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Trivalent europium {Eu'+) has an anomalous magnetic behavior at low temperatures because its first
magnetic state is removed by approximately 500'K from the nonmagnetic ground state. The effect of a
crystal field or a europium-iron (Eu-Fe) exchange interaction on the energy of the ground state is the result
of the partial breakdown of the L,S coupling caused by these perturbations. We calculate the first-order
cubic anisotropy constant EI for the ground state of Eu'+ in europium iron garnet (EuIG) due to the com-
bined action of the Eu-Fe exchange and crystalline field. The use of the single-ion (molecular-field) approxi-
mation permits us to replace the Eu-Fe exchange interaction by an effective exchange field acting on the
Eu'+ ions; the assumption is made that the anisotropy in the Eu-Fe exchange does not make a major contri-
bution to the anisotropy of the ground state. %e Gnd that the isotropic exchange field and fourth-rank
crystalline Geld first contribute to the cubic anisotropy of the ground state of Eu'+ in the fifth order of the
energy; likewise the second-rank crystalline Geld first contributes in the sixth order. The fifth- and sixth-
order perturbation formulas for a Hermitian operator have been derived and are given in an Appendix. We
calculate the anisotropy energy for a single Eu'+ ion in EuIG and average the results over the six magnetic-
ally inequivalent sites of the garnet structure. The order of magnitude of the calculated anisotropy constant
Z'I is in agreement with the experimental data that are available at low temperatures, but detailed com-
parison is not possible at present because of a relatively large number of poorly known parameters.

I. IÃTRODUCTIOH

'HE magnetic anisotropy of rare-earths in the
iron garnets has been the subject of recent experi-

mental and theoretical investigations. ' Barring the
anomalous resonance peaks, the theory of the magneto-
crystalline anisotropy of the RE ions is reasonably
well understood. As europium iron garnet (EuIG)
presents mathematical difliculties not encountered for
other rare-earths (high-order perturbation energies)
its anisotropy energy has not been calculated. For Eu~
the ground state is nonmagnetic; any eGect on this
state by a crystal or exchange Geld comes from the
partial breakdown of the I.S coupling caused by these
perturbations. Fortunately for Eu'+ in KuIG, the ratio
of the crystal or exchange Geld splittings to the spin-
orbit interaction energy (XL S) is large enough to
permit us to expand the ground-state energy in a
perturbation series in the parameters PH /P, and
Vgpyp/X The recent experimental results on the crystal
Geld' and exchange Geld' in KuIG have supplied the
necessary data for us to make a simpli6ed calculation
(neglecting anisotropic exchange) of the cubic anisot-
ropy constant E~.
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The garnets belong to the cubic crystallographic
group, for which the energy can be expanded in terms
of the angle that the magnetic Geld (for this problem
the spin of the iron sublattice) makes with the crystal-
lographic axes, in the following form

+0+Ill(o'1 &2 +al &3 +o'2 &3 )++mal &2 oa +
where Eo is the isotropic energy, and the constants Ey,
E2, represent the anisotropy energy; E& is the
erst-order cubic anisotropy constant and E2 is the
second-order cubic anisotropy constant. The n's are
the direction cosines of the 6eld with respect to the
crystallographic axes. For Eu'+ the contributions to E2
enter in higher order perturbations than those for E~,.
therefore it is reasonable to assume that E~ is less than
EC~. To study the anisotropy of Eu'+ in EuIG at low
temperatures it will suQice to calculate the variation
of the ground-state energy as a function of the direction
of the exchange Geld. Because of the spin-orbit interac-
tion, only the ground state is appreciably populated at
low temperatures, i.e., for T much less than E(J=1)/k
=480'K.

The magnetic properties of EuIG have been discussed
by Wolf and Van Vleck. ' They were able to explain
the magnetization data on EuIG by assuming that:

(1) the coupling between the Eu'+ ions is small,
and may be neglected in comparison to the europium-
iron (Eu-Fe) and iron-iron (Fe-Fe) interactions,

(2) the Eu-Fe exchange interaction does not affect
the spin of the iron sublattice and therefore this inter-
action may be treated by using the molecular-6eld
(single-ion) approximation. It is then possible to talk
about an "exchange 6eld" due to the resultant spin of
the ferrimagnetically coupled iron atoms,

(3) the crystalline Geld from the neighboring oxygens
may be neglected.
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In an anisotropy calculation, crystalline field effects
cannot be neglected, but assumptions (1) and (2) can
and will be maintained. With the assumptions (1) and
(2), the calculation of the anisotropy constant E&
reduces to evaluating a single-ion Hamiltonian and
averaging the result over magnetically inequivalent
complexes.

The single-ion Hamiltonian for Eu'+ in EuIG is

XE„t+=Xi S+Ra„r.+V„„t,i+PH, s (I,+2S).
The first term, the spin-orbit interaction, is much
greater than the remaining terms4 which shall be treated
as perturbations on the degenerate states

~
JMq). The

Eu-Fe exchange interaction Hamiltonian' is just
Kq. (3.2) or Eq. (3.3) of I with the molecular field-
approximation. This Hamiltonian may be divided
into two parts:

+Eu-re =2Wex ' S+Ran ieo ~

The isotropic component of the Eu-Fe exchange interac-
tion is written in the notation of Wolf and Van Vleck. '
As no accurate data exist on the anisotropy of the Ku-Fe
exchange interaction, we simplify the calculation of the
anisotropy energy by considering only the isotropic
component of the Eu-Fe exchange. In the discussion of
the results we indicate why the anisotropic exchange
does not make a major contribution to the anisotropy
of EuIG.

The third term of the Hamiltonian is the crystalline
potential for the 4f electrons of Eu+ in the electric
field of the neighboring oxygen ions. The last term
represents a small magnetic Geld used to align (saturate)
the iron sublattice in a specific direction. It is of
sufhcient strength to overcome the magnetic anisotropy
of the iron sublattice (5-state ions), but can be neglected
when calculating the anisotropy of the ground state of
Ku'+ as it is much smaller than the exchange interaction
or crystal-6eld energies.

The anisotropic energy of the ground state of Eu'+
will be found by evaluating the eGect of the perturbation

~perturbation 2PHex'S+I eryetal

on the state J=O. As the perturbation energy is much
smaller than the energy intervals between the multiplet
levels, it is possible to expand the energy in terms of
1/Ape where hpg is the energy interval between the
ground and Jth multiplet level.

The contributions of the isotropic exchange interac-
tion and the crystalline 6eld to the fourth-degree
anisotropy' 6rst enters in the fifth- and sixth-order

4 The spin-orbit constant X is about 325 cm ', the crystalline
Geld splitting of the first-excited state is about 70 cm ' (see Ref. 2)
and the exchange Geld PH, is 16.7 cm ' (see Ref. 3).' P. M. Levy, Phys. Rev. 135, A155 (1964},hereafter referred
to as l.

6 The phrase fourth-degree anisotropy should not infer cubic
anisotropy. The latter is obtained after the fourth-degree anisot-
ropy for each ion has been averaged over the inequivalent
magnetic complexes of the garnet structure.

energies. These contributions are evaluated (Sec. II)
using the perturbation formulas derived in Appendix A,
and the perturbation Hamiltonian shown above. The
fifth- and sixth-order energies contain terms that depend
on the direction of the exchange field with respect to
the axes of the local g tensor (local Dt symmetry axes).
As the anisotropy constant E„represents the energy
that depends on the direction of the field with respect
to the crystal axes, the 6rst-order cubic anisotropy
constant E& is found by averaging the single-ion energies
(the fourth-degree anisotropies) over the six magnet-
ically inequivalent complexes in the garnet structure.
These averages over the inequivalent sites are performed
in Appendix B. The resulting expression for Ej is
written in terms of constants that may be empirically
determined. In the concluding section the first-order
cubic anisotropy constant of Eu'+ found from this
calculation is compared with the Ej extrapolated from
the experimental results of Miyadai, ~ and the results
are discussed.

II. THE CONTRIBUTION OF THE ISOTROPIC
EXCHANGE INTERACTION AND CRYSTAL

FIELD TO THE FOURTH-DEGREE
ANISOTROPY OF THE

GROUND STATE

In this section the lowest order contributions of the
crystal 6eld and isotropic exchange interaction to the
fourth-degree anisotropy of the ground state will be
determined. For the exchange and crystal-field energies
mech less than the energy interval between the ground
and 6rst-excited state, it is found that the fourth- or
sixth-rank harmonics of the crystalline potential 6rst
enter the cubic anisotropy in the 6fth-order energy,
and that the second-rank harmonics enter in the sixth-
order energy. The formulas for the 6fth- and sixth-order
energies have been derived in Appendix A. After the
matrix elements of the exchange interaction and
crystal 6eld are evaluated between states in the different
levels of the ground I.S multiplet of Eu'+, the fifth-
and sixth-order energy contributions to the fourth-
degree anisotropy are determined.

A. The Lowest Oxdex of the Eaexgy to Give Cubic
Anisotropy (for Isotroyic Exchange)

The fourth-degree anisotropy energy is found by
using the perturbation formulas in Appendix A.
Whether one refers the unperturbed wave functions and
the perturbation Hamiltonian to the s axis of the
crystal 6eld (crystal-field quantization) or alternatively
to the direction of the exchange field (exchange-field
quantization) is irrevelant; the 6nal eigenvalues must
be the same in either case.

In the crystal-6eld quantization the exchange interac-
tion must be referred to the local D2 symmetry axes of

' T. Miyadai, J. Phys. Soc. Japan 15, 2205 (1960).



322 PETER M. LEU Y

a garnet (c) site; these are also the axes for the g
tensor. ' The exchange field transforms as a vector, thus:

2PH, S=P(H S++H~S +2H,S,), (2.1)
where

IIp ——II, single+'&,

II,=H,„cos8.

0, p= angles the exchange Geld makes with respect to
the g-tensor axes and Sg alld 5 are quantized along
the s axis of the crystal field. In this quantization the
mth order energy with V orders of the exchange interac-
tion (V(m) and n Uorder—s of the crystal field yields
an expression that transforms as a pth rank tensor,
where p & V. For the energy to be independent of the
sense of the exchange field, the order V must be even.
To obtain a fourth-degree anisotropy from the nth
order energy, it is necessary that' V=4 and n&5. A
sixth-degree angular variation requires V=6 and n& 7.

In the exchange field quantization the crystalline
potential must be rotated so that its s axis coincides
with the direction of the exchange field. The crystalline
potential is expressed as a series of spherical harmonics
(2.2); ea,ch harmonic transforms under spatial rotations
as an nth-rank tensor into other harmonics of the same
rank. In this quantization the nth-order energy trans-
forms as a fourth-rank tensor if one includes (in the
energy) the harmonics U2 of the crystalline potential
twice, or the harmonic V4 once.

Ke conclude that in order to obtain contributions to
the first-order cubic anisotropy constant E» of the
ground state, it is necessary to evaluate fifth- and
sixth-order energies. "Either one fourth-rank harmonic
or two second-rank harmonics and four exchange terms
lead to fourth-degree anisotropy.

High order energies are extremely tedious to evaluate
because of the many terms that enter. For this reason
only the first-order cubic anisotropy constant of the

ground state will be evaluated. This requires a calcula-
tion of fifth- and sixth-order energies. Only the terms
which transform as fourth-rank tensors need to be
retained, lower ranks contribute only to the isotropic
energy Ko upon averaging over the inequivalent
complexes.

2l n

Vcrystauine = P P Ba t' Yn
nM m=n

= Q QP& "(r")0„" (2.2)
nM fnM

where p is the reduced matrix element that relates the
operator equivalent" 0„ to the spherical harmonic
V„",and A„"(r")is a crystal-held parameter.

To quantize the Hamiltonian (2.2) along the direction
of the exchange field it is necessary to know how the
operator equivalents transform under rotations. Stand-
ard operator equivalents" are related to the spherical
harmonics by

0„"='P C LU„+(—1) V (2 3)

The proportionality constant (a reduced matrix
element) relating the two depends not only on the rank
(n) of the harmonics but also on the component (m).

As the two components I'„and I'„ transform
differently under rotations, we represent the rotation
of an operator equivalent as

B. The Exchange-Field and Crystal-Field
Quantizations of the Hamiltonian

It is simpler to evaluate the energy in an exchange-
Geld quantization, as there are at most two orders of
the crystalline field entering a calculation of E~,
whereas four orders of the exchange interaction enter.
The crystalline potential may be written as"

' The g tensor describes the magnetic behavior of an ion in a
crystalline 6eld.

9 It should be emphasized that the following conclusions are
only true if the exchange and crystal-field energies are much
smaller than the energy intervals between the ground and excited
states. Otherwise the perturbation series with the energy intervals
as denominator is inapplicable. Also the following conclusions
hold for an isotropic exchange interaction; with an anisotropic
exchange interaction the fourth-order energy contributes to the
cubic (fourth-degree) anisotropy.

"Averaging higher order energies over cubic symmetry can
give additional contributions to lower order anisotropies. As it
is an implicit assumption that the energy perturbation series
converges, higher order corrections, compared to the contributions
from lower orders, will be small. That higher orders contribute to
the lower order anisotropies may be rationalized as follows.
The energy of order I transforms as a Vth-rank tensor (V is the
number of exchange terms in the energy) but not necessarily as
an irreducible Vth-rank tensor. A reducible tensor can be expressed
in terms of irreducible tensors of equal or lower rank. Averaging
over cubic symmetry reduces a tensor to a set of irreducible
tensors of equal or lower rank which are invariant under the
cubic symmetry group. In this manner higher order energies
contribute to the 6rst-order cubic anisotropy constant.

I'~ p, )O"=P ' P C"
tn'= n

(n)+ ( ])m~, (n) jp' m'

where S ~ '"' is a matrix element of the rotation
operator for the spherical harmonic V„™.'4

For the spatial quantization parallel to the direction
of the exchange field we find that the perturbation

"The dot over the equal sign stresses that the equality holds
only for a restricted set of states.

"See K. W. H. Stevens, Proc. Phys. Soc. (London) A65, 209
(1952}for an explanation of these operator equivalents."D. A. Jones, J. M. Baker, and D. F. Pope, Proc. Phys. Soc.
(London) 74, 249 (1959).

'4 A. R. Edmonds, Angular Momentum ~n Quantum Mechanics
(Princeton University Press, Princeton, New Jersey, 1957),
Chap. 4.
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Hamiltonian, Eqs. (2.1) and (2.2), is written as tion axis, we find:

2l n 2l n

D (n)p (tn)0 iml+2p+ S (2 4) Kperturbetion= p g pn+0 (& )On
nM mMnM m=n

where

(n) —g O~ (n)+ m

m —Q Q m' (g m'/g 0)
mt~

where
m/2l 0=+ mg m/g 0

0 O (mf

X
m+( 1)mF —m Q 0

(2 6)

From the difinition of the spherical harmonics" and
the standard operator equivalents, " the iv„(2.6) are

X[g),( )+ (—1)m'~, (n) j/~ (n) (2 $)

and y„= (—) (y ")". The X„ is a ratio of the
normalisation" of the spherical harmonic to that of
the operator equivalent, i.e.,

+pB, (sin8e '&S++sin8e*oS +2 cosHS,). (2.8)

The above Hamiltonians, the fifth- and sixth-order
corrections to the energy of the ground state, and an

average of the single-ion energies over the inequivalent
complexes will give the first-order cubic anisotropy
constant of the ground state that arises from the
combined e8ects of the crystalline field and the isotropic
europium-iron exchange interaction.

C. The Fifth- and Sixth-Order Energies of the
Ground State

The highest order energy that has been evaluated
explicitly is that of the fourth order. ' The fifth- and
sixth-order corrections to the energy have been derived
and are presented in Appendix A. For the special case
of a nonmagnetic ground state, i.e.,

lvn'=1, 7V '=1/Q6, $4'=1/2+(10),
tv44= 1/Q(70) tvo'= 1/2+(105),
~'6'=1/6V'(14), ivo'=1/v'(231).

(2 7)

n' ~ ~ nIV ri VOn'V On" Pon' "VOnIVh4

the fifth-order energy (A4) is'6

On'n' n"n" n' " n" ' nIv~nIV 0
Pj'0(6)—

From the form (2.4) of the perturbation Hamiltonian
we have the following useful result: if the matrix
elements of the axial Hamiltonian (A„'=0, m'&0)
are known in the exchange-field quantization, the
corresponding matrix elements for the Hamiltonian
(2.2) are found by multiplying the matrix elements for
m'=0 by p„.

Kith the s axis of the crystalline field as the quantiza-

On'n'n"+n" n'"n'"nIvnIv nvnvo
14to

(6)—

ntnttnttt

~On n'OOn"n" n" n"'0

I'E Von' Pon" Pon"'I4 2 2 2

X (Von'Von"+ Von'Von"'+ Von Von"') r"(29)
where

K„„"—= (tt'i K
i
66"), hvo —=ED—E ~,

and the sixth-order energy (AS) is'

Ontnt ~O nt I~nt I nt I I+nl I I nIvnIV 0

n' ~ ~ ~ nv ri Von' Pon" Von'" VonIv Vonvr'i' ~ ~ ~ nIV POnt POn" V On» I POnIvr'i'

Pon'+ Von" Von"'+ Vonrv t

X +
Pont Vont I pont I I ponIv ) n ' .nIV ri Pont Vontt Pont tt POnIvr'S'

On'n'n"X n"P4n'"n'" nIV+nIVO Pon'+ Von"

VOn VOn

VO. -+VO rr'l
!

Von" I Von«

On'

n'(%on�

" n"(Won" 'n" '0 1 1
(2.10)

Ii POn'Von" Von"' Von' VDnit ~ Von. ito Von~(VOn~t~( Von VonI«Von~~Von«II

The enumeration of the terms that enter the sixth-
order energy (2.10) is greatly simplified, as Van Vleck
noted, " by rearranging the sums that enter in the

» Ef the normalization was independent of the component of
the operator equivalent, then Ã„~=—1.

"A. R. Edmonds, Ref. 14, p. 21.
'7 K. F. Niessen, Phys. Rev. 34, 253 (1929).
"These formulas have been checked by expanding the energy

denominator of the exact energy oi a two-level system. Qne level
is the ground state, the other level is so chosen as to have the
term or terms to be veri6ed eater the energy expression for the
system. The first terms of the Gfth- and sixth-order energy do

following way:

On'n' n"n" n' "n» I nIv$CnIvnvnvo

~ ~ n nV yfb VOn. POn. VOn VOnrv POnvr'i'

Ont3'-nt n"3'-n" nt I I 2

Pl (2.11)
n'" IisVonttt n'n" POn VOn"

not require verification. The remaining terms have been checked
and found to be correct."J.H. Van Vleck (private communication). For this rearrange-
ment the property of the Hermitian Hamiltonian H, (, =H& *
has been used.
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~&. . .~iV

ossi&i &i iski i ~Onii

if'&ajar

&&~+~IV 0

~& &on'&on" von"' ponIvr'S'

tion, then
+oa'+a'0

k=1 or 2
I V,.'

where

(poai+ p0arc p0+iii+ boa»)
xi +

Vos'Pon" &Oa'" PQan'

=(Q'A ~ - p)(Q'A „-Ox„.„",p), (2.12)
n'n"

on'a' n"a" 0
A n'a" 0=

k Po~~vo~«k
Xn'n", 0=

VO a'+ PO~"

&on, '&on"

The number of terms entering the fifth-order energy
is small when the Hamiltonian (2.4) is quantized along
the exchange-Geld direction and a rearrangement of
the energy (2.9) is not warranted.

The rearrangements (2.11) and (2.12) are most
helpful in classifying the contributions to the sixth-
order energy. The terms that enter the "third-order
processes" (2.11) and (2.12) are of the form V', V'H,
VB', and 8'. Here V refers to the crystal field, II to the
exchange Geld. Of these terms only V'H, VB', and B'
contribute to the fourth-degree anisotropy when we
square the third-order processes, i.e. :
(V'H+ VH'+B')'= 2V'HXB'+ (VH')'

+lower rank terms.

For each value of the index n, the third-order processes
may be subdivided into the terms V'B, VH', and 8'.
Ke make the final subdivision of the sixth-order energy
(2.10) knowing that in an exchange-6eld quantization
RiGerent components of the second-rank operator
equivalents do not interact, i.e, , the eBect of each 02
may be separately evaluated. "

It remains to ascertain which contributions from the
fifth- and sixth-order energies lead to terms that
transform as fourth-rank tensors, and which J levels
(excited states) are involved in these corrections to
the energy of the ground state. Consider the fifth-order
energy; the 6rst term of Eq. (2.9) may have terms that
have fourth-rank transformation properties; the second
term wi11 definitely not enter as can be seen by the
following reasoning. If the "second-order processes"
of the second term contain only the exchange interac-

~ According to this cataloging the sixth-order energy contribu-
tion to the anisotropy constant E& may be evaluated with the least
possible chance of missing terms that contribute, as follows,
(1) Evaluate the terms that contribute to a specific index n"'.
term V&H' J', (p=0, 1, 2), and harmonic Q~~. Sum these terms
(2) Sum over the contributions of each harmonic O2 for a specific
index n"' and term VJ'EP &. (3) Sum over the components m of
Og, to find the contribution of each term V&EP & for a specific
index n'". (4) Multiply the contribution from V'H by the one
from H' and the product by two. Add to this the contribution from
squaring the terms VII . This gives the total contribution from a
speci6c index n"'. (5) Sum the contributions from each index n"'
over all indices n'" that contribute to the sixth-order energy; this
gives the sixth-order energy correction of the state J=0 due to
the perturbation Hamiltonian (2.1) and (2.2).

is invariant under spatial rotations. This leaves the
fourth-degree dependence to the "third-order processes"
(2.9)

on-&~"n" II~" o,H

which must contain one order of the crystalline Geld

(04 ) and two orders of the exchange interaction. The
fourth-rank harmonics have nonvanishing matrix
elements in multiplet level for J&2, but the isotropic
exchange interaction has only Grst-rank components
for which AJ& 1.There are no values of the indices n"
and n"' which satisfy these conditions. %hen we
consider the second-order process with one order of
the exchange interaction and one crystalline field, we
arrive at the same conclusion, that is, the second term
of Eq. (2.9) does not contribute to the fourth-degree
anisotropy of the fifth-order correction to the energy.

For the sixth-order energy, the first and third terms
of Eq. (2.10) contribute to the fourth-degree anisotropy.
The remaining two terms will not contribute to the
fourth-degree anisotropy of the sixth-order energy; this
can be reasoned by using arguments analogous to those
used for the fifth-order energy.

The highest J level (manifold) that enters the 6fth-
and sixth-order corrections to the ground-state energy
(for fourth-degree anisotropy) is the fourth, as the
matrix elements of the exchange interaction vanish for
DJ&1. The sixth-order contributions to the energy of
the ground state from the level J=3 were found on
evaluation to be about 3% of the total sixth-order
energy correction arising from the levels J=1 and 2;
therefore the contributions from the levels J=3, 4 will
be neglected in the sixth-order energy calculations.

D. Evaluation of the Matrix Elements of the
Crystalline Potential and the Isotroyic

Exchange Interaction

Prior to evaluating the fifth- and sixth-order energy
corrections (2.9) and (2.10) it is necessary to know
the matrix elements of the perturbation Hamiltonian
(2.4), (2.8) between states in the same J level (mani-
fold), and also between states in different J levels.
The matrix elements of the isotropic exchange interac-
tion (2.1) are proportional to the matrix elements

(JMz[s, i
J'Mz ).

These can be found by using the Wigner-Eckart
theorem. However, all these elements have been
previously evaluated"; we give in Table I those matrix

~' J. H. Van Vleck, The Theory of Electric and Magnetic Suscept-
ibikties (Clarendon Press, Oxford, England, 1932); p. 167;
E. M. Corson, Perturbation Methods in the Quantum Mechanics of
n-E/ectron Systems (Blackie & Son Ltd. , London, 1951),pp. 54, 55.
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TABLE I. The matrix elements of the first-rank spin operator' between states of total angular momentum J and J .
Here S&=S„S~=S~+iS„,and q=Mz —Mz.

0
2

%2@2

o

0 0
1 0

&1
2 0

+1
&2

2 +2@2
0 1/VZ

1/42
a+6

~3/v2
W3

v3 +3/v2
w v'6

V's
0 1

W3
0
1

a1

iJMg [Sg i
J'Mz )

2
&2

3(2/7)'/' W2(6/7)'/'
+2(3/7)»' 4/Q7

+2/g7
+2(10/7) 1/2

(10/7)'~ ~2(15/7)'"

3
+20

J Mg L
3 0

~i
&2
+3

0 VS

vS
~t +6/2
Q6/2

2 (11/21)»~ ~ ~ ~

$(55/7)»'
(11/7)»fl

a See J. H. Van Vleck, Ref. 21.

elements of the spin 5, that are necessary to evaluate
the fifth- and sixth-order energy corrections.

The matrix elements of the crystal field (2.2) are
evaluated by using the tabulated values~ of the matrix
elements of the operator equivalents (2.3). The matrix
elements of the second-rank component OP of the
crystalline potential (2.2) are given in Table II for the
manifolds J= j., 2, and 3.

the normalization constants Ss ' Eq. (2.7).

sin'8 322
ass= 1+ cos2g

3 cos'8 —1 320

1 cos'(8/2)e"4' sin'(8/—2)e "&As'
~ 1

3 cos8
(2.15)

srhere

Vs= (a/3)Os', (2.13)
2 cos4(8/2)e" &+sin4(8/2)e r &Assr

Vs'=1+-
3 sin'8 A2'

3A,s(„s)rr(rP, ) (2.14)

and a(rFt) is the reduced matrix element Ps for the
'J 1 level of Eu'+. The matrix elements for 222&0 are
obtained by multiplying those for Ass (Table II) with
the y„Eq. (2.5) for rs=2. The ys for r1=0, 1, and
2 have been evaluated by using the matrix elements of
the rotation operator for spherical harmonics'4 and

The matrix elements of the fourth-rank component
V4 of the crystalline potential (2.2) between the states
~
JAIL) and

~

J'Mz ) required for the cubic anisotropy
calculation are

(00
~
V4( 40)= (63/5) (2/11)'isbDo"'(8, $),

(10 ) V4
~
30)= (3/5) (42)'"bDs l'& (8,y), (2.16)

(20~ Vs~ 20) = (18/5)bDs&'&(8, $),

TABLE II. The matrix elements of the second-rank crystalline potential V2 ——(a/3)Qp (quantized along the direction of the exchange
6eld) between states of total angular momentum [JMq) snd [J'Mz.). For aMq even, multiply the matrix elements by a sin'e; for
6MJ odd, multiply by a sin28. The angle tQ is between the exchange field and the s axis of the crystal field. Only the second-rank (degree)
variations of the matrix elements are tabulated.

0
+I 0

2
+1

0 0
1 0

&1
2 0

+1
a2

3 0

0
0
0
2/+3

~~2/3
—~2/3

0

0
1

~1/2 +2
0

—+2/12
~+2/6

5/(42)'/'

0
~1/2 Q2

—Q6/12
~ ~ ~

~ ~ ~

+ k(3/&)'"

2/V3
0

—Q6/12
11/21

%«Q6/252
11Q6/126

0

a~2/3
—Q2/12

~ ~ ~

+11g6/252

—v'2/3
a~2/6

~ ~ ~

11%/6/126

~ ~ ~ ~ ~ ~

—13/12 (21)'/& ~ $ (1/21) '»

0
5/(42) 1/0

W k (3/&) 'I'
0

-13/12 (21)1/&

~ k (1/21)'/'
2/9

0
~1/(14)'/'
—1/(42) 1/~

~ ~ ~

~(«/9) (1/~)»&
~ ~ ~

&+3/108

0
—

h (5/7)'/'
~k (5/21) '/'

~ ~ ~

a(11/9) (5/14) 1/~

(30)&~/54

~ See Ref. 12.
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where

V4 (b/20) (040+ (A 4~/A 40)04'+ (A 4'/A 4')04'},
Do&4& (8,&f&)

—=—',( (35 cos48—30 cos'8+3)+sin'8(7 cos28 —1)
Xcos2&(A 4'/A 4')+ sin'8 cos+(A 4'/A 4') ), (2.17)

b = 20A 4'(r4)P ('Fs),

and P('F2) is the reduced matrix element P4 for the 'F2
level of Eu'+.

E. Evaluation of Fifth- and Sixth-Order Energies

The matrix elements of the crystal field and isotropic
exchange interaction, Tables I, II and Eqs. (2.16), and
the formulas for the fifth- and sixth-order corrections
to the ground-state energy, Eqs. (2.9), (2.11), and
(2.12), are sufficient for us to evaluate the contribution
of the isotropic exchange interaction and crystalline
field to the first-order cubic anisotropy constant of the
ground state of Eu'+ in EuIG. The fifth-order energy
(2.9) is very easy to evaluate for the quantization axis
along the direction of the exchange field. Considering
the levels J= j. and 2 one finds that only one term
contributes. Including the levels J=3 and 4, a total of
three contribute to the fifth-order energy. If we chose
the quantization axis along the s axis of the crystalline
field, the levels J= 1 and 2 alone would produce many
more terms than the exchange-field quantization. For
this reason we have not checked the fifth-order energy
by evaluating it in the crystal-field quantization.

The above remarks are not true for the sixth-order
corrections to the energy, Eqs. (2.10), (2.11), and
(2.12). For this order, both directions of spatial quanti-
zation are tedious; the crystal field more so. It is
necessary to counter-check the results found for this
order and therefore we have used both quantizations to
evaluate the sixth-order energy.

The fifth-order energy correction to the ground state
for owe magnetic ion is

1 432 1 1 2
-+'0 "&= — + +

5 (di C02 Mi C02a&3 Mi&d~3M43

XDO&'&(8, ,&t&;)bP4H. 4, (2.18)

where Puce =—E&( ) —Eo( ', the unperturbed energy of
the level J with respect to the ground-state energy.

0;, p, =angles the exchange field H,„makes with
respect to the g-tensor a,xes (D& symmetry axes) of the
ith magnetic complex; A „(r")= the crystal field
parameters referred to the g-tensor axes. The crystal
field constant b, and Do&4&(8,,@;) are defined by Eqs.
(2.17).

The sixth-order energy correction for one magnetic
ion, exclusive of the levels J=3 and 4 is

1 5
f47 &6& —g2p4+ 4 Q q /~ 5 n~ n—

nm

where

III. COMPARISON OF THEORY WITH
EXPEMMENT

In this section the contribution from the fifth- and
sixth-order energies to the first-order cubic anisotropy
constant of the ground state of Eu'+ in EuIG will be
evaluated. The constant K~ predicted from this calcula-
tion will be compared with the extrapolated experi-
mental value of E~. A discussion of the approximations
used in deriving the results and the conclusions are
presented in the concluding sections.

A. The Contribution from the Isotropic Exchange
Interaction and Crystalline Field

The first-order cubic anisotropy for the ground state
of Eu'+ arising from the combined effects of the crystal-
line field and isotropic exchange interaction, is found by
averaging the fifth- and sixth-order energies (2.18) and

TAaLE III. The averages of several functions of the direction
cosines of the exchange field over the inequivalent (c) sites of the
garnet structure. The angles e, qb represent the field direction with
with respect to the local D2 symmetry axes (p,q,r). The rth
axis (see Fig. 1) has been chosen as the axis of spatial quantization.
The relation of the axes p, q, r to the crystallographic axes (x,y, s)
is shown in Fig. 1. Only the cubic anisotropy term is retained.
All coefBcients in this table should be multiplied by (a12ap
+IXI C13 +Ct2CE3 ).

(sin4e)
(sin48 cos4$)
(sin'8 cos2@}
(sin 8 cos~2&)

p parallel to x

1/6—5/2—5/6—7/6

q parallel to y

1/6—5/2
5/6—7/6

r parallel to s

—2/3
10/3
0
4/3

4=4(—»g(vo)'+ (vi)'],
b= 4L—240(vo)'+29(»)'],

$2 = (1/21) p
—3X3968(yo)'+4616 (pi)'

+7 X 128(y2)'], (2.19)

4= (g/3)49L —g X132g (vo)'+671(vl) +g0( Y2) ] y

$4= (4/21) L73 (yi)' —192 (y2)'],

P»
——(4/9) L (pi)'+16 (y2)'],

and
go= (cos'8*—1/3)y2'(8' &t&') ~

pi ——sin (28,)y2'(8;,y;),
y2 ——sin'8, p22 (8,,&t;) .

The» are given by Eqs. (2.15) and the crystal-field
constant a is defined by Eq. (2.14).

The first-order cubic anisotropy constant K~ for the
ground state of Eu'+ is obtained by averaging the fifth-
and sixth-order energies (2.18) and (2.19) for the
magnetic ions over the inequivalent sites in the garnet
structure. This will be done in Sec. III.
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(2.19) for one magnetic ion over the six inequivalent
sites in the garnet structure. As seen from Table III
these averages depend on which g-tensor axis g„g„,
or g, is parallel to a crystallographic axis (the local
axis of quantization is z). (See Fig. 1.)

The only data available for the crystalline field

around Eu'+ in EuIG are given by Koningstein. '
Although this is not explicitly mentioned, we infer"
that his data are referenced to an axis of quantization
parallel to the local D~ symmetry axis which coincides
with a local pseudocubic fourfold axis. This axis is not
parallel to any of the crystal axes (x,y,z)."

To coincide with the axes in which the experimental
crystal parameters are given, the cubic averages
(Table III) with the p or q axis, i.e., g, or g„of the g
tensor parallel to a crystallographic axis, should be
used for averaging the terms in the energies (2.18)
and (2.19).The cubic average of the fifth-order energy is

(1/fs) (Wo "&)=504(1+ (A 4s/A 4') —(3/7) (A 4'/A 4')]fi

Xp JIex L(~1 ~2 ) + (~1 ~W3) + (~1&2%3&4) ]
X (~i'~s'+~i'~3'+~P~s') ) (3 1)

where the o.'s are the direction cosines of the exchange
field with respect to the crystal axes, and the upper
sign is for the p(g ) axis parallel to a crystallographic
axis. The cubic average of sixth-order energy is

(1/h)(WO&'&) = —(8/3) a'p4H, 4/1& (10/3) (A p/A P)

FIG. 1. Relation of g tensor
(local D& symmetry) axes p, q, r
to crystallographic axes x, y, z.
g is a counterclockwise rotation
about the z axis. ( is a counter-
clockwise rotation about the p'
axis, the line of nodes. g is a
counterclockwise rotation
about the r axis.

Eu'+; these a,re given by Judd":

n('Fi) = —1/5, P('Fs) = —2/189.

With the above parameters we find from Eqs. (2.14)
and (2.17) that

a= —63 cm '

b=29.6 cm '.
The exchange field constant H,„ is given by %'olf

and Van Vleck' at absolute zero:

PII, =16.7 cm '.
The "centers of gravity" of the excited J levels

(except for J=2) for Eu'+ in EuIG have been estimated
from the data of Koningstein. ' The energy of the level
J=2 is that of the free Ku'+ ion. '

where

—(7/9) (Ap/A, o)s] p (( /~ r—n~, n)

X (oAa+ai e's +ax n3 ), (3.2)

Level

7FI
VF~

2F3
'F4

Energy (cm ')

352
924

~1960
3026

to —33, (,=614/7, $4——121/21,

Pi=89, $,=6614/147, ps= —1/3.

The crystal-field parameters for Eu'+ in KuIG as
given by Koningstein" are

A „-(.-} {cm-1)

105
~95—140

700
30—630

The crystal-field constants a and b are given by Eqs.
(2.14) and (2.17) in terms of the reduced matrix
elements n('Fi) and P(~Fq) of the excited states of

~ We can infer a particular choice of axes from (1) the pseudo-
cubic potential used to 6t the experimental data and (2) the fact
that Koningstein (see Ref. 2) compared his A„with those
obtained from the point-charge calculation of Hutchings and
Wolf (see Ref. 24).

~ See M. T. Hutchings and W. P. %'olf, J. Chem. Phys. 41,
617 (1964), Fig. 1."J.A. Koningstein, see Ref. 2, Table III.

Evaluating the fifth- and sixth-order energies (3.1)
and (3.2) by using the numerical values given above,
and comparing the results with the definition of Ei
(see Introduction), we find"

Contribution from (3.1)
Contribution from (3.2):

~AP/AP&0
HAP/AP (0

(&i) E +X10 ' (ergs/cc)

15

—14
12

(3.3)

These results are the contributions of the crystalline
field and isotropic Eu-I'e exchange interaction to the
first-order cubic anisotropy constant of the ground
state of Eu'+ in EuIG.

B. Experimental Value of the First-Order Cubic
Anisotroyy Constant

The first-order cubic anisotropy constant for EuIG
has been determined experimentally by Miyadai' in

~ B, R. Judd, Mol. Phys. 2, 407 (1959).
~' The result (3.3) was converted from (cm '/cc) to (ergs/cc)

by using the relation 1 cm '=1.985)&10 '6 ergs.
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the temperature range 270'K—230'K. As the results
are given in units of Ki/M. (oersteds), they must be
multiplied by the bulk magnetization of KuIG to
obtain the constant Ej. This magnetization is found
from a graph given by Wolf and Van Vleck."

M = (M/XP)P/V = 19.5(M/EP) ergs/Oe —cc,

With the approximation (3.5) we find that

(&I)z=o = —38X10' ergs/cc

Gts to the experimental data fairly well.

C. Discussion of Results

(3.6)

where V= ta volume of unit cell = (1.9/4) X10 "cc, and

M/XP is given for EuIG by Wolf and Van Vleck."
The anisotropy for Eu'+ alone is found by subtracting

the anisotropy of the iron sublattice from the anisotropy
of EuIG. The anisotropy of the iron sublattice is just
that found for yttrium iron garnet (YIG).oo

(Iti)Ens+ (+1)EnIG (+1)YIG ~ (3 4)

With the first-order cubic anisotropy constants (EI)
for EuIG found by Miyadai' and the Ez for YIG
given by Rodrique et u/. ,' we Gnd that the Grst-order
anisotropy constant for Eu'+ is equal to (all KI in units
of ergs/cc)

T ('K.)

0
170
190
210
230

(+I)EuIQX10 (+1)YIGX10 (+I}Eu X10

—21.2—16.3—11.5—8.5

—2.48—1.58—1.39—1.23—1.04

—19.6—14.9—10.3—7.5

(+I)&-o+ (fbi)1 t~ + (Itt) J tg
Kt(T) =

2+3e ~"~ +5e-~'~k~
(3 5)

In postulating this we assume that the (EI)q's remain
constant within the temperature range 270'K ~& T
~&230 K. This approximation is valid if the redistribu-
tion of the population of the magnetic states within a
multiplet level is small, i.e.,

+(Ez)magnetic states++~ J
and

AT(&Eg.

Another assumption implied by the constancy of the
(EI)J s is that the crystal and exchange fields are
independent of temperature. This is a fair approxima-
tion to make for the temperature interval that is being
considered.

'8 See Ref. 3, Fig. 1.
» Q. P. Rodrique et a/. , Ref. 1.
~ In Miyadai's article, Ref. 7, EI/3f, should be multiplied by

10 ' not 10 '.
"The states witb J&2 are hardly populated for T&230'K and

may be neglected. E corresponds to 2800'K.

To determine the anisotropy constant E& of the
ground state, it is necessary to extrapolate the exper-
imental values to T=0'K. This may be done using the
approximation"

On comparing the estimated anisotropy constant E&
(between 1 and 27X10' ergs/cc) with the extrapolated
experimental constant EI (—38X1P ergs/cc), we find
that the orders of magnitude are in agreement, but not
the signs. It is not possible to infer more about the
validity of the formulas (3.1) and (3.2) from the
above comparison.

Provided there are no erroneous assumptions made
in the derivation of the formulas (3.1) and (3.2),
some possible sources of the discrepancy between our
results and the estimated anisotropy are:

(1) The extrapolation of the experimental value of the
anisotropy constant E& for T=O'K may be inaccurate.
Although the approximations used in the extrapolation
seem justified we have no means of further testing
its validity. It would be useful to have data at lower
temperatures.

(2) The crystal-field parameters are poorly known.
From data on ytterbium in yttrium gallium garnet" we
know that the field is not cubic; there is no reason to
expect the field in EuIG to be cubic. It is therefore
questionable to fit the energy levels of Eu'+ in KuIG
to a pseudocubic crystalline potential. '

As mentioned by Wolf,"the 328 cm ' level, used by
Koningstein in the determination of the parameters
A&, may not be of the europium ion as this level also
exists for ytterbium in yttrium gallium garnet. "As the
remaining parameters A4, 6 were determined by using
the A2, a re-examination of this level may lead to new
crystal Geld parameters.

(3) The contribution of the anisotropic Eu-Fe
exchange interaction has been neglected.

To estimate how justified we are in neglecting the
anisotropy in the Ku-Fe exchange interaction, we
calculated some of the major contributions to the
anisotropy constant E& arising from the nearest excited
J levels. We conclude that

(a) For Eu'+ (I.=5=3) the reduced matrix elements
(which largely determine the magnitude of the matrix
elements) for the anisotropic components of the
exchange are one-sixth as large as those for the isotropic
component;

(b) The contribution from the first-excited level
(1= 1) is negligible even though it enters in the fourth-
order of the ground-state energy;

(c) the upper excited levels (5=2, 3, 4) have contri-
bution to IC~, from the fourth- and sixth-rank compo-

"M. T. Hutchings and W. P. Wolf, Ref. 24.~ W. P. Wolf (private communication).
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nent" of the anisotropic exchange, which enter in the
fourth-order of the ground-state energy. As estimated
from the Yb-Pe exchange interaction in the garnets, "
the ratios a4,/a«may be particularly large. It is possible
that these terms may by force of numbers, in spite of
unfavorable reduced matrix elements and energy
denominators, make a non-negligible contribution to
the ground-state energy.

D. Conclusions

The experimental data on Eu'+ in the gallium and
iron garnets' show that the eBect of the crystalline
field on the J levels is much larger than that of the
exchange field. From this observation and the above
remarks, we conclude that although they enter in
higher orders of the energy, the crystalline field and
isotropic exchange produce the major contributions to
the anisotropy of the ground-state energy of Eu'+ in
EuIG. It is not possible at present to make a detailed
comparison between the calculated value and exper-
imental value of the ground-state anisotropy constant
X1.Two reasons may be cited:

(1) Many of the empirical parameters entering the
formulas for E1 are poorly known, and

(2) the empirical value of Kq has not been deter-
mined for temperatures low enough to give only the
ground-state anisotropy.
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The pth-order energy of a Hamiltonian operator is
found by expanding the energy S' and the wave function
4 in terms of a parameter 3, which is smaller than one.
In matrix notation this is'~

W„=W„(0)+)(W„(')+X'W &"+ ~

P„=P„S( ', )P„", (A1)

S(v)',I)=l&(e',e)+AS") (n', n)+)&'S"'(I',n)+ ~

The matrix formulation of the energy eigenvalue
problem

(Kp+K)f= Wf
is written as

p„.(w„-«)s(n",~')+) x(N",e')
b(e—",n') W„)S(e',e) =0. (A2)

We have evaluated the Hamiltonian in the repre-
sentation g (')) that diagonalizes the unperturbed
Hamiltonian

~QP„(0)=gr„(0)y„(0)

By substituting the expansions of the energy and the
wave function (A1) in the in6nite set of equations (A2),
and equating the sum of all terms of the same order to
zero, one obtains the following recursion relationships":

y—2

lp'„(v) —p' g(&„„„C„„(v-&)—p lp'„(n)C„„(v-n)
n"

We should like to thank Professor J. H. Van Vleck
for suggesting this study and for his guidance through-
out it.

(P ~„,„„C„„„(v-&)
hVnn

p-1—P ~„(n)C„,„(v-n)}

(A3)

The Fifth- and Sixth-Order Perturbation Formulas
for a Hermitian Operator

Whereas general expressions for the pth-order
perturbation formulas are given in the literature, "the
fourth-order is the highest that has been explicitly
evaluated. ' In this Appendix we give the fifth- and
sixth-order perturbation formulas for a Hermitian
operator. We choose to take the Hamiltonian as a
specific example of a Hermitian operator.

The value of C „(» is convention; as it does not aGect
the energy it may be left undetermined.

By successive applications of the formulas (A3) the
corrections to the energy were obtained to sixth order
in X. We have checked the third- and fourth-order
energies with those given by Niessen. '~ The general
formulas for the pth-order energy, and the coefficients
(A3) agree with those given by Corson. "

The fifth-order energy correction is

nn' ' ' nI'&t'n
W„(')= p' —K„„'p'

h Vnnv' ' ' Vnn
zv g4 . . . iv ~ ~4 4k Vnn'

I (~an+an' ' ' '~n"'a+~an'~n'n~nn"~n" n"'+n'"n)
n' cion'"

r Vnn' Vnn" +Vnn' Vnn"'+ Vnn" Vnn"'
xi + Z' (~..'3.'..sc..-~.-.+se„„sc„„.sc„.„x„„„~„„„)

h4 2 2 2h Vnn Vnn" Vnn " n nv If

Vnn' Mvnn" +Vn, n'Vnn"2. I 2 l

Xi i, (A4)
h'v„„'v„„.'

~ If @re represent an anisotropic exchange interaction as
Xgz = 2Zgv)s PQ')Ns Fg {Eu}jS{Eu} S{Fe},

the spherical harmonics F4~ represent the fourth-rank component
of the anisotropic exchange, and the Fq~ the sixth-rank component.

3~ P. M. Levy, Phys. Letters 19, 8 {1965}.
36 E. M. Corson, Ref. 21.
'7 J. H. Van Vleck, Ref. 21, Sec. 34.
» A prime on the summation symbol restricts the sum to n"pn.
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where x„„-=—(I'lxle") and hv. =E.'O' —E. &').

The sixth-order energy correction is

~nn' ' avn
g „&s)

n ~ ~ n i~ Paar ~ ~ ~ Pnnv

nn' ' ' ' aIvn~f
z (& nn& nn&an"'+Pan'Van" &an&&+P n'nV a"n'P n&av

'va h~p i2 ~ V Iv2nn an

+ Panic Vanii~Vnatv)
n nnva IV

nn'+n'nnn" ' ' 'aIVa
t (Pna +Pan") Van"'Vnn»+ (Paa"'+ Vanrv) V nn& aa]

h Pnn' VnnIvh5 2. . . 2

1
2

I IV

Pnni VnnI & Pnnii i+ PnnIv

+
h Vnni ' ' ' VnnIv Vane Vna« Vnn»'PnnIv'

Ran'~a'a~an"~a" a"'~n'"n f 1 1 1 1 1
+K. +2l + + + + +

h Van'Pnn»Vnn»' kpnni Vna&& Vnni» Vnn'Vnn«pan&paar» Pnnl&pnni»

+se..
n' ~ ~ ~ n»i h' p n' Va " Pnn»'2 2 2 Vnn» V nn'"3 3

Ran'' ' ~n"'a/&aa'Pna"+&na'&aa"'+&aa" &an"' &na" +&na'" +Van" Pan"')2l 2&

~ nsiz Vnn»

nn'+n' ann"n" nnn" 'n" ' n Vnn, 'Vnn» Pnn'Vnnr» Vnn"Pnn»I
&nn'+ &nn" +&nn"'+ + +l5 2h Pnni Vanir Vnn'" Vnn » Vnn'

—sc„„'g'
n'n"

nn'n'nnn"n" n Vn ' &aa") )
& n' 1+ +&an" 1+

~~ Pnn' Vnn"Is' Van» &nn' ~ i
3Cnn'3en'a"'Jea" a tt' 1 1 ) 1 1 3Cnn 3en n—ac..' p'

l
+

l + +se„„4p'
EPna' Vaa" I Pnn' Van''

APPENDIX 8
Cubic Averages of Functions of Direction Cosines

Referred to g-Tensor Coordinates

The fifth- and sixth-order energies Eqs. (2.18) and
(2.19) depend on the direction of the exchange 6eld
with respect to the local g-tensor axes (D2 symmetry
axes). If the magnetic complexes in a crystal are not
equivalent, i.e., if the local g-tensor axes have inequi-
valent orientations with respect to the crystallographic
axes, it is necessary to average the energies that depend
on the Geld direction over all the inequivalent sites.
In this way one obtains the dependence of the energies
on the direction of the field referred to the crystallo-
graphic axes.

In crystals belonging to the cubic group, as the
garnets, the magnetically inequivalent sites are related
by cubic symmetry transformations about the crystallo-
graphic axes. In the garnet structure one axis of the
local g tensor always coincides with a crystal axis, the
remaining two axes are rotated 45' to the crystal axes."
To determine the averages of functions of the direction
cosines of the exchange field entering the fifth- and
sixth-order energies Eqs. (2.18) and (2.19), it is neces-
sary to express the cubic symmetry transformations
{Q;) in the g-tensor coordinates.

'9 The g-tensor axes are local D2 symmetry axes.

To do this we Grst rotate the g-tensor axes to coincide
with the crystal axes, carry out the transformation Q;
and then rotate the g-tensor axes back to their original
position. This is symbolically written as

EQQ—'= Q,', (B1)

where E represents the rotation that takes the crystal
axes into the g-tensor axes, and Q is an element of a
cubic symmetry transformation expressed in the
g-tensor coordinates. Multiplying Eq. (B1) from the
right by E we Gnd

EQ,=Q,'R. (B2)

Stated in words this says: first rotating the crystal
axes to coincide with the g-tensor axes and then
performing a cubic average expressed in terms of g-
tensor coordinates, is equivalent to first performing a
cubic average expressed in terms of the crystal axes,
in which this average is simple, and then rotating the
crystal axes to the g-tensor axes. For the full cubic
group

~(Q*}=(Q*)~ (B3)

that is, a rotation commutes with the full group, but
not with one element of the group, Nevertheless, each
element commutes with a rotation in the sense implied
by Eq. (B2).
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To perform the averaging over the six inequivalent
sites, it is necessary to relate the angles 8;, p; the
exchange field makes with the local g-tensor axes p, q,
r (g„g„,g,) to the angles 8, P the exchange field makes
with respect to the crystal axes x, y, s (see Fig. 1).
The operator R that rotates the coordinate axes x, y, s
into the axes p, g, r is given by Goldstein. ~

%e represent the cubic symmetry transformations
Q; by 3X3 matrices with one element, &1, in each row
and column. The relation between the g-tensor coor-
dinate axes and the crystallographic axes is

As the transformation (B4) is linear, we have that

9" = V* = ~Q' y (B&)
rj rj sg

4

The cubic average over the six inequivalent sites for
any combination of the direction cosines is performed
by using the rotation R and the full cubic group
averages (B5).Let us consider the average

62 n-'(8*8')=62* [2- &-n-'(8A)]', (B8)

where

S
c' =&Q' y, (B4)

where R„„ is a matrix element of the rotation R given
by Goldstein. ~ By using the averages (B5) and the
unitarity of the rotation operator R, i.e.,

n' Rnn, '

p~=ny, '= sm8~ cori,
go=0!2s= Sln8s SUlfs ~

fs=cl3;= COSH' )

x= sin8 co+,
y= sin8 sinP,

2 = cos8.

we find that the anisotroPic part of the average (B8) is

—:Z. ..'(8„~,)=[1-(5/3)Z;~- j
X (nl n2 +nl n3 +n2 n3 ) . (B10)

%hereas there are only six magnetically inequivalent
sites in the garnets, there are 24 elements to the cubic
group. This full group must be used in the averaging
process in order to obtain the cubic symmetry properties
of the crystal. For the full cubic group the averages of
the direction cosines o,„are

Q, n.;n. ,=(X/3)8.. . I=1, 2, 3

Q, n~Pn~, n„";=(1V/3) (ng'+n2'+ng')8„. 8.„"+(E/3)
X (ni'n2'+ni'n3'+n2'na')&. .- (1—& 8..") (B5)

These averages are based on the following property of
the direction cosines:

nl +n2 +na = 1 .
H. Goldstein, Classica/ Mechanics (Addison-Wesley Publish-

ing Company Inc. , Cambridge, Massachusetts, 1950), p. 109,
Eq. (4—46).

All the averages encountered in the fifth- and sixth-order
energies, i.e., Eqs. (2.18) and (2.19) can be evaluated
by using Eq. (B10) and some trigonometric identities.
For example, we find the average of sin'8 cos44 from
the identity

(sin'8 cos44) =4((sin'8 sin'P)+(sin48 cos'4)) —3(sin'8).

By using the averages (B10) and retaining only fourth-
degree terms, we find

2 3 3

(sin48 cos44)= [5—(20/3) P g E„,4+5 P R„4)
n=1 j=1

X (nl n2 +nl n3 +n2 na ) ~

The necessary averages for the 6fth- and sixth-order
energies are given in Table III. For these averages one
axis of the g-tensor axes is parallel to a crystal axis
and the other two are at 45' with respect to the remain-
ing crystal axes, e.g. , for P parallel to x (see Fig. 1)

g= f'=0', and /=45'.


