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The Heisenberg-Ising Hamiltonian II= —q(n(o. o,'+o.„o„')+~(o.~,') } for rectangular one-, two-, or
three-dimensional lattices are considered. The sum is over nearest neighbors and 6= a/a measures the
anisotropy of the coupling. Upper and lower bounds for the ground-state energy are established and these
bounds apply equally well to lattices of one, two, or three dimensions. Furthermore, it is shown that the
ground-state energy per nearest-neighbor pair is nondecreasing as the dimension of the lattice (one, two or
three) increases.

INTRODUCTION AND DEFINITIONS

HIS paper discusses some properties of the eigen-
values of the following Hamiltonian:

H(n, e) = 2D—n(o,o,'+o„a„')+e.o,o,'), (1)

where the sum extends over all nearest-neighboring
pairs of spins e and e' on a lattice. a.„a.„, a, are the
Pauli spin matrices at a particular site.

(o.'= o„'=o.2= 1),

o. and e are numerical constants. We consider one-
dimensional (linear), two-dimensional (square), and
three-dimensional (simple-cubic) lattices. For definite-
ness we consider only periodic lattices with the number
of sites along each side even.

The Hamiltonian (1) has been a subject of study of
many papers. ' Our interest in it originated in the recent
discussions2 of the quantum lattice gas' as a model of
the critical phenomena in liquid-gas transitions. 4

We shall study the lowest eigenvalue KzF(n, e,y) and
the highest eigenvalue K Gs( ,nye) of (1) for a fixed
eigenvalue y of

F= (1/X) +o.),
where s is the number of nearest neighbors per site and
K is the total number of spins. (Obviously H commutes
with I'.)

Theorem I: H(n, e) and H( —n, e) have the same
spectrum for the same eigenvalue y of I".

Proof: Consider the operator

A =D'o„
Some of the results of this paper are well known or implied in

much of published literature. For references to some of these see
J. C. Bonner and M. Fisher, Phys. Rev. 135, A640 (1964).

~ C. N. Yang and C. P. Yang, Phys. Rev. Letters 13, 303 (1964).
8 The lattice gas was 6rst discussed by T. D. Lee and C. N.

Yang, Phys. Rev. 87, 410 (1952); the quantum lattice gas was
6rst discussed by T. Matsubara and H. Matsuda, Progr. Theoret.
Phys. (Kyoto) 16, 569 (1956); 1?, 19 (1957}. See also R. T.
Nhitlock and P. R. Zisel, Phys. Rev. 131, 2409 (1963).' M. R. Moldover and W. A. Little, Phys. Rev. Letters 15, 54
(1965).

where the product runs thru every other side. (In the
two-dimensional case, for example, the sites whose a.,
are included in the product form a checkerboard
pattern. ) It is clear that A commutes with y, and

AH(n, e)A '=H( —n, e).

The theorem follows.
This theorem tells us that the sign of 0, is irrelevant

if one is interested only in the spectrum. We can, there-
fore, take 0. to be positive and will simplify our discussion
by considering the Hamiltonian H(1,6)= (I/n)H(n, e).
Furthermore, from (4) it follows that

Theorem Z: F (n, e,y) = G(n, —e,y)—.
Thus we need only study F(1,h,y) to obtain all in-
formation about the maximum and minimum eigen-
values of H(n, e).

PROPERTIES OF F(1,Xiy)

Theorem 3: F(1,h, y) =F(1,6, —y).
Proof: The operator

where the product extends thru the whole lattice
anticommutes with I' and commutes with H. Hence the
theorem.

Theorem 4: F(1,6,1)= —4A.
Proof: The state with y=1 has all spins lined up in

the +s direction. For such a state, only the term
Po,o,' contributes to H and one easily obtains this
theorem.

Theorens 5:

Proof: Consider a state symmetrical with respect to
all spins of the lattice

$0——norma1ized sum with equal weights of all states
representing spin arrangements with a fixed
number of up spins. (&)
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then

h=aht+(1 —ts)hs, 1)a&0,

B(i,b) =aB(i,hr)+ (1—a)H(1,As).

The theorem follows immediately.

LIMIT AS LATTICE SIZE~
Ke introduce, for any 6nite lattice, an interpolated

F as a function of y:

S(i,~,y) =F(i,~,y'),

where y' is the largest eigenvalue of I' which is ~y. F is
thus defined for all y between (—1, 1).The question of
the existence of a limit for F as the lattice size —&~ in
all directions is similar to the problem in classical
mechanics of the existence of a limit for thermodynamic
functions. ' The present problem can be simply treated
with the following lemmas. %e limit our considerations
to three dimensions in the lemmas and theorems of this
section. But they hold similarly for any dimension. A
fundamental point in these considerations is that the
interaction between two neighboring sites is a bounded

' L. &on Hove, Physica 15, 951 (1949).The problem for a grand
canonical ensemble was discussed by C. N. Yang and T. D. Lee,
Phys. Rev. 87, 404 {j.952). Recent discussions are found in D.
Ruelle, Helv. Phys. Acts 36, 183, 789 {1963) Michael E. Fisher,
Archives Rational Mechanics Analysis 17, 37 (1964).

To evaluate the expectation value of 8 with respect to
this state, we write

a(1,~)= --',PL ~'+(~-1)~, ,'7.

Po, being symmetrical with respect to any two spins,
belongs to the triplet state for any two spins. Thus

&'o' 4'o=4'o.
Also

641(Z .)'IA&=++ (x'—x)&ltol ~ .'14o&. (10)

Equation (6) follows immediately.
Theorem 6:

F(i,h,y) & —x+-,'(6—1)(1—21yl), if 6&1; (11)

F(1,A,y) ~ ——,'A, if A) 1. (12)

Proof: To prove (11), we have from (8)

»F (i,~,y) =21 —so.~'7--+s (1—~)I:Z~*~*'7--

But L
——',o o'7; = ——,'. To find the minimum of

Pa,o,' for a given y we notice that it is attained when
the number of antiparallel neighboring spin pairs is
maximized. Equation (11) is then easily obtained.

To prove (12) we use the fact that each term in the
sum in (8) has a maximum eigenva, lue equal to 6,
if h&1.

Theorem 7: F(i,h,y) is a convex function of 6 for
6xed y.

Proof: H(1,6) is linear in h. Thus if

operator. Surface effects are thus negligible for big
volumes.

Lemma 1:Let box L be of size me)(mn Xmn, and box
5 of size nXeXe, where m=integer. Let ya be a
possible y value for box S. Then

Fz(1,A,ys)(F s(i,h,ys)+Et/n,

where Ej is a numerical constant independent of m, n
and ys.

Proof: Divide I. into ms small boxes S. Take as a
trial wave function for L, the product of the wave
functions of the ground states of the small boxes S.The
interactions between the diBerent boxes 8 is bounded
from above. One thus obtains Lemma 1.

Lemma Z: If a series of numbers e„satis6es

o& sap o~t&oe+bo+r y

and g" b„ is convergent, then lim„~ o„exists
Proof: Define

Then
a~~'&a„'

I
F(i,h, yr) —F(1,2L,ys) I

&Es I yt —ys I (14)

for all yt, ys in any closed interval (rs, b), 0&a&b&1.
E2 is independent of y~ and y~, independent of the size
of the box; but dependent on 6, c and b.

Proof: Consider the normalized ground state P for the
eigenvalue yt of F.Let o~=-,'(0,+in„) at a specific site
s. Ke have

H(1,5)a+=a~(i,g)+D,
where D is a sum of six terms each relating to a neigh-
boring pair of spins containing s. Thus

& 4 l&(1,~) I +11 &

=&F(1,»y)& Ol ~)+& ~l~&. (1»
But

Now use o+f as a trial wave function. ft describes a
state with one more up spin than f. Thus it belongs to
the eigenvalue yt+2/K of F. Equations (15)-(17)
show that

F(i,h,y +2/K) (F(i,h,y )+X,/X. (1N

and a ' is bounded below. Thus a„'~ a limit as n ~ ~.
The lemma follows immediately.

Lemma 3:For any given box,
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By using o Pr as a trial wave function where f~ is the
ground state for the eigenvalue y&+2/K of F, one
obtains an identity similar to (18). Combining the two
results one obtains

f(A,y) =hm S(I,A,y) (2o)

exists as n —+ ~.
Proof: Lemma 4 defines an f function. For any e&0

to prove that

(»)S(I,A,y) & f(a,y)+ e

for su%ciently big n we take n& M2' where 3f and l are
both big. We then compare the nXnxn box with its
subboxes 2'X2'X2', obtaining (21). To prove that

r(l, ~,y) ~ f(a,y) —e (22)

for su6iciently large n we choose a very large box
2~&2 &(2 and consider it a collection of Mja boxes
nXnXn with some left over surface effects. (%~+1)n
& 2z& Mzn. Equation (22) then follows for sufficiently
large n (and Mq).

PROPERTIES OF f(k,y)

Theorem 9: f(h, y) is a continuous function of y for
—1&y&1.It concaves upwards. [i.e., if

y= uyi+ (1—u)ys 1&a&0,

f(y) &of(ri)+ (I—o)f(rm) j (23)

Proof: The basic idea of the proof rests on the fact
that if a big box V is divided into two subboxes V~ and
V~ one can use as a trial wave function for V the product
of the ground-state wave functions for boxes V~ and V~
with y values y1 and y2. Surface sects do not contribute
to f. Thus one proves (23). The continuity of f in the
open interval —1&y&1 follows from (23). To prove
continuity at y= &1, use Theorems 3-6.

The following are immediate consequences of the

IF(I ~,r~+2/&) —F(1 ~,r~) I &2A2/& (19)

(14) then follows by repeated application of (19).
Lemma 4: Consider the series of boxes: 2)&2X2,

4X4X4, 8X8X8, etc. For these boxes (of size
2'X2'X2'),

f(A,y)=1' S(l,~,y)

exists as l —+ 00.
Proof: Consider two boxes S=2'X2'X2' and 2=2'+'

X2'+'X2'+' Let y' be the largest eigenvalue of I' (for
box S) that is &y. Apply Lemma 1 to the two boxes 8
and I. at y'. Use Lemma 3 to limit the difference of 5
between y' and y. Lemma 2 then yields the present
lemma. (Lemma 3 does not apply when y= &1. But
then Theorems 3 and 4 give Lemma 4 irnrnediately).

Theorem 8': Consider the periodic cubic boxesngngn.

theorems on F and the above theorem:

f(~,y)=f(~, -r), (24)

f(a, l) = (25)

f(~,r) & —l—'(A —1)r' (2fi)

f(~y)=-!+!(~-1)(1-21rl) f &&I (»)
f(A,y) & —~b, if 6~1. (28)

f(A,y)is a convex function of b, for fixed y. (29)

Theorem 10: f(A,y) = —x~h for 6& 1.
Proof: Relations (23), (24), (25), and (28) lead to this

theorem directly.
Theorem 11:Let f'"(A,y), f"(A,y) and f'(A, y) be the

f functions for three, two and one dimensions. Then

f'*'(~,y) =f"(~ r)=f'(~,y).

Proof: Consider a two-dimensional perMdio lattice of
size m)(ns. We write

H" (I,A) = [H'(I,z)j,+[H'(I,a)j.+D„{31)
where [H'(1,6)jq consists of all the horizontal links in
Hrr in the oPen m Xm lattice plus m links to connect the
end of the ith row with the beginning of the (i+I)th rom.
[H'(1,6)$1, describes thus the Hamiltonian of a one
dimensional chain of m' spins forming one cyclic lattice.
Similarly [H'(l, b,)1„ is defined. (—D~) consists of all
the 2m added connecting links minus the 2m links which
make the original lattice periodic. Let/ be the minimum
eigenfunction of H" for a given y. Taking the expecta-
tion value of (31) for P, we obtain

4m'F"(I, ~~y)R2{[H'(1~~)ja)midas r +{%)min
=4m'Fr (1,5)y)+ {Dg)m; ~.

The last term is &0(m) in absolute value. Thus

f"(~,y)=f'(A, y),

for y= rational. For irrational values of y use Theorem
9. The other inequality in (30) can be similarly provecL

Theorem IZ:

f"(A,y) =!f'(~,r) k~r', - (32)

f"'(~,r) & :f"(~,r) h-~r'. -(33)
Proof: Consider an mXm periodic lattice. Consider

the normalized ground state wave function P; for its
ith row at a given y value for that row. Keeping the
same y for all rows, let

4'=ll 0'

Use f as a trial wave function of the whole mXm
lattice:

4m'F" (I,h,y) & 2m'F'(I, h,y)
+(QIQ(vertical links) If).
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But for each vertical link the two spins are independently

described in P. Thus

g I
one vertical link IP&= —-', g la, lf&g la 'If&

0'y Oy

—k~Q I ~*IV)8 l~*'l0 &

= -2~I:(4 I
~.I4 &7

1gym

(32) follows. (33) can be similarly proved.
For suitable y and 6 (for example, y=0, A=large

negative) Theorem (12) gives more stringent upper
bounds for f" and f"' than (26).

Theorem 13:

8

8f
for 6~1,

= ——,
' (6—1) for 6~ 1.

for 5~1;

= sx~ (1—6), for h(1.

Proof: Use (26), (27) and Theorem 10.
This theorem yields the T=O magnetic 6eld X

necessary to produce 100%%u~ magnetization.
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The lifetime of the nonequilibriuxn Fea+ state in a CoO:Co" source has been determined in the tempera-
ture range 78 to 1000'K. The intensity of the ferrous state is highly temperature-dependent and was hardly
detectable above 800 K. The width of the nuclear excited level of the nonequilibrium state is determined
by the nuclear decay time r and the atomic decay time 8(3). The expected changes in the linewidth of the
nonequilibrium Fe'+ state in the Mo*ssbauer spectra have been observed. The observed deviation of the
temperature variation of the hf magnetic Geld at the nuclei of both Fe+ and Fe'+ ions from that expected
by the molecular-Geld theory may be due to a possible biquadratic exchange interaction in CoO, with
j/Jp 0.022.

1. INTRODUCTlON
'

N the electron-capture decays of nuclei various
highly ionized atomic states are produced as a

consequence of Auger electron emission. ' It has been
shown earlier' that the Mossbauer effect offers a
possibility of detecting some of these nonequilibrium
charge states whose lifetimes are comparable with that
of the excited state of the nucleus producing the
Mossbauer emission. In metallic lattices these highly
charged nonequilibrium states relax to the stable state
in a time very much smaller as compared to the nuclear
lifetime and hence only the stable state is observed in
the Mossbauer spectrum. However, employing di-
electric source lattices in which the relaxation times can
be of the order of the nuclear lifetime, some of the non-

+ Work done under the auspices of the U. S. National Bureau
of Standards, Washington, D. C.

' I.Bergstrom, in Beta- and Gamma-Ray Spectroscopy, edited by
K. Siegbahn (North-Holland Publishing Company, Amsterdam,
1955), p. 624.

2 H. Frauenfelder and R. Steffen, in 3/pha, Beta and Gamma Ray
Spectroscopy, edited by K. Siegbahn (North-Holland Publishing
Company, Amsterdam, 1964), Vol. 2, p. 1182. G. K. Wertheim,
Mossbauer Egect: Principles and A pplications (Academic Press
Inc. , New York, 1964), p. 100.

equilibrium charge states can be detected. Indeed,
nonequilibrium Fe'+ state has been observed in cobalt
oxide' and nickel oxide using the Fe" Mossbauer
efTect.

In nickel oxide we have reported' a strong tempera-
ture dependence of the intensity of the ferrous state
which indeed vanished above about 466'K. The present
paper deals with the temperature dependence of the
lifetime and the linewidth of the nonequlibrium Fe'+
state in CoO over the temperature range, 78 to 1000'K.
Wertheim' has reported earlier Fe" Mossbauer
measurements in CoO used as a source over the range
78'K to room temperature. Our observations, in this
range of temperature, pertaining to the hf magnetic
fields at the Fe'+ and Fe'+ nuclei are in agreement with
those reported by Kertheim. ' Above the room tem-
perature, and indeed even below this, we observed a
decrease in the intensity of the ferrous peak with
increasing temperature to almost negligible value above
about 800'K. This behavior is seen to be closely con-
nected with the semiconducting properties of this oxide

' G. K. Wertheim, Phys. Rev. 124, 764 (1961).
4 V. G. Bhide and G. K. Shenoy, Phys. Rev. 143, 309 (1966).


