moving an interference maximum or
minimum slightly from where it should lie. After the
point where d=-', ), the signal decreases strongly giving
the appearance of a waveguide-type cutoR, but this
is only due to the approaching ~X minima. (This was
checked using a sample 10X7X7 mm. ) These effects
cause no confusion as they can easily be identified by
changing the phase of the reference signal. The fact
that there are no wave-guide eRects" for this geometry
clearly indicates that using the inGnite-medium theory
to analyze the results is quite justihed.

As the frequency correction to the mass densities
obtained at the higher frequencies is less than 2%
except for e33 the error in fnf(m) j'~' for orientations
where the cross terms are small should be no more than
2%. In the other orientations, faulty separation of the
real and imaginary parts makes error estimation
difficult but nowhere is it likely to exceed 5%. The
results for all six orientations are shown in Table I.
The values of Lef(m)j'" and r are obtained by the
procedure outlined earlier, assuming that Eq. (15) is
valid in all cases. All six orientations shown in this
table were measured Grst and then four of these were
repeated. The values of Ln f(m) J"were all within 2%
of one another and the relaxation times were well within
the experimental errors shown.

As previously mentioned, it was possible to obtain
the transmission envelope at higher magnetic fields
when no reference signal was added. In order to com-
pare this directly with the usual dc Shubnikov-
de Haas measurements, dc Shubnikov —de Haas measure-
ments were done on the same sample, albeit a bit
crudely, by attaching current leads to two faces of the
sample and two potential leads to the third face which
was at right angles to the magnetic field. (The length

FIG. 4. A plot of
fringe index E versus
1/8 from the data of
Fig. 3. The actual value
of the fringe index is
somevrhat arbitrary, as
the extrapolated straight
line does not normally
go through the origin.

$0 15 Po 25x)0 5
1iB (GAUSS)

I

10 15 20
B KILOGAUSS

I

25 50

F&G. S. The dc magnetoresistance {3) and the transmission
envelope for Alfven waves (B) versus magnetic field at 1.5'K. The
magnetic field is parallel to the bisectrix axis and for 3 the current
is parallel to the binary axis. For B the E 6eld is parallel to the
binary axis.

to cross-section ratio in this experiment was less than
one, so the geometry was not ideal. ) Figure 5 shows
simultaneously the dc Shubnikov-de Haas eRect and
the transmission envelope, both with the same orienta-
tion of magnetic and electric Geld and temperature.

"G. E. Smith, L. C. Hebel, and S. J. Buchsbaum, Phys. Rev.
129, 154 (1963).

20 Yi-Han Kao, Phys. Rev. 129, 1122 (1963).

V. DISCUSSION

i. Mass Density

As there are only Gve equations and seven unknowns
in Table I, a unique solution for all the unknowns is
not possible. Instead some other procedure of analyzing
the results will have to be followed.

Before this is done it should be noted that although
from symxnetry arguments alone, e»' and e»' should
have the same value, the measured values of [ef(m)]'"
do not agree. The fact that the mass density in this
direction is very sensitive to the direction of the mag-
netic Geld, may be the reason for the different values
obtained for the two electric-Geld directions. A dif-
ference in alignment of around j.' could possibly
account for a change of about this amount as the term
m42/m& is very sensitive to direction; m4/ma vanishes
when the magnetic Geld is about 6'—9' from the trigonal
axis.

One method of checking the results obtained here,
which is also the one followed by Williams, 4 is to calcu-
late n, the number of charge carriers, using the various
sets of mass components in the literature. This has
been done in Table II for the mass parameters of Gait
et ul. ,

' Smith et al. " Kao'0 and SBR' A number of
things are immediately apparent from this table. The
values of ~z for a given set of mass parameters are
reasonably consistent, deviating by at most 30% from
the mean. It can also be seen that the values of n tend
to group according to the direction of the magnetic
field. However, the mean values of n are low compared
with those reported in the literature. The best agree-
ment is obtained when the masses of SBRare used where
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TABLE II. Values of n calculated from various
sets of experimental masses.

TABLE III. Table of Lnf(m) j'/' obtained by various workers
(units cm ' X10 ). The asterisk shov s which results v ere ob-
tained for k J B. All the others were for k~~B.

&22

&33

6 11

6332

ell

f2o

1.840
1.318
2.125
0.213
0.992
0.924

|alt
et al.'

1.96

1.9'
2.2'
2.2'
2.29

2.14

14

SBRd

2.3'
2.6'
2.7'
2.8'
1.9'
1.8'

2.3'

2 36

2.0'
2.7'
2.3'
2.47

2.3'

2.3'

2.57

2.7
3.0'
3.0'
2.1'
2.0'

n{calculated) cm ' X10 "
Smith
et a/' Kaoc

H ]]axis E]/axis
Present
work

0.429
0.363
0.461
0.146
0.315
0.304

0.4814
0.3184
0.470+
0.162+
0.3938
0.460+

0.464
0.406
0.700
0.140
0.362
0.478

0.718*
0.322~
0.6028
0.1710
0.3228
0.4008

0.548
0.378

0.312*

a Reference 4.
b Reference 12.
e Reference 7. Using n =3 &&10»jcc.

Williamsa Faughnan Faughnan" Kirsch'

a Gait et al. , Ref. 3.
b Smth et at. , Ref. 19.
e Kao, Ref. 20.
d Smith, Bara8, and Rowell, Ref. 18.

the first four results agree within 10% of their reported
value of 2.75X10"/cc. All the results in this column
can be made to agree within 10% of this value if m4

is increased by about 25% and all other masses remain
the same.

When the other mass parameters are used, still
lower values of e are obtained. The most self-consistent
set of values, those using the mass parameters of Gait
et aL. ,

' give rise to the lowest value of all. The lowest
value reported in the literature to date is that of Zitter, "
who gives a value of 2.5X10"/cc. The trend in recent
years has been away from Schoenberg's original value"
of 4.2X10"/cc towards lower values of rr. The most
recent values of rr(X10 "/cc) reported are 2.86 for
the electrons by Brown, " 2.75 by SBR,"3.1~0.1 by
Williams, ' 2.89&3% for the electrons and 2.99&1%
for the holes by Bhargava. '4

One possible source of error in the above results
would be if the sample were not fully compensated.
However, noncompensation is thought to have no
effect on the results, as the starting material was the
purest commercially available and was further zone
refined before the sample was grown. In addition, the
primary effect of noncompensation in the medium
would be a rotation of the plane of polarization of the
"Alfven" wave due to a slightly difI'erent refractive
index for the left and right circularly polarized waves.
No effects due to a rotation of the plane of polarization
could be discerned in this work.

Listed in Table III are results obtained in this paper
for Lnf(m)]t~' together with the results obtained by
other workers. It was necessary to reduce the results
of some of these workers to the Lnf(m) Jl' formalism.
Some of these results were obtained for Alfven waves
propagating at right angles to the magnetic field, but

"R.N. Zitter, Phys. Rev. 127, 1471 (1962)."D. Schoenberg, Phil. Trans. Roy. Soc. (I.ondon) A245,
1 (1952).

~ R. D. Brown, Bull. Am. Phys. Soc. 9, 264 {1964).
~ R. N. Bhargava, Bull. Am. Phys. Soc. 10, 605 (1965);

S. H. Koenig (private communication).

the theory predicts the same values of rrf(m) here as
when the waves propagate along the magnetic field.
The agreement is poor and there appears to be no
pattern to the results. As the differences are larger than
the quoted errors, it is thought that the discrepancies
lie in the different experimental arrangements used, "
combined with the anisotropy of bismuth and an inade-
quate theory, especially as regards the boundaries of
the media. A detailed argument as to the relative merits
of the different geometries will not be gone into here
but it should be noted that the spread in the values of
m using the same sets of mass parameters is very much
lower in the present work than in previous results. 4 "

All experimental masses show that e~~' and e11'
should diRer by less than 1% with e»') cits. Other
workers' "with kJ B find e»'& e11' but by far more than
1% This work finds that e»t(cits by about 20%
which makes any detailed analysis of the results using
the previously discussed model of bismuth impossible.
Faughnan" for k~~8 also finds that erst&eris but by
over 30%. This seems to indicate a basic diRerence in
the results for the two different geometries. It is obvious
that the present theory cannot account for the above
discrepancies. Better agreement may be obtained for
these and other orientations if the nonparabolicity of
the bands is taken into account. "

ii. Relaxation Times

The relaxation times obtained are also listed in
Table I. A number of factors, besides the mathematical
complexity, do not make it worthwhile to assume a
set of effective masses, a value for n and to calculate
five of the mobility tensor components in terms of the
sixth. These factors include the large experimental
error, the inconsistency of the &2~' and &11' results, and
the fact that one is only measuring an average value in
a given magnetic-field range (about 3 000 to 15 000 G).

However, even though the experimental errors are
large, the results clearly indicate that bismuth does
not have an isotropic relaxation time. One possible
model is that the holes and electrons have isotropic or

2' The author is indebted to G. A. Williams for a discussion on
this point.

2' M. Cohen, Phys. Rev. 121, 387 (1961).
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nearly isotropic" relaxation times which differ signif-
icantly from each other. This model would require that
in the orientations, in which the holes dominate the
mass density (&22', eu', a~a'), the relaxation times should
have consistently higher" (or lower) values than in the
orientations in which the electrons dominate the mass
density (e»', e»', e»'). The present results do not support
this model but indicate that the holes and electrons
both have anisotropic relaxation times and that the
average relaxation time of the holes does not differ
greatly from that of the electrons.

Gait et al.' use various values of coT to interpret their
cyclotron resonance results. However, their choice of
co~ does not agree with the present results in so far as
they associate a short relaxation time with the electrons
(especially the heavy electrons) when the magnetic
field is along the binary axis, while the present work
finds, in the electron mass dominated ~33' direction, a
particularly long relaxation time.

The magnitude of the results for 7 agrees very well
with those measured by Zitter" (0.16—0.5 nsec) and
Esaki and Heer" (0.27 nsec).

iii. Shubnjkov-de Haas Effect

The transmission envelopes of the Alfven waves were
measured so that the positions of the maxima and
minima could be more easily ascertained. The dc
Shubnikov —de Haas effect was measured partially to
confirm the positions of the maxima and minima but
mainly to see the relative amplitude of the oscillations
obtained by the two different methods. Kawanura
ef al." had previously remarked that the modulation
due to the Shubnikov —de Haas effect is surprisingly
large. These results are shown in Fig. 5 and it can be
seen that the positions of the minima of the Alfven-
wave transmission agree with the resistivity minima
but that the oscillations are far more marked for the
transmission envelope. This is thought to be due to the
following reasons: Firstly, that the transmissionenvelope
is detected by a system with approximately square-law
characteristics, and secondly, that the relaxation time
appears exponentially in the imaginary part of the
refractive index. The magnitude of this second effect
can be seen as follows; for large co7., the transmission
(T) is proportional to e ~ I "'; therefore AT/T
= (kd/2&or)(hr/r) and kd/2~r is about 2 at 25 kG
and 4 at 12 kG in Fig. 5. (This enhancement of the
oscillations could possibly be used to advantage,
especially at lower fields where the enhancement is
larger, in a more detailed study of the Shubnikov-
de Haas effect. ) Similar curves were taken for other

"L. Esaki and J. Beer, J. Appl. Phys. 34, 234 (1963).

orientations with similar results. As only the oscillations
at high magnetic fields could be observed, the Shub-
nikov —de Haas periods could not be obtained. The
positions of the high-field maxima and minima showed
excellent qualitative and reasonable quantitative agree-
ment with the results of SBR including spin splitting of
the holes along the trigonal axis.

When one looks at the relative contribution to the
mass density of the electrons and holes, one would
think that in 622 and 6]] the holes should dominate the
Shubnikov —de Haas effect as they contribute about 98%%uz

of the mass d.ensity, but examination of the transmis-
sion curves shows that it is mainly the electrons that
determine the transmission envelope. This would seem
to indicate that the heavy masses are associated with
long relaxation times and vice versa, which is not
unreasonable. One must, however, also bear in mind
that the electrons, when the magnetic field is along the
binary or bisectric axis, are near or in the quantum
limit, so that the relative change of v for the electrons
could be much greater than for the holes.

j~. Sgmmggy

Alfven waves have been used to measure the mass
densities and relaxation times in a single crystal of
bismuth. The mass densities do not agree very well
with those of previous workers. They do, however,
show reasonable internal consistency when previously
obtained mass parameters are used to calculate the
number of carriers. The values of n are in most cases
much lower than the values currently reported in the
literature. When the mass parameters of SBR"are used,
the agreement with their value of e is good. The relaxa-
tion times measured are dificult to interpret as they
are some weighted (by the effective masses) function of
the individual relaxation times of the different groups
of charge carriers. However, they do indicate that
bismuth has an anisotropic relaxation time, and in
magnitude agree very well with relaxation times
measured using other methods. The positions of the
minima in the transmission of the Alfven waves agree
with the resistivity minima as they should and the
position of both agree reasonably well with those
obtained by SBR."
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