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ZnS:Si. This is contradictory to the experimental
results. The agreement between the calculated and the
observed hg's seems fairly good. Although this is
perhaps fortuitous because of the crudeness of the
parameters used, the sign and the order of magnitude
of the g shifts seems to be interpreted qualitatively on
the theory based on our proposed model.

The observed spin densities, p, (0), are extremely
large. We will tentatively compare the observed values
with those of the s orbitals of the free atoms. Available
values of if, (0)i'g... of neutral atoms"" calculated
from Hartree-Fock wave functions are also listed in
Table II.The observed densities are approximately 60%

"R. E.Watson and A. J.Freeman, Phys. Rev. 124, 1117 (1961)."R.E. Watson and A. J. Freeman, Phys. Rev. 123, 521 (1961).

of those of free atoms. Any quantitative discussion of
these values could hardly be fruitful from (10) in our
crude one-electron linear-combination-of-atomic-orbitals
approximation. Quantitative calculations of the un-
paired spin densities would require the detailed knowl-
edge of wave function for unpaired electron and of the
inner core polarization.

ACKNOWLEDGMENTS

The authors wish to express their sincere thanks to
Dr. H. Watanabe and Dr. H. Kamimura for their in-
valuable comments and discussions. They are also very
grateful to Dr. Y. Sasaki for his instructive suggestions
and to Dr. E. Okamoto, Dr. S. Asanabe and I. Uchida
for their helpful discussions.

PH YSI CAL REVIEW VOLUME 147, NUMBER 1 8 JULY 1966

Effects of Ato~ic Degeneracy and Cavity Anisotropy on the
Behavior of a Gas Laser

WALTER M. DQYLE AND MATTHEw B. WHITE

Aeronutronic, Division of Philco Corporation, Newport Beach, California

(Received 7 January 1966)

Expressions are developed in this paper which describe the behavior of a gas laser having generalized
polarization characteristics. It is found that degeneracies of the atomic energy levels play an important
part in determining the behavior of such a laser since significant terms occur in the nonlinear polarization
which are attributable to an oscillatory mixing of these levels. As a result, it is found, for example, that for
single-mode operation the field intensity is greatest for either plane or circular polarization depending upon
whether a 6j=~1 or b,j=0 atomic transition is involved in the laser action. For two-mode operation, on
the other hand, the behavior depends in a complicated way both on the polarization states of the oscillations
and on the degree of degeneracy of the energy levels. This behavior is discussed in a number of special cases.

I. INTRODUCTION

'N this paper, we extend Lamb's theory of an optical
~ - maser' to cover systems involving degenerate atomic
energy levels and optical oscillations having arbitrary
states of polarization. Our treatment is speciically
aimed at determining the output characteristics of gas
lasers which utilize generalized anisotropic resonant
cavities. Such lasers are of interest because of the
unambiguous control of their frequency and polarization
characteristics which is made possible by the use of
nonresonant intra-cavity anisotropic components. In
addition to forming the basis for a number of practical
devices, " this control is quite useful in the study
of the fundamental atomic phenomena governing laser
behavior.

A recent theoretical and experimental study of the
properties of a Fabry-Perot resonator containing an

' Willis E. Lamb, Jr. , Phys. Rev. 134, A1429 (1964).
2 W. M. Doyle, W. D. Gerber, P. M. Sutton, and M. B. White,

IEEE J. Quantum Electron. QE-1, 181 (1965).
'Walter M. Doyle and Matthew B. White, J. Opt. Soc. Am.

55, 1221 (1965).

array of retardation plates and Faraday rotators has
established that each longitudinal mode of such a
cavity is split into two distinct resonances. ' The
frequency separation between these resonances is
dependent upon the strength of the anisotropic effects
and their preferred states of polarization are in general
elliptical and orthogonal. The introduction of ani-
sotropic losses into such a resonator can furthermore
break down the orthogonality of the preferred polariza-
tion states and, in extreme cases, can restrict oscillation
to a single polarization. In the discussion below, we will
thus give particular attention to lasers whose oscilla-
tions belong to two distinct, but not necessarily
orthogonal, states of polarization.

Our theoretical approach is quite similar to that of
Lamb, the chief distinctions being our explicit treatment
of the vectorial nature of the electromagnetic 6eld and
of the degeneracies of the atomic system. In the sections
below, the reader will thus be referred to Lamb's work
for more detailed discussions of some of the conditions
of the problem and for treatment of those calculative
details which are common to the two works, It should
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6nally be noted that our assumption of complete
degeneracy of the magnetic sublevels belonging to a
given J' energy level implies the absence of magnetically
induced anisotropies in the laser medium. This situation
can usually be approached quite adequately in experi-
ment by the use of a moderate amount of shielding to
reduce the strength of the earth's magnetic field.

a2 a2

curl curlE+pp~' E+ppEp—E= —pp—P,
at at2 at2

where the anisotropic nature of the resonant cavity has
been taken into account by the introduction of the
6ctional conductivity tensor 6. As will be seen later, the
nonlinear contribution to the induced polarization P is
not necessarily parallel to E.Thus, in general, neither of
these vectors is parallel to e E, and it would normally
be necessary to consider the speci6c form of e. In order
to avoid this considerable complication, we will assume
that both the 6eld and the induced polarization may be
decomposed into two sets of oscillations, each of which
is in one of the two polarization eigenstates e, or eb of
the passive cavity. It is then possible to replace the
conductivity tensor by its eigenvalues 0 and 0-b. The
validity of this approximation is dependent on the
relative magnitudes of the cavity anisotropies and the
nonlinearities of the medium. Its consequences will be
discussed later. %e thus assume that

E=Q[e& '(t)sinK„'z+eQ„'(t)sinK„'zj (2)

and

A „"(t)=E„"(t)cos(v„"t+f„'")

K '"=Nz/I:"

(3)

(4)

where u/b means either a or b, and the effective cavity
lengths I-" for the two polarization states are, in
general, diGerent. In our approximation, we must
project the various frequency components of the
calculated induced polarization P along the chosen
field directions. We thus use in Eq. (1)

P~ ~ =P[e.e. C (t,z)cos(v t+g„'(t))+eben C.'(t, z)

)&cos(v„'t+p„'(t))+e,e S„'(t,z)sin(v t+@ (t))

+eeet, S '(t, z)sin(p ~t+4t '(/))j, (5)

where C "and S "are the in-phase and quadrature
amplitudes of the polarization induced by E.

II. FIELD EQUATIONS

Using a model similar to that used by Lamb, we
assume the electric 6eld within the active medium to
obey the wave equation

Equations relating the component field amplitude
&„'"(t) to e,~t,

.C ~'~ and e,~ b S„'"may be obtained by
substituting Eqs. (2) and (5) into the wave equation
and equating coefIicients of like time-dependent
trigonometric functions. In addition, the spatial
dependence may be removed by multiplying each
equation by sinE„ /bz and integrating over the appro-
priate cavity length.

Ke obtain

(v„~+$„~~ Q„~ ~—)E„~I~=—(v/2@0)e gg' C ~(/) (6)

and

~ "+(~/2Q")~-"=—(~/2~o)e. i~ S-"(&)~ (7)

where

C ~'(t)= C„'I'(t,z)sinK„'~~zdz,

S. ~'(~) =
I,a/b

S„'~'(t,z)sinK„'~'zdz,

and

Q a/b =CK c/b
7

(13)

where p; is the spontaneous decay constant of state j.
From the general de6nition of the density matrix it

follows that, if the x axis is taken to be the axis of quan-

III. ATOMIC POLAMZATIOH

The quantities appropriate for substitution into the
self-consistent-6eld equations are obtained by calculat-
ing, to third order, the polarization induced in the laser
medium by a multifrequency optical Geld E(z, t). In this
calculation it is assumed that two excited atomic
levels, characterized by angular momentum quantum
numbers j and j', interact with the optical field and
that the J, eigenstates associated with a given J'
eigenstate are completely degenerate. Interatomic
collision eGects as well as population of the lower
states (j') through spontaneous decay of the upper state
(j) are neglected.

It is convenient, following Lamb's work, ' to adopt a
density matrix formulation in which the equation of
motion

'[»pj (I'p—+pI')——

is solved separately for ensembles of atoms characteriz-
ing various portions of the atomic distribution, and the
results are integrated over this distribution to yield the
total polarization. In this equation p is the density
matrix, H is the perturbed atomic Hamiltonian and, in
the representation of unperturbed J', J, eigenstates,
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P, (s,t) =Q (P ,
.;jp„„,j j(s,t)+conj, (14)

+tP I;j'jp I, ;j'(z, t)]+co l. (15)

tization, each atomic ensemble makes the contributions where
j'=j jai

co= lV,—8 )0,
V= z(Vj+Vj')

6'~a= +~+;g.g,

(18)

(19)

(2o)

(21)

AV„„(t)=E.z(t)a „„.,;;. if
=Ev~(t)tpmn;jj '

to the Cartesian components of the atomic polarization.
T'he quantity (P „.,;; above designates the matrix
element of the component of the atomic dipole moment
operator either along or perpendicular to the quantita-
zation axis depending on whether n=m or n=m&1,
respectively.

Writing out Eq. (12) in component form yields

m=n
mWn (22)

and
iIV „'(t)=E."(t)6' .;.; 2 jjt=jo

=E„"(t)~P .;.; If ma~. (23)

~ Irr TT&
pma jj= rjpma jj+Z ~ ( Y mpppa j'j Y pnpmp jj') &

p

and

/ ~

pmn;jj'= ( uIO "j)pma;jj'

+i P(Vmpppnj'j Vp'npmp; jj) o

p

Here Ez(t) =E,"(t)i+Eve(t)j is the optical-frequency
electric held at time t in the rest frame of atoms in the
ensemble under consideration.

Assuming equal excitation of all m substates within a
given j state, Eqs. (16) and (1'I) can now be solved by
iteration for ensembles of atoms of velocity e excited to
either angular momentum state at time to and position

(17) so. For initial excitation to the upper state the solutions
to the first three orders in the V's are

p „"oI (j,zo, t,e, t) = — dt' V (t')exp[(/+iso) (t t)+y (t—t')], —
2j+1 (24)

p„„,jj~» (j,s„t„v,t) = — dt"
2j+& ~o ]o

and
Xexp[(y —uo) (t'"—t")+yj(to—t"')]+V„'(t")V „(t"')exp[(y+uo)(t'" —t")+y, (to—t"')]], (25)

p „,;,' toI (j,zo, to, z, t) =
2g+1 oo oo oo

dt"' exp[(y+uo) (t' —t)+p;(tp —t" )](exp', (t"—t')]

XDV, (t') V.,'(t")V,.(t"') em[(~+~) (t"'—t")]+V .(t') V,.(t")V„'(t"')

Xexp[(v —u ) (t —t )]]+expb'j(t —t )]+(V .(t )V-.(t )V. (t )exp[(~—u ) (t '—t")]

+V„„(t')V,„'(t")V,(t'")exp[(&+uo) (t'"—t")]]]. (26)

The total polarization P(z, t) is obtained by fIrst multiplying Eqs. (24) and (26) and the corresponding equations
for initial lower state excitation by the appropriate excitation rate parameters and then adding the results. The
composite equation is next integrated over all to such that (s—zo) = z(t—to), and over a Maxwellian velocity distri-
bution. The expression resulting from these integrations is 6nally substituted into Eqs. (14) and (15) to yield the
Cartesian components of P(s, t). For an assumed optical-frequency electric 6eld of the form

where
E(z, t) =E,(s,t) i+E„(z,t)j,

E,(s,t) =P E„,' cos (v„It+oio„,I)sinK„Iz

(27)

(28)

and

with

Ev(zqt) =Q Evv cos(vp t+olopv )slI1Kp z
pl

&.'(z) =P~/I I,

(29)

(30)
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a calculation similar to that carried out by I.amb for 6nite atomic velocities leads, in the Doppler limit, to the

following expressions for the spatial Fourier projections of the erst- and third-order atomic polarizatiolls.

J'-*")"=—(»Ku) 'LE I5'-» l']{2E.*' e- p[ i("'t+4.*')]U(.—.)
(" "Z("'—)j+conj. (31)

and

P (3)~— P {n(vp' —vp ")CK),'(vp' —v ')+$, (v ' —v ')]1U " '+' "'+S,'(v '—v ')
32k KQ &&

X &(~ 2vp +2vp vp )fl (p p'+p—~)
' + +&j(vp' vp )&(~ 2V~ +zvp vp )+(p—p+e—m) }

Xexp[—i(v„'—v, '+v ')t]{AE„'E„'E.,' exp[ i((t)„—' (t)„*+—(t)„')]+BE„,(E,„'E.„'

xexPI 2((t) *—' (t)pv'+—(t" ')]+cEI 'Ep 'E.*' «P[—i(4I *'—(t ..'+(t"*')]

+DEpv'E„'E, v' exP[—i((t»' —Q„'+1t),v')]}+conj. , (32)

where
2

P *'=—
L, p

dz P, (z, t)sinK„"z,
IV. AMPLITUDES AND FREQUENCIES

IN AN ANISOTROPIC LASERLr)

(l—s+ t—t))—
(p—p+ a'—n)

L, p

dz $(z, t) In order to obtain information about mode competi-
tion and pulling effects in an anisotropic laser, we now
assume the existence of two modes having the same
principle order number but corresponding to slightly
different effective cavity lengths. Under these conditions
the indices t(, p, a, and )) of Eqs. (31) and (32) are equal,
while the indices l, s, t, and v can assume only the
values 1 and '2. I-etting P =Pi, K„'=Ej, v„'= vy,

r l—s+t-v„'= v~, and .'i („n+„„)"' ' ' =.0 ($ s+f g) and drOp-
ping all terms with frequencies not equal to v1, Eq. (32)
reduces to

Xcos[(KV' —K '+K, ' K")z] —(34)

X(z,t) =A, (z,t)/(2j+1)q, —A,'(z, t)/(2j'+1)p, , (35)

z(v (o) =—iKu dr exp[i(v —(o)r—yr —-',K'u'r'], (36)

(37)

(38)

(39)

(40)

&(v)=(V+iv) ',

n, (v) = (y,+iv)—',

Vfztr
=

g Vfz V(r
I lp

' = (i)r" /32&'Ku? {Q1[AE)*'+(8+C+D exp2ip, )
XE(*E)v']+A (M)2+ CV)2 )E„E2~'
+(~„~+~„C)E,.E.;+C(~„C+~„~)-
Xexpi(41 —&2)+L (M)2+&,2') expig)+|t, )]

XE2,E2vE)v}exp —i(v)t+@),)+conj. , (44)
Il=Z I6'-I'CI(P-+), -I'+ I6'--1,-I'] (41)

treatment of systems using generalized anisotropic
resonant cavities.

(33)

and

c=Z I(p-I'CI(p-, --)I'+ I6'-, -+)I'], (42)
where

Q = C&(0)+&( —.,)][a,(0)+~, , (0)]X„,
3d ).= &,'(0)C&(&)+&(~—v)]iU„

(45)

D=g[n', (1', 16' 1, )(P

+(1m, m(f m, m+16 m+1, m+1(pm+1, m] ~

++i (2A)C)U)o+(A)+1U)2+((o v1)] (46)
(43)

M12' ——S, (0)[$(A)+n((o —v)])U) o

In the above expression 1U (z, t) is the excitation density
per pm substate, and A, (z, t) and A,'(z, t) are the total
numbers of excitations to the states j and j', respec-
tively, per unit time per unit volume.

Expressions for P„„"("and P„„'("are obtained by
interchaing x and y in Eqs. (31) and (32), respectively.
The rather complex form of the optical-frequency elec-
tric field [Eq. (27)] was chosen so as to allow for the
existence of simultaneously oscillating modes corre-
sponding to diBerent laser cavity lengths. As indicated
above, this degree of generality is necessary for the

V VI2

(t 1 41)z @lv q

A=z) .—Av,
LI

1U)o ——— dZ iU(Z, t),
Lg p

(49)

(50)

(51)

(52)

+» (2&)[1U)o&(&)+(U)2&((o—v))], (47)

5=2(V2 Vl)t



BEHAVIOR OF GAS LASER 363

LI

1V =— ds 1V(s,t)cos[2(K —K )2]. (53)
L'1 0

A corresponding expression for P~„(" can be obtained

by interchanging y and 2: in Eqs. (44) and (45). P„&2& is
obtained by interchanging the subscripts 1 and 2.

It is clear from the definition of P„given in Eq. (33)
and the definitions of C„'& (t,s) and S„'~o(t,s) given in
Sec. II that if we identify v& with v and I & with v ~

the in-phase and quadrature portions of P& can be
identified with C '(t) and S '(t) of Eqs. (8) and (9),
and the corresponding portions of P2 can be identified
with C o(t) and S o(t). Extracting the quadrature part
of Eq. (44), we have

S„&»=(2r'~2/16122Eu){[AQ, "]E„'+[(B+C)gi"+D(gi"cos2$1+Qi' sin2$1)]E1~»'+[A(M&2"+M&2")]E»E2,'
+[BM12 +CM12 ]El*E22 +[(CM12 +BM12 )cos(&t 1 42) (CM12 +™12*)»ng 1 42)

+D (M12 +M12 )cosg 1+$2) D (M12 +M12 )»n (ct 1+&2)]E2*E1E2 ) (54')

where

Q,"= Regi (2——/y;y, ')[1+y'2 (co—vi) ]cYi2,

M12"——ReM 12
——[(2y,/y, ') 2, (25)+ (y/y, ') 2 (co—v) ]1Vi2+[y,y —25 (co—vi) ]2, (26) & (co—vi) 1V&2,

M12"——ReM12' ——p(2y, '/p, ) 2,'(2d )+ (ply~) 2(co—v)]A io+[y,'y —26(cd —vi)]2,'(2A) Z(co—vi) V12,

g '=I g =-[»( — )~( — )/~, v;]A'o,

(55)

(56)

(57)

(58)

M12'= ImM12= —[(4h/y, ') 2, (2A)+y, '(cd —v) 2 (co—v)]A io—[2Ay+y, (co—vi)] 2, (2A) 2 (co—vg)A 12, (59)

M&2"=ImM12' ———[(4h/y, ) 2,'(26)+y, '(cd v—)Z(c—o—v)]A io—[2Ay+y, '(co—vi)]Z,'(2A) g(co —vi)1V12, (60)

and

Z(v) = (y'+ v')-', (61)

(62)

Ci, is obtained from Eq. (54) by changing the over-all algebraic sign, interchanging the superscripts r and i, and
finally multiplying the sine terms by minus one. It can furthermore be shown that S2 and C2 are obtained from
S& and C&, by interchanging the subscripts l and 2, while the corresponding y components are obtained by inter-
changing y and x.

In order to construct the final quantities needed in the self-consistant-field equations, it is necessary to find the
projections of S~ and C~ along K~ and of S2 and C2 along E2. It is furthermore convenient to express these projec-
tions in a form that is independent of the coordinate system used for the calculation. The steps required, to obtain
this result are outlined in Appendix I. It is interesting to note that the calculation indicated in this Appendix
only leads to results that are independent of the coordinate system if the identity

(63)

holds. This sum rule, after it has been disclosed on these purely physical grounds, was subsequently confirmed by
the proof given in Appendix II.

Using the results of Appendix I in conjunction with Eqs. (31) and (54) yields

S, e,= —(Ei/tijou)[g)6' ~'] ImZ(vi —cd)1Vio+E12(2r"2/16f22Eu)gi'[B+C+D(1 —«2)2/(1+V&2)2]

+E&E22(2r"2/16ttoICu) {BM12"+CM12'+ (CMi2'+BMi2'") [(1—ri') (1—v2')/(1+ri') (1+r2') cos22t

(1—«') (1—v ') (« r,)'—+ (ri+r2)'/(1+ri') (1+r2 )]+D(M12 +M12 ) — cosit+, (64)(1+vi ) (1+r2') (1+«2) (1+r22)

where r& and r2 are the ratios of the minor to the maj or axes for the elliptically polarized radiation at the frequencies
p& and I 2, respectively, and p is the angle between the two major axes. An expression for Cy'ei can be obtained
from Eq, (64) by changing the r superscripts to i 's, and the corresponding quantities for frequency v2 can be obtained
by interchanging the subscripts 2 and 1.

Inserting, in turn, the expressions for Si.ei and S2 e2 obtained from Eq. (64) into Eq. (7) results after a rear
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rangement of terms, in the amplitude-determining equations.

@1 irl+1 pl+1 012EiB2 (65)

where

and

~12=
32&ph'Eu

~R oi2E2 p2E2 821@2+1

ai ———-', (v/Qi)+-', vs, o(1/coltEu) [P ~

6' „~ ']ImZ (v, —I),
pi ——(vn'"/32 cob'KN) Qi"[B+C+D(1—ri')'/(1+ri')'],

—(1—r, ') (1—r2') (ri+ r2)'
BMi2"+CMi2"+ (CMi2"+BMi2 ') cos'g+

(1+ri') (1+r2') (1+ri ) (1+re )

(66)

(67)

(1—rP) (1—r22) (ri —r2)'
+D(M»"+Mim'") cos'q+, (69)

—(1+ri ) (1+rm') (1+ri ) (1+r2')

where
V2+ Q2 =Q2+ K2+p2I12"+%21A1 (71)

0 i 2vXio(cot——iE—u) '[g
~

6''—
~
')ReZ(vi —cd), (72)

and exchanging the superscripts r and i in Kqs. (68)
and (69) gives the proper expressions for —

p and —7i2
respectively. These expressions are converted to the
appropriate quantities for use in Eq. (71) by interchang-
ing the subscripts 1 and 2.

V. DISCUSSION OF THE RESULTS

The amplitude- and frequency-determining expres-
sions given above were obtained under the assumption,
made in Sec. II, that the resultant fields are parallel to
the polarization eigenstates of the passive cavity. We
must now determine the realm of validity of this
assumption and its efI'ect upon our results. An examina-
tion of Eqs. (31) and (32), indicates that the first-order
contribution to the polarization is parallel to the
inducing Geld but that the third-order contribution is
not. In the limit of small third-order effects, however,
the direction of the total polarization approaches that
of the Grst-order contribution, and our assumption is
valid. Our assumption will also be valid for somewhat
larger third-order effects if the frequency splitting
between two modes of the same order number is large
compared to the cavity width. In this case, the compo-
nents of El and K2 perpendicular to el and e2 will be
strongly attenuated by the cavity.

Since the errors introduced in the evaluation of the
p's, 8's, and cavity losses are proportional to the cosine

and n2, 82, and 8» are obtained from the quantities
above by interchanging the subscripts 1 and 2.

Finally substituting, in turn, the expressions for
Ci ei and C2 e& obtained from Eq. (64) into Eq. (6)
yields the frequency-determining equations

Vi+$1 ~1+01+Pl~1 +~12~12 (70)

of the angle between the actual and assumed polariza-
tion directions, we would expect Eqs. (65) and (66) to
provide a fairly accurate description of the oscillation
amplitudes in the cases discussed above. Care must be
exercised, however, in the use of the frequency-deter-
mining expressions, Kqs. (70) and (71), since a change
in the states of polarization will result in a shift in the
frequencies of the cavity resonances. This shift can often
be comparable to the pulling and pushing e6ects caused
by the dispersion of the medium. A discussion of these
effects will thus be deferred pending a more detailed
analysis of relationship between the present work and
the cavity calculation. '

Before proceeding to a detailed treatment of the
consequences of our results, it is useful to discuss some
of the general features. We will thus examine the
characteristics of the parameter 8» [Eq. (69)] which
expresses the strength of the third-order interaction
between the two modes. The first two terms in Kq. (69)
are independent of the polarization states of the Gelds,
while the bracketed quantity in the third term, as one
might expect, can be shown to be proportional to their
sealer product. The polarization dependence of the
last term, however, has no simple geometrical inter-
pretation. This term, along with the corresponding term
in P, as we will see below, leads to a number of rather
unexpected predictions concerning laser performance.
An analysis of the relatiohip betweensn the second- and
third-order expressions for the density matrix compo-
nents, Eqs. (25) and (26), reveals that the development
of this last term involves, in second order, a coherent
mixing of pairs of degenerate m states. As a result,
third-order contributions to the polarization P arise,
or example, from successive excitation of the transitions
j,~~ j',m+ j.; j',m+ j —+ j,m+1; and j,vs+1 —+ j',m.
The fact that these contributions do not in general have
the same phase as the direct contributions to P
gives rise to the unique polarization dependence in
Eq. (69). Portions of the terms involving B and C are
also attributable to a coherent mixing of states. These
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E2 = (plo2 0%1 ol)/(plP2 012~21) (74)

and enter into the condition for simultaneous oscillation
of the two modes,

~12821/plp2 ~~ 1 ~ (75)

In our discussions, the eGects of atomic degeneracy and
of the state of polarization will be illustrated by
considering a number of special cases.

A. One Oscillating Mode

The dependence of the third-order polarization on the
state of polarization of the inducing field has an
important effect on laser output characteristics even
when only one mode is oscillating. In this case, the
steady-state intensity is given by

E'=n/p, (76)

where a and P are given by Eqs. (67) and (68). For
convenience we will write

contributions, however, involve the excitation of only
two distinct transitions, and as a result, have the same

phase as the direct contributions.
The discussions below will be primarily concerned

with the values of the third-order interaction param-
eters. These parameters are related to the steady-state
field intensities by the expressions

(p2o1 912&2)/(plP2 ~12921)

compared to y, the coupling parameter is greater than
one (strong coupling). If we neglect the terms involving
the proximity of the modes to the line center, the
coupling parameter is four for zero splitting and one
(critical coupling) for 2k= (y,y,')'".

C. Orthogonally Polarized Modes

If we assume modes with opposite senses of rotation
and perpendicular major axes, we have r2 ———r~ and
q=z/2, so that Kq. (69) becomes

812—k)8~12 +C~12 +D(~12 +kf ls )
(4rP/(1+re)')]. (80)

If we again neglect terms involving proximity to the
line center, Eq. (80), in the limit of zero splitting,
becomes

e =kQ'PB+C+ 2L (4r '/(1+re') ')$. (81)

Comparing Eqs. (77) and (81), we find that for orthog-
onal polarizations the value of the coupling parameter
will depend upon the eccentricity of the polarization
state, generally being greater than one at zero splitting
for linear polarization and less than one for circular
polarization when 6j=~i. For a transition involving
a level with zero angular momentum, the coupling
parameter for orthogonal modes is always one for zero
splitting so that weak coupling occurs for any finite
splitting. In this case Eqs. (77) and (80) reduce to

Pg
——kQg~LB+C+D(1 —rg')'/(1+re')'j (77) and

where
rz.l/2/32~0k3

Pr = kCQg",

Hj. =kCMg2 ".

(82)

(83)

It can be shown by use of the expressions for the matrix
elements (P given in Appendix II, that if j = j&1 the
quantities B and C are always positive and D is always
negative. Thus, for a given excitation rate, the laser
output will be greatest for linear polarization (r~ ——0
and P~

——kQ~"LB+C+D]) and least for circular polariza-
tion (rq ——1 and p& ——kQ&"LB+Cj). This implies that, in
the absence of cavity anisotropy, a single-mode laser
with j'= j~1 will tend to oscillate in a linear state of
polarization. This tendency does not exist if either the
upper or lower atomic state is spherically symmetric
(j=0). In these cases 8 and D are zero. Ifj '=j, the
tendency is reversed.

B. Two Modes of Like Polarizations

In this case r& ——
rm, and p=0, so that Eq. (69) becomes

eu = k (iaaf'u "+W2'")
XLB+C+D(1—rq )2/(1+rP) $ (79)

Equations (77) and (79) differ from Lamb's expressions
for P& and e&2 only by the common factor LB+C
+D(1—rP)'/(1+re)'j. The coupling parameter 8~28~~/

P+2 is thus the same as that obtained by using Lamb' s
expressions. For mode splittings which are small

These last results are consistant with those obtained by
Fork and Sargent4 for circularly polarized oscillations
and a transition between states with j=1 and j'=0.
In making the comparison, it should be noted that, for
mode splittings which are small compared to the
separation of successive cavity resonances of the same
polarization, Xy2 ls approximately equal to X».

D. Modes Having Like Eccentricities and
Opposite Senses of Rotation

Letting r2= —r& but allowing p to vary, we have

8,2 ——k BM&2"+C3Eg2"+ (CM)2'"+831g2 ")

(1 r 2)2

X cos'q+D(M„"+Mgm'")
(1+r 2)2

-(1 r 2)2 4r 2

X c os'g+ — . (84)
(1+re)' (1+re)'

This expression, the corresponding expression for 82~,
and the expressions for Pr and P2 obtained from Kq. (77)
can be used in conjunction with the condition for

' R. L. Fork and M. Sargent, III, Phys. Rev. 139, A617 (1965).
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critical coupling, ei~enlpi82=1, to provide an imPlicit
relationship between the polarization and frequency
characteristics of the laser output. It is clear from the
forms of Eqs. (77) and (84) that this relationship could,
in theory, be used to extract information about the
decay constants associated with practical laser systems
through measurements of laser output characteristics
near critical coupling.

One of the most easily measured quantities associated
with the polarization characteristics of two-mode laser
output is the scalar product of the polarization vectors.
An expression can be given explicitly relating this
quantity to the frequency-dependent terms for the
condition of critical coupling, if we take 8~~= 82~,

P~=P2, and neglect the terms in Eqs. (77) and (84)
which involve D. The latter approximation is valid if
either j or j' is zero and becomes steadily worse for
larger values of j. If j=1 and j'=2, for example,
D~ ', (8+C).-We obtain

-(1—rP)-

(1+re}

& (Qi' —~i~")+C(Qi"—~u'")
cos'g= (8$)

cm»+mr»"

This expression is in general agreement with measure-
ments made in our laboratory of the polarization
overlap and frequency splitting at critical coupling for
a 3.5-p, He-Xe laser.

VI. SUMMARY

Ke have developed above an optical-maser theory
appropriate for systems involving degenerate atomic

'Matthew B. White and KValter M. Doyle, Bull. Am. Phys.
Soc. 10, 607 (f965).

E. Combination Tones

An examination of the general expression for the
third-order polarization, Eq. (32), reveals that, for
two-mode operation, contributions to the polarization
exist at the frequencies 2v~ —v2 and 2v2 —vj. Although
the form assumed in Sec. II for the field in the cavity
neglects the possibility of oscillations at these fre-
quencies, it is clear that such combination tone oscilla-
tions can exist with appreciable strengths if the cavity
losses at their frequencies are sufFiciently small. This is
indeed the case if the frequency splitting introduced by
the cavity anisotropies is small compared to the cavity
width. An interesting additional result of the theory is
that the combination tones can exist even when the
primary oscillations are orthogonal. This result is a
direct consequence of the coherent mixing of degenerate
m states discussed earlier.

We have previously reported the observation of
combination tones in an anisotropic laser. ' In these
experiments, we were able to observe up to eight
frequency components associated with a given pair of
primary oscillations by using a high-gain laser with a
low cavity Q.

energy levels and arbitrarily polarized optical fields.
In order to treat the case of a laser utilizing a generalized
anisotropic cavity, we first derived self-consistent-field
equations, allowing for the simultaneous existence of
oscillations belonging to each of two distinct states of
polarization. This derivation was performed under the
simplifying assumption that the polarization states of
the fields are completely determined by the passive
cavity. Using a density-matrix formulation similar to
that used by Lamb, ' we next derived expressions for the
first- and third-order contributions to the induced
atomic polarization for a general laser transition
between states with angular momentum quantum
numbers j and j'= j, j+1 and complete m degeneracy.
Explicit allowance was made in this calculation for the
existence of oscillating modes corresponding to different
laser cavity lengths. After specializing the polarization
expressions to the case of two modes corresponding to
different cavity lengths and possibly having different
polarizations, we next extracted the projections of their
in-phase and quadrature parts on the inducing field.
These quantities were finally substituted into the self-
consistent-held equations to obtain expressions for the
frequencies and amplitudes of oscillation.

The third-order-interaction parameters which enter
into our frequency and amplitude-determining expres-
sions were found to depend in a fairly complicated way
on the degree of atomic degeneracy and on the polariza-
tion states of the oscillations. The complicated nature of
this dependence arises from terms in the third-order
polarization which involve a coherent mixing of the
degenerate states and leads to a number of interesting
predictions regarding laser operation. In the case of
single-mode operation, for example, it was found that if
6j= ~1 third-order saturation is least for plane-polar-
ized light. This indicates that in the absence of cavity
anisotropies a single-mode laser will be plane-polarized.

For two-mode operation, particular attention was
given to the condition for simultaneous oscillation. If
the two polarization states are orthogonal, and 6j=+1,
the value of the coupling parameter at zero splitting is
generally less than one for circular polarization and
greater than one for plane polarization. It is always
equal to one for zero splitting if j=o for either of the
atomic levels. For two-mode operation with like polar-
izations, on the other hand, the competition parameter
is un''ected by the atomic degeneracy or the state of
polarization and is thus the same as that given by Lamb.

A number of topics mentioned in our discussions are
appropriate for further study. One of the most interest-
ing of these involves the possibility of using the relation-
ship between frequency splitting and the polarization
parameters at critical coupling to determine the values
of the decay constants for the upper and lower atomic
levels. It might also be quite interesting to investigate
further the characteristics of the combination tones
generated by neighboring oscillations and the relation-
ship between polarization pulling by the laser medium
and the output-frequency characteristics.
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APPENDIX I
In this Appendix, we trace the steps necessary to

form the projections of the in-phase and quadrature
components of the polarization on the inducing field.
We first assume S~, for example, to be of the form

Slx nlgElz+bllzzElg +bllz2ElsElw +~12zzElzE22~
(I 1)+c12xyE1x~2y +c212»y+2xI-1 1y~2y y

with a similar form for Sl„.If we take el= Rl/El where
El

I
El I, w——e have

The sum rule assumed above is proven in the following
Appendix.

APPENDIX II

In order to remove the coordinate system dependence
in the preceding Appendix, it was necessary to assume
the atomic sum rule A =B+C+D, where

w=gl6. I',

2I=Z{I6', ,„I + I6'„,.I'}16'„„I, (11.2)

Sl el=
I
Ell-'(Sl, E1,+Sl„E1„)

which can be written

(I.2) C=E(I6'„,=, I
+16'„, +, I }I6'„„ll, (II.3)

S1 ' «=& 1E1+f11E1 +C12E1E2
aild

(I.3) E 6 (m6m, m1m6 m —l, m—16 m—l, m

A 1= (1+Rl ) (alx+1212R1 ) y (I.4) +6 m, m+16 m+Its+16 m+1, m} ~ (11.4)

Bl (1+Rl'——) 'Lbl~+ (bll~„+bll„g)R1'+bl„R1'], (I.5)

and

C12 [(1+Rl ) (1+R2 )] LC12gx+C1222R2

+ (~212x22+ +2122am) R1R2

+C1222R1 R2 +C122*R1 ]) (I.6)

where Rl =El„/El~ and R2= E2„/El„and for the
problem of interest, ai,~= ayy, big= byy, byplay= byway„

c12~g c12yy and c12 y c12y

The dependence of Eq. (I.3) on the coordinate system
can be removed by expressing R~, R2, and the phase
factors which appear in the constants in terms of the
eccentricities and relative orientations of the two
elliptical states of polarization. We take o;i. andn2
to be the angles which the two major axes make with
the y axis, and ri and r2 to be the ratios of the minor to
major axes. These ratios are taken to be positive for
clockwise rotation of the field and negative for counter-
clockwise rotation. It is sufFicient to evaluate the
factors cos2$1, cos($1—$2), and cos(pl+tb2) which
appear in b~~, y, ci~», and c~~~»y+c2~~»~. We find, for
the last of these quantities,

(1+R12)(1+R22)
cos($1+$2)=

I (1—rl') (1—r ')
R1R2 (1+rl') (1+r2')

Xsinnl sinn2 cosnl cosn2+rlr2]. (I.7)

Cosine 2p~ can be obtained from this expression by
setting r2 rl and n2 ——nl, and co—s—(pl —$2) can be
obtained by reversing the sign of r&r2. When these
quantities are inserted into Eq. (I.3), and it is assumed
that A =B+C+D where A, B, C, and D are defined
by Eqs. (40) through (43), the factors involving Rl
and R2 cancel, and we obtain Eq. (64) where q= nl —n2.

We now prove this identity for the transition j—+ j+1.
If R is the reduced matrix element of the polarization
operator between the states j and j+1, three of the
matrix elements above become

xl 5m2 —(j+1)'+1]. (II.8)

The values of the summations appearing in this expres-
sion are given byv

P m'=-', j(2j'+3j+1),

p m = (1/15)j(6jl+15j'+ j'—1), (II.10)

P b=(2j+1)b, (II.11)

where k is a constant. Substitution of these quantities
into Eq. (11.8) yields the desired result:

B+C+D—A =0.

6E. U. Condon and G. H. Shortley, The Theory of Atomic
Spectra (Cambridge University Press, New York, 1957).' H. B.Dwight, Tables of Integrals and other Mathematica/ Data
(The Macmillan Company, New York, 1947).

=Rl (j—m+1)(j+m+1)]'l2, (II.5)

Pm, ~1=—
2 iRL (j—m+ 1)(j+m+ 1)]'l2 (II.6)

and

6'm, ~l————2'iRL(j —m+1)(j—m+2)]'". (II.7)

The other matrix elements may be obtained by letting
ns become m —1 or m+1 in these expressions.

Carrying out the indicated algebraic operations, we
find

21+c+D—A =-; Pl (j+1)2—m']


