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Temperature and Purity Dependence of the Superconducting Critical Field,
H„. III. Electron Spin and Spin-Orbit Effects
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Bell Telephone Laboratories, Murray Hill, Nnv Jersey

(Received 12 November 1965)

A previously obtained solution of the linearized Gor'kov equations for the upper critical magnetic field
H, 2 of a bulk type- II superconductor is extended to include the effects of Pauli spin paramagnetism and
spin-orbit impurity scattering. To carry out the calculation, it is necessary to introduce an approximation
which assumes that spin-orbit scattering is infrequent in comparison with spin-independent scattering.
It is found that spin-orbit scattering counteracts the effects of the spin paramagnetism in limiting the critical
field and improves agreement between theory and experiment.

I. INTRODUCTION

N the preceding article, ' an exact solution of the
linearized Gor'kov equations was given for the bulk

upper critical 6eld H, 2 of a type- II superconductor, as
a function of temperature and electron mean free path.
A rather simple model of a superconductor was adopted,
which assumed that the electrons interact via the weak-
coupling BCS model potential and have a spherical
Fermi surface. In addition, the effect of the applied
magnetic 6eld on the electron spin magnetic moments
was neglected.

As was first pointed ou t by C 1 ogston
' and by

Chandrasekhar, ' the electron Zeeman energy can make
a signi6cant contribution to determining B,2 in ma-
terials where that field is large (greater than, say, 50
kG). Their argument essentially was that because of the
difference in spin susceptibility between supercon-
ducting and normal states, the spin paramagnetism
lowers the free energy of the normal state relative to the
sup erconducting state and thus lowers the critical 6eld
for transition. If there were no other mechanism for the
magnetic 6eld to interact with the superconductivity,
then the spin paramagnetic efIect by itself would 1ead
to a 6rst-order critical 6eld H„, which at zero tempera-
ture would be H„(0)=h(0)/2"'p, where 6 is the 3CS
energy gap function and p is the Bohr magneton. For a
type- I material, wi th a complete M eissner effect and an
associated thermodynamic critical Geld H„ inclusion
of the spin paramagnetism would lower the 6rst-order
transition to H,*=(H '+H ') "'. These situations
are illustrated in a schematic free-energy diagram, Fig. 1.

In the case of a type- II Inaterial where the magnetic
6eld can penetrate the sample and reduce the gap func-
tion, the transition to the normal state is generally of
second order. A more precise treatment of the second-
order transition 6eld H, 2 including the spin paramag-
netic and orbital diamagnetic effects together, has been
given by Maki4 in the limit of very short mean free
path . This bmit is a particularly appropri ate one when
studying spin effects, since in al I materials experi-

K. Helf and and N. R. %erthamer, preceding paper, Phys. Rev.
14?, 288 (1966).

A. M. Clogston, Phys. Rev, Letters 9, 266 (1962).
B. S. Chandrasekhar, Appl. Phys. Letters 1, 7 (1962).
K o Makl~ Physics 1s 127 (1964) ~

mentally investigated to date which possess the neces-
sarily high II,2 values, the mean free path is indeed

extremely short.
One other process likely to occur in concentrated

alloys, and which is known to increase signi6cantly the
Pauli spin susceptibility in the superconducting state, is
spin-orbit scattering. ' Furthermore, measurements on
such materials tend' to yield values for H, 2 which lie be-
tween the theoretical estimates with and without in-
clusion of the spin paramagnetism. It is thus important
to take the two spin efI'ects into account simultaneously
in order to obtain theoretical results for 8,2 which may
realistically be compared with experiment.

When the spin paramagnetism is especially strong,
the transition to the normal state may be of 6rst, rather
than second, order (see Fig. 1).This has been found by
Sarma' in the special case of a uniform held interacting
with the spins only ("exchange field") and no impurity
scattering, and by Maki in the dirty limit. However,
Fulde and Ferrel 1' have suggested that in such cases the
system might instead make a second-order transition
to the normal state from an alternative, "depaired"
superconducting state in which Cooper pairs al1 have a
single nonvanishing center-of-mass momentum. The
transition between the usual and the "depai red" super-
conducting states would then be of 6rst order. This situa-
tion has been studied by Sarma and Saint James' for
the uniform spin exchange 6eld, with the conclusion that
although the Fulde-Ferrel 1 state is indeed possible in the
clean limit, for the dirty limit its formation is never
favorable and the normal state transition can be first
order. Further investigation of the Fulde-Ferrel state is

' R. A. Ferrell, Phys. Rev. Letters 3, 262 {1959);P. W. Anderson,
ibid. 3, 325 (1959); A. A. Abrikosov and L. P. Gor'kov, Zh.
Eksperim. i Teor. Fiz. 42, 1088 (1962) t English transl. : Soviet
Phys. —JETP 15, 752 (1962)j; J. Appel, Phys. Rev. 139, A 1536
(1965).' T. G. Berlincourt and R. R. Hake, Phys. Rev. 131, 140 (1963);
A. R. Strnad and Y. B.Kim, in Proceedings of the Symposium on
Quantum Fluids, University of Sussex, 1965 (North-Holland
Publishing Company, Amsterdam, to be published); Y. Shapira
and L. J. Neuringer, Phys. Rev. 140, A 1638 (1965); R. R. Hake,
Phys. Rev. Letters 15, 865 (1965).' G. Sarma, J. Phys. Chem. Solids 24, 1029 (1963).

8 P. Fulde and R. A. Ferrell, Phys. Rev. U5, A550 (1964).' 6. Sarma and D. Saint James, Proceedings of the Conference
on the Physics of Type-I I Superconductivity, Vfestern Reserve
University, 1964 {unpublished) .
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being carried out by I .W. Gruenberg and I.. Gunther. "
S'pin-orbit scattering, on the other hand, since it weakens
the degree of spin pairing in the superconductor, may
be expected to increase the amount of spin paramag-
netism needed to convert the transition from second
order to 6rst.

In this paper, we calculate the upper critical Geld H, 2,

assuming that the transition is of second order, taking
into account both spin paramagnetism and spin-orbit
scattering. We derive a formula valid for arbitrary
values of the mean free path, but assuming that spin-
Qip scattering is much less frequent than nonspin-Qip
scattering, an approximation which certainly is quite
realistic physically. We 6nd that spin-orbit scattering
reduces the eGect of spin paramagnetism in limiting
H,~. This is because the spin-orbit interaction destroys
spin as a good quantum number, and brings the spin
susceptibility of the superconducting state closer' to
that of the normal state. We compare our calculations
in the dirty limit with the data of Strnad and Kim

'0 I.. . Gruenberg and L. Gunther (to be published).

MAGNETIC FIELD

FIG. i. A schematic plot of free energies of superconducting and
normal states versus magnetic field, and associated transitions.
Horizontal line AC represents the normal state ignoring the Pauli
spin susceptibility, while the parabolic curve AJ represents the
normal state with spin paramagnetism. The horizontal line DJ
represents the superconducting state assuming it to have no re-
sponse to the magnetic Geld. The intersection point J defines the
Clogston-Chandrasekhar paramagnetically limited first-order
critical 6eld H~. A type-I superconductor with a Meissner effect
is represented by the parabolic curve DB, and the intersection
point 8 gives the traditional thermodynamic critical field H, .
Inclusion of the spin paramagnetism of the normal state lowers
the 6rst-order transition to the point K, with associated 6eld H,
as de6ned in the text. A type-II superconductor, with field pene-
tration in the form of vortices above a lower critical field H, ~

(point E) but no spin, follows schematically the curve DEC. This
curve is tangent to the no-spin normal state line at point C, cor-
responding to a second-order critical 6eld H, m. Inclusion of spin
in the normal state but not in the superconductor gives a first-
order transition at point L. Also taking account of spin suscepti-
bility in the superconducting state can lead to two possibilities,
illustrated by curves DEMF and DEG. The latter is tangent to
the normal state (AJ) at point 6, and the transition there is second
order. Curve DKMF, however, crosses AJ at M before the point
of tangency F. In this case, while the transition is first order at M,
the superconducting state can exist metastably in 6elds between
M and F, and F represents the point of maximum supercooling.

and of Shapira and Neuringer, ' and 6nd that including
spin-orbit scattering improves the agreement between
theory and experiment. Finally, we examine the condi-
tions under which the transition might not be of second
order' and 6nd that a Grst-order transition is less likely
the greater the amount of spin-orbit scattering.

In Sec. II which follows, we obtain a gauge-invariant
solution of the linearized Gor'kov equations correspond-
ing to H,~, continuing to neglect strong-coupling and
Fermi-surface anisotropy eGects, but including both
spin paramagnetism and spin-orbit scattering. In con-
trast to the situation when any one of the latter effects
is neglected, the integral equation for the impurity ver-
tex cannot be solved rigorously in general. We are able
to make analytical progress only after introducing an
approximation, which we argue in the Appendix repre-
sents the assumption that spin-Qip scattering is infre-

quent in comparison with nonspin-Qip scattering. In
Sec. III we specialize the implicit algebraic equation for
B,2 to the experimentally most relevant limit of very
short mean free paths. In this limit the possibility of a
Fulde-Ferrell state can be rejected, ' and we analyze the
conditions under which the calculated H, 2 may be a
supercooling 6eld, with the actual transition to the nor-
mal state being 6rst order. Finally, in Sec. IV we pre-
sent numerical results for B,2(T), for various values of
spin-Qip and nonspin-flip scattering times and ratios of
spin paramagnetic to orbital diamagnetic strengths, and
we compare these with available experimental data. '

II. FORMULATION AND SOLUTION

In order to incorporate spin paramagnetism and
spin-orbit scattering into the previous calculation of
H, 2, it is necessary to generalize the formalism in several
ways. Firstly, spin indices on the Green s functions must
be retained. It proves most convenient to follow as
closely as possible the methods of Gor'kov and Rusinov, "
who de6ne Green's functions which are 2X2 matrices
in their spin indices, and who then combine" the usual
pair of Gor'kov equations for the Green's functions into
a single 4)&4 matrix equation. "We identify all 4X4
quantities by capital script letters, and regard the
4-dimensional space as a direct product of the 2-dimen-
sional spin space with another 2-dimensional space
which we may call Nambu space."

Since our subsequent analysis is more convenient
in position rather than in momentum space, the
generalization to include spin-orbit scattering means
that the impurity potential becomes nonlocal in space.

"L.P. Gor'kov and A. I. Rusinov, Zh. Eksperim. i Teor. Fiz.
46, 1363 (1964) /English transl. : Soviet Phys. —JETP 19, 922

"Y.Nambu, Phys. Rev. 117, 698 (1960)."R. Balian and N. R. Kerthamer, Phys. Rev. 131, 1553
(&963).
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We take as Hamiltonian

K= d'» P'((r)f( 1—/2»»()(V ieA)—' pe.—H]P(»)

+ d'»d'»' Pt(r) V(r,r'g (x')

satisfy

8„"(r,r') = g„"(r,r')+ d r)ds»qdgrsd3»4 g„"(r,rq)

X('U(r&, r2)(g (rm, ra))q'U(r3, r4))N„"(r4,r'), (5)

Z)„(r,r') =b'(r —r')S(r)
+-'g da» 0'(»)0'(»)4 (»)0(»)

+ d'»xd'»2 (U(r, r&)(g„(rx,im)).e'U(r2, r')). (6)
where iP, ft are field operators, A is the vector potential,

g is the BCS model coupling constant, V is the impurity
potential specified in more detail in the Appendix, and
we adopt units in which A=c=k~ ——1. The Gor'kov
equations can then be written in the form

g (r, r') = g„"(r,r') + d'»& g "(r,rq) $(rq) g (rr, r')

Although this form is lengthier than Eq. (2), it has the
advantage that it facilitates going to the limit of
vanishing S corresponding to the second-order transi-
tion point. We need only iterate Eq. (4) to lowest non-
vanishing order in%), so that we can substitute into the
right-hand sides of Eqs. (5) and (6), respectively,

(8 (rm rl)) e ~ @ "(r2 ra)

+ d'»zd'»2 Q„"(r r&)'U(r&, r2)Q„(xmr') . (1) (8„(r,,ro))op ~ d'»()d'»4Q„"(r), r())

Here g„and g " are the superconducting and normal
state Green's functions, respectively, where the normal
state is de6ned by the above Hamiltonian with g=0;
S represents the superconducting gap function and is a
functional of g in a way to be specified shortly; 'U is a
4&4 matrix constructed from the spin-dependent im-
purity potential; and as usual, " (e=(2v+1)xT with
v=integer. The magnetic 6eld is contained entirely
in g ".

We now average over impurity configurations (de-
noted by angular brackets), assuming in the standard
way" that X) is independent of the averaging process.
Then the appropriate diagrammatic sum" in the limit
of low impurity concentration leads to

XX)„(r3x4)$„"(r4,rm) . (8)

The 6nal relation needed is the well-known definition'4
of S in terms of the Green's functions, which in the
present notation becomes

ln(T, /T) X)(r)
1 1= T Q $(r)—— —tr(g„(r, r)).e!, (9)

r(0)2 i'
with tr being the trace in spin space. Equations (5)—(9)
form a closed set of equations.

In order to account for the formation of supercon-
ducting pairs with opposed spins in the absence of a
Geld, we make a unitary transformation with the
matrix"

(g„(r,r')) = g„"(r,r')+ d'»x cJ„"(r,rx) s(r&)(g„(r&,r'))
1 0~
0 i~ i (10)

+ d»)d»gd»3IIP»4 () (r xj)

X('U(x~, r2)(g„(x2,r()))V(r(),r4))(g„(r4,r')). (2)

If we separate (b ) into parts purely diagonal and purely
oG-diagonal in Nambu space,

(s-)=(8-) +(s-)", (~)

then Eq. (2) can be written in the form,

(b (i i ))=@ "(r r )

+ d»1d»2 8 (r rl)Z (fl r2)(g (r2 r )) (4)

where we introduce new quantities 8 and%) defined to

"A. A. Abrikosov, L. P. Gor'kov, and I. E. Dzyaloshinski,
Methods of Quantum Field Theory in Statutical I'kysk's (Prentice-
Hall, Englewood CMs, New Jersey, 1963).

where 1 and 0 „are Pauli spin matrices. The transformed
4X4 matrices (for which we elect not to introduce any
notation distinguishing them from the untransformed
ones) then can be split into Nambu components,

(G„(r,r') I'„(r,x'))—
(B-(r,"))=!

(F„t(r,x') 6„(r,r') I
(G„"(x,r') 0

8-"(r,r') =!
0 C„"(rr'))

s)(r)=(

0
Z„(r,r') =

6 t(r, r')

(V(r, r')
'U(r, r') =!

0
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(21) becomes

s„=s {1+(r 's "'
+(r—'——,'r2 ')s„&2'e 8 sgnco5/2~T). (23)

less variables,

t= T/T„h= 2eH(ov2r/6nT, ).,

n=3/2mov'r, X..= 1/3n. T.r2.
(2&)

Using definitions (18) and (22), and evaluating s '
from Eq. (19) in exactly the same manner as the deriva-
tion of Eq. (18) in Ref. 1, we obtain the important result
that s„o&'& and s„o&'& are, respectively, the real and
imaginary parts of the function

The parameter o, is identical to that introduced by
Maki. In terms of these variables, the dirty limit
(2xTr((1) of Eqs. (24)—(26), when substituted into
Eq. (20), yields

I.= $2nT—/ov(2. eH)'"5J(n ), (24)
1 ~ 1

ln-= P
where as a generalization of Eqs. (12) and (25) of Ref. 1,

J(z) =2
1+LAD

dw exp( —w2)—ln
2z 1—zszo (25)

h (oh/t)'—
I
2v+1I+-+

i 2v+1i+(h+X.,)/t
(28)

Q„=vv(2oH)'~2(2~co~+ r '+2iyH) '.
It is now a straightforward, but somewhat lengthy,
algebraic manipulation to solve Eq. (23), with the re-

sult that

—' trs~=s„~"={LRe(I '—(r ' ', r—
2
—')/-2~T) '5 '

—-'2(2~Tr2)-') —'. (26)

Equation (20), together with Eqs. (24)—(26), provides
the desired implicit relationship between H and T at
the second-order transition.

If we allow for the possible existence of a Fulde-
Ferrell' state, so that we consider the generalization

&p(r) ~ p(r) exp(i(2eH)'"gH r5, .

then inside the ln of Eq. (25) we make the replacement

"~(~2+~2) 1/2

The Fulde-Ferrell state corresponds to finding the maxi-
mum value of H.2 which solves Eq. (20), as a function of

g for fixed T, to be at g/ 0. We have shown this not to be
the case in the dirty limit, but have not pursued the
investigation further for general mean free paths.

III. DIRTY LIMIT

Although the previous section has obtained an im-
plicit formula for H.2(T) valid for arbitrary mean free
path (but r2((r2), materials with a sufEciently high H, 2

so that spin sects are significant all have very short
mean free paths. (An exception is V2Si, which is believed
to be a high-field superconductor even if ideally pure.
It is possible that samples of this material might even-
tually be made with large enough residual resistance
ratio to put the full theory to a test. However, in that
case it is likely that at low reduced temperatures our
semiclassical approximation for the electron trajectories
would break down. ) For this reason, we specialize our
formula to the dirty limit and only consider this case
further.

It now proves convenient to introduce the dimension-

Special cases of Eq. (28) have been used previously
by Sarma and Saint James' and by Maki' in an in-
vestigation of the order of the transition. These authors
found that for sufBciently large a the transition is
actually of first order and that Eq. (28) instead gives
the supercooling field. In particular, Maki found for
X,.=O that t was a double-valued function of A when
a&a, =1. However, Maki also showed that for fields
just below h the superconducting state had a lower free
energy than the normal state until a&1.47. One can
conclude that the transition is first order for n&1.47
and second order for a(1; but when 1&a(1.47 one
seems led to the startling result that the system can
undergo a second-order transition from superconducting
to normal upon /ordering the temperature in a fixed field.
This strange feature of Maki's model deserves further
attention. Pote added in proof In accordanc. e with our
misgivings, it has been shown recently by Caroli, Cyrot,
and de Gennes, " and confirmed by Maki, ' that the
calculation of Ref. 4 leading to n, =1.47 is in error. A
revised calculation" leads to a first-order transition
occurring at precisely the point at which the h(t) curve
becomes re-entrant. This means that our n, for X„&O
computed from the shape of the h(t) curve is just the
critical value for the transition to become first order.
The revised impurity averaging technique of Refs. 1|)
and 17 now agrees with the earlier, independent work
of Tewordt. '8

On the other hand, we can see from Eq. (28) that a
nonvanishing spin-orbit scattering P,„&0) tends to re-
duce the e8ect of the spin paramagnetic term, and hence
could be expected to increase the a, defined to be the
value of a at which t first becomes a double-valued func-
tion of h. Ke can investigate analytically the depend-
ence of a, on P., by observing tha, t a, is just that value of
a for which (d2h(t)/dt2)i=2=0. To take the zero-
temperature limit of Eq. (28), it is most convenient to

16C. Caroli, M. Cyrot, and P. G. de Gennes, Solid State
Commun. (to be published)."K.Maki, Phys. Rev. (to be published)."L.Tewordt, Phys. Rev. 137, A1745 (1965}.
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re-express it in terms of digamma functions:

1 1 i7,.y r1 h+-,'x +ipseln-= -+
2 47i k2

1 8 ..~ 1 h+ ,'X.-. i—q+ —
l~ -+ -~(!), (29)

2 4qJ 2 2t

where p=—[(nh)' —(-,'X„)'j"'.Using the asymptotic ex-
pansion of f for large argument, the singular lnt term
can be subtracted from both sides. The remaining equa-
tion evaluated at t=0 gives

2t P(-,')+ ln2] = lngh'(1+a')+ X,.hj
—(&-/v) «n '8/(h+l&-) j (30)

The 6rst derivative of the equation at t=0 shows that
(dh/dt), 0 0 ——Dif.ferentiating the equation a second
time with respect to t, and also setting (d'h/dt2), 0 0, ——
leads to the additional relation

0,7—

0.6

0.5

h 0.4

0,3

Ti o.as Vo.es
(STRNAD + KIM)

n =n, = (h+X,.)/h. (31) 0.2

0.20 20

0.16 —16

0.12

0.08

-12

Qc

0.04

0 I t i I i t 0
0 0,08 0.16 0.24 0.32 0.40 0.48 0.56

~so

»G. 2. The value a, at which the A(t) curve becomes re-entrant,
as a function of g, . This is signalled by (dFi,~/dP) g~ ——0. The cor-
responding values of k{0}are also shown.

For X„=O, these reduce to e.=i and A=0.1985, in
agreement with Maki's results. 4 We have solved Eqs.
(30) and (31) numerically for h and a, as functions of
X„, which are plotted in Fig. 2. The results are well

approximated by the expressions

L1+1.589(X /X„')j
h=0. 1985L1—(X„/X, ')j, a,=

L1- (X.„/X,.)j
for X„&)„'=0.5139. This means that t can still be a
double-valued function of h for )„&X.,', but that the
values of a above which this may happen increase with
increasing X„, and the temperature at which it would
first occur for given 0, correspondingly decreases. The
order of the transition cannot be established with cer-
tainty, however, until one has examined the free energies
of both states, a program well beyond the scope of the
present work. Finally, for X.,&).,', the curve of h
versus t never becomes re-entrant, no matter how large
the value of 0.. Thus the change in order of transition
predicted by Maki is less likely to be observed in prac-

0.1

0
0 0.2 0,4 0.6 0.8 I.O

»G 3 A p»t of h'(t) for the alloy Tip, 85Vp. 6g. The triangles
are the data of Strnad and Kim. Theoretical curves shown are for
no spin paramagnetic or spin-orbit sects; for spin paramagnetism
but no spin orbit; and for spin paramagnetism as well as a best-
6t-adjusted spin-orbit parameter.

tice, since X„=0.5 does not seem to be an unusually
large value.

IV. NUMERICAL RESULTS

We have resorted to numerical methods to solve Eq.
(28) for h as a function of t, for various values of the
parameters o. and P... which are measures of the spin
paramagnetic and spin-orbit effects, respectively. The
results of these calculations have been compared with
two sets of measurements, those of Strnad and Kim' on
TiQ, 35VQ.65 and those of Shapira and Neuringer' on
TiQ.56NbQ. 44. We have chosen the viewpoint for the com-
parison that o. is not an adjustable parameter, but
rather we determine it from additional experimental
data using the formula applicable in the dirty limit,

a =3e'Ayp /2m+'ke' (32)

Here y is the normal state electronic speci6c heat co-
efBcient, p is the normal state dc resistivity, and we
have restored previously suppressed factors of A and the
Boltzmann constant. In order to apply this formula we
have used the data provided by Strnad and Kim' for
Ti-V, and have been obliged to guess y for Ti-Nb from
other data. This yields a=1.37&10%%uo for Ti-V and
1.22&15% for Ti-Nh. On the other hand, we have re-



TEMPERATURE AND PURITY DEPENDENCE OF H, m. III 302

0.8

0.7—

0.6

0.5

TI o.s6 Nbo. 44
(SHAPlRA + NEURINGER)

longer than the nonspin-flip scattering time by roughly
a factor of 200.

In our judgment, the agreement must be considered
good under the circumstances, but not yet a definitive
test of the theory. Further quantitative comparison be-
tween theory and experiment must await more careful
measurements. In particular, y and p„need to be meas-
ured accurately, in order to determine a with greater
precision; the slope of H. 2(t) at 1=1 is also needed in
order to normalize the data meaningfully. Measure-
ments at very low reduced temperatures would be de-
sirable, since theory predicts that the most interesting
structure occurs there. With precise data, and especially
very low-t data, it should be possible to determine )„
with considerable sensitivity. Even more signi6cantly,
it may be possible to demonstrate conclusively the
presence of spin-orbit eGect by showing that a fit cannot
be achieved merely by numerically adjusting e and
fixing X.,=O. However, even with the present data
such a 6t requires a vaIue of +=4, which is far outside
the limits of accuracy.
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garded 'A., as an adjustable parameter and have chosen
that value which seems to give a best 6t to the data.

The quantity we choose to plot is not h, but rather

h*=— = (~'/4)h,
(—dh/dt), ,

(33)

which is the same reduced magnetic held employed in
Ref. 2. We have calculated

h*=H,g/( dH, g/dt)g g—
from the experimental B,2 data by visually constructing
the tangent at t=1, with an estimated error of &5/o.
Pote added in proof. Knowledge of the tangent provides
an alternative way of estimating n from superconducting
data, rather than from the normal state via Eq. (32).
The Malo formula a=H.2(T=O, a=0)/2''2H„(T=O)
can be rearranged into the convenient form a= (5.2758
)&10 ') ( dH, 2/dT)r r, where th—e tangent is in units of
gauss per 'K. It is a test of the applicability of our model
for the superconductor that these two determinations of
0. shouM agree. The comparison between theory and ex-
periment is given in Figs. 3 and 4. We find that X„=0.75
gives a best 6t to the Ti-V data, but that the agreement is
by no means perfect. On the other hand, the choice
X„=2.5 gives quite a good account of the Ti-Nb data.
These values for ). seem to be reasonable physically,
since they correspond to a spin-Qip scattering time

In the analysis of Sec. II, an approximation was intro-
duced which we claimed corresponded to the assump-
tion v«r2. This approximation can be investigated in
full detail and the claim justi6ed for the special case
where the orbital diamagnetism is ignored. Comparison
can also be made with the less complete treatments of
this case by Gor'kov and Rusinov" and by Maki and
Tsuneto. "

With orbital interactions absent, the normal state
Green's function 6„"(r,r') becomes a function of r r'—
only. A consistent Ansatz then is that Z„(r,r') and
F„(r,r') are also functions of r—r' only, and that A(r)
is independent of r. Removing the Nambu matrix struc-
ture, Eqs. (6), (8), and (9), transformed with (10),
become

+ d' &rd' &r( U( ,r&r)F (r~ —r2) U(r2, r')), (A1)

F (r—r') = d'r~d'r2 6„"(r r~)—
X &„(r~—r~) LG "(r'—r2)). .. (A2)

ln(T. /T) = T Q L(~/~~~) ——,
' tr(F (0)/cV(0)a) j.

(A3)
Because of the translational invariance, it is now most
convenient to work in momentum space. The I"ourier
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transform of the impurity potential is taken to be

V(r, r') =p(2zr) ' d'pd'g exp$ip (-,'(r+r') —R;)

+iq. (r—r')](uz+iuzPX j e), (A4)

where u~ and u2 are constants, P and j are unit vectors
evaluated on the Fermi surface, and the R, are the posi-
tions of the impurities, each an independent random
variable. After Fourier transformation and averaging
over impurity conhgurations, the form of the potential
(A4) allows Eqs. (A1)—(A3) to be expressed simply in
terms of the quantity

(p 8)'. Hence the solution has the general form

S (p) =l S ""+S""(p'H)']
+LS c"'+S &"&(P H)']e 8 sgnco, (A12)

where the S„&'&) are four constants to be determined.
By substituting Eq. (A12) into Eq. (A10), the latter
can be reduced to a set of four linear algebraic equations
in the coefficients S„&'&), whose solution is straightfor-
ward. However, since the equations are lengthy, and
their manipulation is a good deal lengthier, we merely
quote the final result. Equation (A6) for the transition
point becomes

ln(T, /T)

S (p)=— dc TF„(y)/6, (A5)
(zcH) 2 ——11

=zrT Q — ical+
I
~ I+ 3 rz-'&-

(A13)

1—5»l I+5»(1+(zcH/") )]/(1+ 5»)z= (A14)
1—zvzL1+kvz(1+( H/~)')]/(1+5vz)

(A6) andln(T, /T)=p l2c+1l-' ——',tr dpS. (p)
co/2rz 1

72= co—= l(el+ —. (A15)
l

cv
l
'+(zcH)' 2r

Since zcH((~, we find that Z —1&0(r/rz).
On the other hand, the alteration to Eq. (6) made in

Sec. II corresponds in the present notation to replacing
Eq. (A7) by

S„(p)=S„' 1+(lzAT(0)/T) dp'dp"

S (p)=S„' 1+(NV(0)/T) dp'(uz+iuzpXp'. e)

XS (P')(uz iuzP—XP' e)

where I is the impurity concentration, and

where
where e is the kinetic energy measured from the Fermi
surface. %e 6nd

S„0=T d~ &."(n)[&--"(-p)].--. X(uz+iuzPXP' e)S (P")(uz—zuzPXP' e)

= 2zrT/(2 la& l +r '+2izce Hsgna&) . . (AS)

Exhibiting the spin dependence of S„explicitly in the
same way as in Eq. (22),

S (P)=S '"(P)+S &'&(P)e Bsgnca, (A9)

the spin products on the right of Eq. (A7) can be
simpliled:

S.(p)=S.' 1+ dp'L( -'+llpXp'i". -')S-'"(p')

+(rz '+2(1—3(p' H)'

+ (p 8)'(—3+5(p' 8)')]rz—')

XS &'&(P') e.8 sgna&]/2zrT . (A10)

The scattering times are dined as

rc '=2zrrzX(0)uz'—, rz '=——',2zrzzX(0)uz'. (A11)

Inspection of the right-hand side of Eq. (A10) reveals
that it depends on p only through a term linear in

0 1+ dP Lr
—1S (z)(P )

+(» ' 3(P &)'—rz ')

XS "'(p')e 8 sgnco]/2zrT . (A16)

The solution of this equation is quite a bit easier than
for Eq. (A10), and, upon substituting the result for
S (p) into Eq. (A6), we now find

1 (zcH)'
»(T./T) =~T 2 —i~i+, (A17)

i~i+3» '-

which is identical to Eq. (A13) but with Z —+ 1. This
con6rms our claim that the alteration we introduced
represents an approximation valid in the limit v(&72.

Maki and Tsuneto" have previously obtained Eq.
(A16), but in no way indicate that it is only an approxi-
mate result. Gor'kov and Rusinov, "on the other hand,
who were only considering the limit T,—T&(T„ob-
tained the first term of an expansion of (A17) in powers
of (zcH)', but did acknowledge that they had assumed
v'((v'2.


