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The correlation, shown in Fig. 2, between the data
for (RE)'+ ions in CaF~ and the calculated free ion
data, decreased by 18 000 crn. ', suggests that the varia-
tion of the location of the lowest 4f~ 5d transition of
(RE)'+ ions in crystals" containing anions of large
electronegativity is simply like that of free ions. This
correlation between the free ion and ion-in-crystal
data may be useful in predicting the location of the

"Our preliminary data on (RE)'+ in SrF2 and BaF2 crystals
are similar to those in CaF2 with corresponding reduction in
energy ~17 000 cm ' for host SrF2 and ~16000 cm for host
BaF2. For the host LaF& crystals, the present progress in purifying
the crystal and hence in extending its transparent region toward
vacuum ultraviolet will allow a similar measurement in the near
future LHugh M. Muir and %'m. Stein in a paper presented at
Fifth Rare-Earth Research Conference, Ames, Iowa, 1965
(unpublished); M. Robinson and D. M. Cripe (to be published) j.

lowest 4f" ' 5d level of free (RE)'+ ions not vet observed
experimentally.
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We treat the problem of energy loss to phonons in photoemission by making a one-dimensional approxi-
mation. We include pair creation and finite electron reQectivity at the surface. It is assumed that after pair
creation neither primary nor secondary electrons can escape. Phonon scattering, pair creation, and re-
Qectivity are assumed independent of electron energy, although this will often be a poor approximation.
With the above approximations the problem is exactly soluble. For large phonon energy losses the results
are similar to the predictions of age theory.

I. INTRODUCTION

PHOTOELECTRIC emission is potentially a very
valuable tool for the study of the band structure of

solids. The potential value of photoemission results
from the richness of the measurements which are
possible. Listed in order of progressive refinement these
are total yield versus photon energy'; energy distribu-
tion of the yield at fixed photon energy', and energy
distribution of the yield at fixed photon energy and
angle of emission. '

The above information is most readily interpretable
in cases where the emitted electrons have suffered very
little or no energy loss in the process of escaping from
the solid.

In order to obtain the most reliable interpretation of
the experimental data, however, a detailed knowledge
of the energy-loss processes is necessary.

In the present paper we study a simple one-dinien-

' F. G. Allen and G. W. Gobeli, Phys. Rev. 144, 558 (1966);
M. L. Cohen and J. C. Phillips, ibid. 139, A912 (1965); D. Brust,
M. L. Cohen, and J. C. Phillips, Phys. Rev. Letters 9, 389
(1962); W. E. Spicer and R. E. Simon, ibid. 9, 389 (1962).'C. N. Berglund and W. E. Spicer, Phys. Rev. 136, A1044
(1964); D. Brust, ibid. 139, A489 (1965).

3 G. W. Gobeli, F. G. Allen, and E.O. Kane, Phys. Rev. Letters
12, 94 (1964); E. O. Kane, ibid. 12, 97 (1964).

sional model in which we can allow for the effects of
pair-creation scattering, phonon scattering, and finite
reflection at the surface in a way which leads to an
exactly soluble result for the total probability of escape
and for the energy distribution of the emitted electrons
assuming a delta-function initial energy.

AVe assume throughout that if an electron undergoes
pair creation, neither the scattered primary nor the
secondaries can escape. Clearly this assumption is valid
only for electrons within a few volts of the vacuum
potential.

The three-dimensional case has been studied in con-
siderable detail by Baraff. 4 He has shown that simple
results for the energy-distribution function of degraded
electrons may be obtained using the approximations of
neutron age theory. The age-theory approximation is
good when phonon energy losses are large so that the
energy-distribution function can be assumed to be a
continuous function of the number of phonon-scattering
events. Age theory also makes simplifying assumptions
about the angular dependence of the distribution func-
tion. Naturally, our one-dimensional approximation
amounts to an even worse approximation for the angular

' G. A. BaraB, Phys. Rev. 135, A528 (1964).
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distribution function. The energy-loss problem is treated
exactly, however. Also, we are able to include the eRects
of reQection at the surface very easily and completely
by our method.

The one-dimensional approximation amounts to the
use of an average angle of projection of the electron's
trajectory on the surface normal. The relation between
the three-dimensional mean free path /3 and the eRective
one-dimensional mean free path l~ is then /~ ——(cos8)l3
where (cos8) is the averaged angle of projection of the
path direction on the surface normal. If we take a
straight average over a half-sphere, (cos8)=-,' and
l3——2l~. Comparison with neutron age theory indicates
that the appropriate average in this case yields l3= V3lz.

Actually, the most important practical limitation of
our model is not the one-dimensional aspect but the
necessity of using energy-independent parameters. We
can, of course, allow the parameters to be a function of
the initial energy but we cannot take into account the
change in the parameters as the electron's energy is
degraded by the emission of phonons.

When the pair-creation length is long compared to
the phonon-scattering length, energy loss due to pho-
nons is important and the energy independence of the
parameters of our theory may lead to considerable error
in cases of practical interest. In the opposite limit of
pair-creation length short compared to the phonon-
scattering length, phonon energy losses are negligible.
In this case the escape-probability calculation simply
corresponds to the calculation of the probability that
the electron reach the surface from its point of origin
and escape without undergoing any scattering at all.
This problem is easily solved in the three-dimensional
case and is discussed in Sec. III.

For the purpose of calculating escape probabilities
in cases of practical interest, the Monte Carlo method
of Stuart, Wooten, and Spicer' is easily adapted to
include both three-dimensional eRects and the energy
dependence of the scattering parameters, The simple
analytic results of the one-dimensional model are valu-
able mainly to guide and to interpret the machine
calculations.

II. ONE-DIMENSIONAL MODEL

A. Escape Probability

In our model we introduce a pair-creation length
/p, a phonon-scattering length /phono

. a probability
R of being reQected from the surface; and a light-
absorption length / for the initial spatial distribution
of the photoelectrons.

We assume that an electron which has created a pair
cannot escape (nor can the secondary). We further
assume that the parameters of our theory are inde-
pendent of the phonon energy loss.

The probability P(x) that an electron should travel

'R. Stuart, F. WVooten, and W. E. Spit er, Phys. Rev. 135,
A495 (1964).

P-(*)= P-~-b)e ' "'dy+~ P-~b)e ' "'dy
2 0 0

+ P.-~b)~' *'dy (3)

In the first term on the right-hand side of Kq. (3)
the electron created at x has moved a distance x—y
toward the surface before scattering at the point y.
In the second term the electron has reached the surface
and has been reQected with probability R before scat-
tering at y, having moved a distance x+y after being
created. In the third term the electron was initially
headed away from the surface and traveled a distance
y—x before scattering at the point, y.

We now introduce q(x), the total probability of
escaping from the surface:

q(x)=Z P (x) ~ (4)

By suznming Eq. (3) from I=1 to ~ we obtain an
integral equation for q(x):

q(x) =- q(y)e '&»dy+R q(y)e
—'&~»dy

2 0 0

+ qb)e-' *'dy +Po(x) (5)

a distance x without phonon or pair scattering and then
phonon scatter in the interval dx is

p(x)=ae "dx,
-1~=&phonon

&=~pair

C=—8+6 y

where c is the reciprocal scattering length.
We take the surface as our origin with positive x

being in the solid.
The probability, Po(x), that an electron created at x

should travel to the surface and escape without scat-
tering is given by

Pp(x) = (1—R)-', e-'~

R is the probability that the electron is reQected back
into the solid upon reaching the surface. The factor —',

reQects the fact that the electron can be going either
towards the surface or away from it when it is created.

To obtain the probability, p, that an electron
escape from the surface after suffering exactly n phonon
scatterings, we derive a recursive integral equation by
following the electron from the moment of creation to
its first collision. After the first collision, the probability
of escape is given by p q which is assumed known.
We find
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By differentiating Eq. (5) twice we easily obtain the providing we regard e as a parameter independent of
differential equation u. If we then expand Q as a power series in u:

q" (x) = (e'—uc)q. (6)

Since c)u according to Eq. (1), the physical solution
of (6) for a semi-infinite medium is

q(x) =Be

~—(e2 ue) ill ~

p is evidently a reciprocal escape length. The coeScient
B may be evaluated by substitution in Eq. (5). We find

(1—R)e8=
(1—R)c+p(1+R)

According to Eq. (7), B is the probability that an elec-
tron created at the surface will escape. Equation (7)
shows that p, &c. The limit p, =c occurs when a«b so
that phonon scattering is unlikely compared to pair
creation. In this limit B~(1—R)/2. The electron gets
out if it is headed in the right direction and is not
reQected, otherwise it is lost. In the limit b«u we have
p«c and 8 1. Since pair creation is unlikely, the
electron is almost certain to escape eventually.

Ke assume that the exciting light I is absorbed
according to

I=Ice

We can then use Eq. (7) to give, Q, the average proba-
bility of escape of an excited electron

Q = (B~)/(~+~) (10)

with B given by Eq. (8) and p by Eq. (7). An equation
similar to (10) has been given by Spicer. ' A more
realistic expression for Q is obtained if we allow for the
energy dependence of the parameters as described in
footnote. ' If a is large, the electrons are created very
near the surface and the probability of escape is B.
If 0. is small compared to p,, the probability of escape is
proportional to the escape length, p '.

It is extremely fortunate that one can include the
e6'ects of light absorption, phonon scattering, pair
creation, and reAection at the surface in a formula as
simple as Eq. (10).

Q=Z g~u"
~

AMph

~ph
2n„( )+1) (12)

where ni, h(co) is the number of phonons excited and the
average is over all phonon modes. The average total
phonon energy loss is noh, with n given by

n=P eg.u"/P g u",
tv=4 fl=O

(13)

Evaluating Eq. (13) we get

ca 1+R 1n=- +
2p (1 R)c+—(1+R)p n+p

(14)

In the limit of phonon scattering weak compared to
pair production (u((b) we have (@~crab)

u 1+R 1n= +
2 2b a+b

(15)

hence n«1. Energy loss due to phonons is obviously
negligible in this limit. In the opposite limit, u)&b,
where pair creation is weak compared to phonon scat-
tering c~u, Ii (ub)'~'

I/2 1+R a
+ . (16)

2 b (1—R)+ (1+R) (b/u)'i' u+ (ub)'I2

we have that g u" is the probability that the electron
escape after su6ering exactly n phonon collisions.

If we average over phonon absorption and emission
events the average energy loss, E», per scattering
event is

In this limit phonon energy losses are large, z -', (u/b)'&'
B. Phonon Energy Loss at least. For 1—R((b/u)'I or n((ub)'I the losses are

If we wish to know the phonon energy loss we must even greater, n u/b. A high reflectance or a low a
count the number of phonon scattering events. (long photon-absorption length) always increases the

Equation (3) shows that p„(x) is proportional to u loss as can be seen in general from Eq. (14).This result
is obvious on physical grounds.

%'. E. Spicer, Phys. Rev. 112, 114 (1958).
7 If we wished to take account of the energy dependence of the

collision parameters somewhat crudely we would integrate over
the distribution of initial energies O.l) produced by the light.
Eq. (12) would then become Q= J'dEB(E)e(E)/La0+p(E) j;
a0 ——J'd&x(E). This equation is, of course, not consistent with the
neglect of the energy dependence of the collision parameters
during escape as the electron energy is degraded by phonon
emission. In the case of small phonon energy losses it is approxi-
mately correct.

C. Phonon Energy Loss Distribution

In cases where the phonon energy loss is large, we
are interested in knowing the distribution function for
the energy loss. We expect that the energy distribution
of the emitted electrons will be very diAerent from the
initial distribution in which they were created. The
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probability I' of suffering n phonon collisions is given
by

To show the positive definite character of h; we can
write it in the form

I n= gn~" )

as shown in Eq. (11).We may also write

(17) /-'(1+p)'(1+a') ' '

»=Z
(1+p)/(1+a')/

(28)

g.= (n ) '(d "0/da").=o (18)
For p=n', h; becomes

h, = j(1+p) / 'In order to calculate the derivatives we write Q in
the form

0= (p~')/(~' p)[—((1 a')"—'+p) '
—((1—")'"+ ')-'],

n'—=n/c,
a'=—a/c,

p —=(1—R)/(1+X) .
Ke consider

(19)

%hen n is small, the summations we have given are
a useful description of the energy-loss distribution.

When n is large, the important contributions to I'„
come from values of j for which j«e. Accordingly, we
examine this case by expressing the factorials in Eq.
(26) by Stirling's approximation and further by taking
j«n. Ke obtain

f--=(')- (d-)/(d(")-)((1-")"+.)-;
n=1, 2, . (20)

(j 1)e—P/4m

P,"=,n)&1, j.
2~I/2+3/2

(30)

It is easily shown by induction that f„ is of the form

f —P P n(1 ar)—(2n—J+/)/2{ (1 a&)1/ +p}—/.

n&1. (21)

We can differentiate Eq. (21) to determine recursion
relations for the coefficients (a/c) n~e —bn, /a (31)

Equation (30) shows that the important values of j are
those for which j&2+n, which demonstrates the con-
sistency of assuming j«n for large m.

Equation (27) shows that the large n limit is of
interest only for a/c~1, otherwise P is negligible.
Using Eq. (1) for c and assuming h(&a, we may write

1
P/"= —L(2n —j—1)P '+(j—1)P;-i" ']

28

Collecting these results we may write I'„ in the large
n limit as

/3, "=[(2n—3)/2n]P, .-'
n&2; 2&j&n+1; (22)

(23)

~
—be/ap~~

P„- p(j 1)e "/—4"h, , n»1, j, (32)
2' / n / ;=2

Pm+I" = 2Pm"

I —1
2 =2 ~

(24)

(25)

KVe have determined by a detailed analysis of the
recursion relations that they have the following solution:

(j—1)(2n —j)!P/"=, n&1, 2&j&n+1. (26)
n!(n —j+1)!2'" /+'

The validity of this relation is easily verified by
substitution in Eqs. (22), (23), and (24). The unique-
ness of the solution follows by mathematical induction.

'!Vith the use of Eqs. (17) through (21) we can write
I„in the form

with h; given by Eq. (27).
Let {p,n'); be the smaller of the quantities p and

n'. Equations (27) and (40) show that the j dependence
of h, is governed by {p,a'}; . If {p,n'); &1, only the
very low values of j are important and the summation
as given in (32) is useful. Equation (32) shows that P„
varies with n as e '"/'/n3" in this case.

If {p,n'); (&1, a much wider range of j values con-
tribute in Eq. (32). We may then approximate h; in
Eq. (27) by

h, = (u' p) '[e »—e
—'/]-—{p n—'); «1. (33)

In the case {p,n'); «1 we may replace the sum in
Eq. (32) by an integral since the main contribution
comes from large j values:

g ~ n+ I
P = — pn'QP/"»; n&1,

C

»—= (a' —p) '{((1+p)') ' —((1+a')') ')

(27)

e—bn/a

I' = xe *'/4" (e
—&*—e '*)dx,

2x'/2e'/2 e' —p p

{p,n'); (&1, n))1. (34)

The integral in Eq. (34) may be expressed in terms of
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the conjugate error function, Krfc, as follows:

a')
I' = {F(p)—P(n')},

2m'iPnN" (n' p—)

{pwca }min&&1~

In Eq. (39) the initial electron distribution is localized
near the surface (n'gn&)1) and the surface reflection
is low. The loss of electrons from the surface is most
rapid in this case, leading to an n "' additional s~

dependence in P„
n))1; 35

P (p) = 2n 4—nn'pe" p' Erfc (n'"p);

Erfc(x) —= e *'dx.

Equation (35) is not particularly transparent. We
illustrate its behavior by considering limiting cases
which s,re most easily obtained from Eq. (34):

III. THREE-DIMENSIONAL RESULT FOR
THE LIMIT a&&b

If the phonon mean free path a—' is very long com-
pared to the pair creation length, b ' the probability of
escape, Q, is the probability that the electron reach the
surface without scattering and escape without being
reflected. This simple limiting case can easily be treated
in three dimensions. Ke have

P e—bn/a~I

p (e bn/ap)/(2—ni/2)

P„=(e-'"'n')/(2n'"),

p /n&&1 y

( 6)

pii/n((1 ) (37)n'gn»1,
pv'n))1,

(3g)n'Qn((1;

n(1—R)
Q= dx d cos& e *e " '"'8

0 is the angle of the electron's direction measured from
the surface normal. Ke write c3 to indicate that we are
here dealing with the true three-dimensional mean free
paths. Equation (41) can be integrated to give

py n))1,
P„=(e b"')/(2m'"n'") (p '+n' ') a'Qn)&1 (39)

{p,n'};.((1.
For comparison we also give the leading term of
Eq. (32): e-'"I.

P —
(p

—i+a~—1)
p)&i.

(4o)

Equations (39) and (40) are identical, hence the re-
striction on Eq. (39), {p,a'};(&1, is probably not too
important.

Equations (36) through (40) are all dominated by
the exponential decay term which is governed by b/a,
the probability of pair creation relative to phonon
scattering.

The weaker power-law dependences on n can be seen
to have their origin in the following effects.

In the process of emitting n phonons an electron
will diffuse an average distance, ln n"/c. ——

If the barrier reflection R is near 1, (p«1), few
electrons will be lost through the surface. If a ')&lD
(n «1), the initial distribution will not be perturbed
by diffusion over the time in which e phonons are
emitted. Hence P„will have no additional dependence
on n in agreement with Eq. (36).

If p«1 and a '&)/&, few electrons will be lost through
the surface but the initial distribution will be broadened
by diAusion so that the electron concentration near the
surface will drop like 1/+n This expla. ins the addi-
tional n dependence in Eq. (37).

If p is large (R 0), electrons will be lost rapidly
through the surface. These electrons are replaced by
diffusion from the nearly uniform initial distribution
(n'((1) to give the n '" dependence in Eq. (38).

np= a(E)dE, (46)
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Q= —,'n(1 —R){1—(c,/n) ln(1+(a/c ))}. (42)

Evidently no simple correspondence can be made be-
tween Eqs. (42) and (10) in general. In the limiting
case c3«n, i.e., escape length long compared to the
light absorption length, Eq. (42) becomes

Q=-', (1—R), c,«a (43)

Since the electron has no chance of being "turned
around" by phonon scattering, the escape probability
is the probability —, that the electron is initially headed
toward the surface times the probability (1—R) that
it will pass through the surface without scattering. This
result agrees with Eq. (10) on setting c=p«n.

In the opposite limit, c»)a, Eq. (42) becomes

Q = —,
' (1—R) (n/2cp), cp»a. (44)

This result agrees with Eq. (10) on setting c=p= 2cp.
This is just the case l3 ——21I which results using the uni-
form average of cosa to relate l3 and l~ through
ti = (cos8)4.

One can consistently introduce energy-dependent
parameters into Eqs. (41) and (42), obtaining

1
Q= dna(E)(1 R(E))

2
cp(E) / ap )

»I 1+
c,(E)i


