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where 8 =kg —g; In2k,w. From Eq. (2a)

F;;(r) k, 'I2[(sin8 co&;—cos8,' sin&;)8;,+ (cos8 co&,+sin8, '
sing~) (R;;],

where p;=l~/2 —0&, Combining this result with (40) gives the required 1V& equations

co&; co;&—sony; (u~„+,.&=k;—'~'5;;, (4&)

where the superscript j denotes that the linear equations at the matching point for the parameters v& p must be
solved Ez times, with j characterizing these matched solutions. The elements of the real symmetric reactance
matrix are then given by

(Ro= k~ I [sing~ Q)~~+co+~ (d~~+~~j. (42)

Having obtained the S. matrix it is a simple matter of matrix manipulation to obtain the T matrix and cross
section using Eqs. (35) and (36).
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Scattering phase shifts have been computed for elastic electron scattering from neutral helium for an
energy range from 0 to 50 eV. These computations were based upon an extension of Hartree-Fock theory in
which the distortion induced in the atom by the incident electron is considered in the adiabatic approxima-
tion and developed in a perturbation expansion in the interaction between incident and atomic electrons.
This expansion contains terms describing both the adiabatic polarization interaction and velocity-dependent
corrections to it. The effects of these two interactions are examined by calculating the scattering in two ap-
proximations: first, a pure adiabatic-exchange calculation using the total polarization potential consistent
with second-order perturbation theory; and second, a "dynamic-exchange" calculation in which all the
dynamic terms consistent with second-order perturbation theory are included along with the polarization
potential. An additional dynamic-exchange calculation in which only the dipole components of all the dis-
tortion terms are included is also considered. The computed phase shifts were used to determine the scatter-
ing cross sections and these are compared with other calculations and experimental data. Scattering lengths
were also calculated by iteration of the pertinent equations at zero energy, and resulted in the values 1.097ao
for the adiabatic-exchange approximation and 1.186ao and 1.181ao for the dynamic-exchange approxima-
tions using, respectively, the total-distortion terms and the dipole components of these terms only. The
dynamic-exchange values for the scattering length compare very favorably with the experimental value
1.18a& determined independently from experimental data by Frost and Phelps and by Crompton and Jory.
The dynamic-exchange approximation for the total scattering cross section agrees quite closely with the
experimental data of Ramsauer and Kollath, while the corresponding diffusion cross section agrees quite
well with the data of Crompton and Jory. These calculations show that best agreement with experiment is
obtained when only the dipole components of all of the distortion terms are included in the formalism.

I. INTRODUCTION
' 'N a previous paper, ' the scattering of electrons by
~ ~ helium atoms was considered in an approximation in
which the distortion of the target atom by the incident
electron gave rise to an effective polarization potential

~ This work was supported in part by the U. S. Bureau of Naval
Weapons.

t Based in part on a dissertation submitted to the University of
California, Riverside, in partial fulfillment of the requirements for
the Doctor of Philosophy degree.' R. %'. I.aBahn and J.Callaway, Phys. Rev. 135, A1539 (1964}.

which was added to the usual Hartree-Pock equations.
The results of these calculations gave a cross section
which was in good agreement with experiment at very
low energies but was larger than the experimental values
at higher energies. This discrepancy arises in part from

oversimplification of the dynamics of the scattering
electron in describing the distortion interaction. The
main purpose of this paper is to report on some extended
calculations for helium in which a velocity-dependent
correction to the adiabatic theory is incorporated into
the scattering equation.
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The importance of the long-range —a/2|." polariza-
tion interaction for the energy dependence of the very-
low-energy electron-atom cross section has been amply
demonstrated in numerous calculations. ' " All of
these, however, were based upon the adiabatic approxi-
mation in which the mutual distortion interaction is
calculated by assuming the atom to be perturbed by the
electric Geld of a stationary external charge. This ap-
proximation thereby assumes that the atomic electron
distribution can readjust instantaneously for each posi-
tion of the incident electron. Good results are obtained
as long as the average velocity of the atomic electrons
greatly exceeds that of the scattering electron. The
latter condition is only satisfied in general for very low
velocities (or energies) of the incident electron, since,
even though this electron may have started at infinity
with negligible velocity, it is accelerated by the attrac-
tive polarization interaction. This effect leads to
velocity-dependent interactions which must be incor-
porated in the formalism to give an adequate treatment
of the problem.

To date, specifically velocity-dependent interactions
have generally been neglected in atomic-scattering cal-
culations. The eigenfunction expansion (or close-
coupling) methods do contain implicitly some account
of this interaction according to the number of atomic
states retained in the expansion. " Our approach is
rather different, being based upon perturbed Hartree-
Fock theory. In second order we obtain a velocity-
dependent term in the final scattering equation. This
interaction is repulsive and acts as a correction for the
fact that when the velocity of the incident electron is
not negligible the atomic-electron distribution cannot
completely follow its motion. We moreover find that
the velocity-dependent interaction determined in this
approximation has the correct long-range behavior
rather than being a truncated form like obtained in a
limited-eigenfunction-expansion calculation. "

The extended Hartree-Fock (HF) formalism of our
' J. Holtsmark, Z. Physik 55, 437 (1929).' A. Temkin, Phys. Rev. 107, 1004 (1957)~

4L. Spruch, T. F. O' Malley, and L. Rosenberg, Phys. Rev.
I etters 5, 375 (1960); J. Math. Phys. 2, 491 (1961); Phys. Rev.
125, 1300 (1962).

~ T. F. O' Malley, Phys. Rev. 130, 1020 (1963).
6 A. Temkin and J. C. Lamkin, Phys. Rev. 121, 788 (1961).
~ E. G. Bauer and H. N. Browne, in Atomic Collision Processes

(North-Holland Publishing Company, Amsterdam, 1964), pp.
16-27.

S. P. Khare and B. L. Moiseiwitsch, in Ref. 7, pp. 49—52.
9 J. H. Williamson and M. R. C. McDowell, Proc. Phys. Soc.

(London) 85, 719 (1965).' N. R. Kestner, J. Jortner, M. H. Cohen, and S. A. Rice,
Phys. Rev. 140, A56 {1965)~"R. O. Berger, T. F. O' Malley, and L. Spruch, Phys. Rev.
137, A1068 (1965}.

'~ M. H. Mittleman and K. M. Watson, in IVth International
Conference on the Physics ofElectronic amS A tomic Collisions (Science
Bookcrafters, Hastings-on-Hudson, New York, 1965), p. 199—220.

"Cf. R. Pu, Lawrence Radiation Laboratory Report UCRL
10878, 1963 (unpublished), where it is shown that a 1s-2s-2p close-
coupling con6guration for hydrogen implicitly includes 73.5'Po
of the long-range dipole component of the velocity-dependent
interaction.

work is discussed in Sec. II. The resulting scattering
equation is found to be very similar to the adiabatic-
exchange equation of our previous paper, ' differing

mainly by the presence of a first-derivative term from
the velocity-dependent interaction. This velocity-
dependent term is discussed in Sec. III along with some

additional distortion interaction terms which arise out
of the formalism. A more complete expression for the
polarization potential is also included. In Sec. IV we

discuss the numerical procedures used to solve the
scattering equation. The results of our calculations are
given in Sec. V and discussed in relation to other recent
theoretical predictions and experimental data.

II. DEMVATION OF THE SCATTERING
EQUATION

The HF scattering equation is obtained by requiring
that the variation of the integral

I= ++(H E)+dr—

be zero, where 4' is the total wave function for the
three-electron system consisting of two bound electrons
and the scattering electron. H is the total Hamiltonian, '4

~1 +2 +3 4/r& 4/r2 '4/r3

+2/rq2+ 2/r f3+2/r13 (2)
r;, = r;—r, ,

and E is the total energy,

where E~ is the total electronic binding energy of the
atom and k' is the energy of the scattering electron at
infinite separation.

The importance of the electron-electron exchange
interaction in low-energy atomic scattering theory is
well established. "We thus require that the total wave
function 4 be completely antisymmetric in the inter-
change of any two electrons to satisfy the Pauli princi-
ple. To include both this and the distortion of the atom
produced by the external electron, the total wave func-
tion is approximated as follows:

4'(1,2)3)= (3)—'&'LP &'&(1,2)S(1,2) q (3)n(3)
+P &'&(2,3)S(2,3)p(1)e(1)

+4 &'&(3,1)S(3)1)q (2)a(2)], (4)

in which p(m) represents the wave function for the
scattering electron, P'"'(ij ) is the wave function of the
two bound electrons i and j, perturbed by the field of a
separated electron rI,, and S is the singlet spin function
for the bound electrons,

"Atomic units of length in Bohr radii and energy in rydbergs
(13.6 eV) are used throughout this paper.

"Cf. P. M. Morse and W. P. Allis, Phys. Rev. 44, 269 {1933).



30 R. %. LxBAHN AND J. CALLA%AY

where e and g are single-electron spinors with projec-
tions m, =+-,' and ——,', respectively.

The bound-state wave functions p&"&(ij) are deter-
mined to 6rst order in the interaction with the scatter-
ing electron. They are thus of the form'

P'"'(ij )=$100(3)$100(j)+4 100(i)X(j;23)

+&100(j)&r(i;n), (6)

where $100 denotes the unperturbed HF wave function
for the helium ground state and x(j; e) is the 6rst-order
perturbation correction describing the changes in the
wave of atomic electron j under the influence of the
electric 6eld of a separated electron e. This perturbed
wave function y is determined in the adiabatic approxi-
mation and thus the total atomic wave function
P&"&(i,j) is known beforehand and not subjected to
variation.

Now, since the total energy of the system is known

(given by Eq. (3)7 and we are using known wave func-
tions to represent the motion of the atomic electrons,
the application of the variational principle to Eq. (1)
is restricted to a variation of the unknown scattering
electron wave function q*. When this is done and the
results integrated over the atomic electron spin co-
ordinates and rearranged slightly, we obtain the basic
scattering equation

ponents are neglected in the exchange interaction part.
This approximation, which we will call the "dynamic-
exchange" approximation, replaces Eq. (7) by

/* &3&(1,2)LH —E7$ &3&(1,2)drI«23&(3)

X/100(1) O&(2)drI«24'100(3) 0. (9)

We now use the equations for the unperturbed and
perturbed atomic orbital components to reduce the
dynamic-exchange equation to a more explicit form.
Our functions satisfy the equations:

L
—V'12 4/rI—+V,(rI)—07/100(rI) =0,

in the case of the unperturbed function fIQQ aIld "
(10)

2
V.(r*)= ) AoD(rj) (

'—«j, (12)

L
—VI'—4/rI+ V,(rI) —07x(rI, r3)

= L V.(r3)—2/&137/100(rI), (11)

for the 6rst-order perturbation function x. In these
equations

0*"'(12)C&—&7L4 "'(1 2) 0 (3)

—/&2&(3, 1)0 (2)7«I«2 ——0 (7)

for the scattering electron wave function p. This equa-
tion is very complex as it stands and we thus resort to
further approximations to obtain equations which can
be reasonably adapted to numerical solution.

The 6rst approximation to Eq. (7) that we considered
was the subject of our previous paper' and referred to
as the adiabatic-exchange approximation. This approxi-
mation may" be obtained by neglecting the perturbed
orbital components in all the functions P t"&(ij ), except
in one term of the direct-interaction part. The re-
sulting adiabatic-exchange scattering equation may
then be written in the form

and c is the HF single-electron eigenenergy for the
helium ground state. The atomic orbital components
also satisfy the orthogonality relation

$100(r,)&r(r;; r,)dr;= 0 (13)

(0 ~ ) $100 (r2) 3&(r2)«2

for all values of r,.
The reduced form of the dynamic-exchange equation

obtained by using Eqs. (10)—(13) to integrate Eq. (9)
over the atomic coordinates (1 and 2) is

L
—V3 —4/r3+2V, (r3)+2V„(r3)—2D(r3) —k 7y(r3)

ADD*(1)&00*(2)E&—&7L4'"(1,2) 02(3)

—AOD(1)ADD(3) 0 (2)7«I«2 ——0. (g)

A second approximation to Eq. (7) which is some-
what more inclusive is the subject of this paper. In
this approximation, we will retain the perturbed orbital
components of both of the functions /&3&(1,2) in the
direct interaction part, while all perturbed orbital com-

2
+ $100 (r2)—p(r2)«2 4'100(r3) ~ (14)

r23

2
Vy(13) = flOD (r3)—&t(12 1'3)dr2

r23
(15)

In this equation, V„ is the adiabatic polarization
potential,

"In our previous paper, we began with a slightly more general
approximation to the basic scattering equation and then reduced
this to the adiabatic-exchange form by neglecting all dynamic
terms.

"We are also using here the same truncated form of the
perturbed orbital component equation as was considered in our
previous paper (Ref. 1). The validity of this approximation has
been considered to some extent in Appendix A of Ref. j.8.
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and D is the dynamical operator,

D(rs) v (rs) = x*(rs, rs) L{~s'x(rs, rs))

+2&sy(rs; r,) &sjdrsq (rs) . (16)

This last term constitutes the only formal difference
between the adiabatic-exchange approximation of our
previous work' and the dynamic-exchange approxima-
tion of this paper. However, this term gives rise to a
long-range velocity-dependent interaction which we

have found to have a significant eQect upon the scatter-
ing even at very low energies. We shaB discuss this term
at some length in the following section. In a subsequent
calculation, we intend to consider a more complete
approximation to the basic scattering equation (7)
in which the 6rst-order perturbed orbital components
are retained in the exchange-interaction part. The
resulting approximation has a form similar to the
polarized-orbital equation of Temkin and Lamkin
for atomic hydrogen.

III. THE DISTORTION-INTERACTION TERMS

The polarization and dynamic terms V„and D,
defined in Kqs. (15) and (16), respectively, are seen to
depend upon the atomic orbital components crisp and x.
We thus begin this section with a brief discussion of
these functions. (A more detailed derivation and dis-
cussion of the perturbed orbital component g is given
in Ref. 18).

The exact solution of the HF self-consistent-held
(SCF) equation (10) for the unperturbed atomic orbital
fiQQ must be obtained numerically. However, in our
previous paper, ' we found that the 12-parameter
analytical approximation to tPisp given by Roothaan,
Sachs, and Weiss" is suSciently accurate to represent
the unperturbed motion of the atomic electrons for
this scattering problem. We thus have used this analyti-
cal approximation for lisps in all places in this paper
except where an exception is specifically noted. (The
HF eigenenergy corresponding to the Roothaan, Sachs,
and Weiss functions is s= 1.835912 Ry.)

The solution of the truncated perturbation equation
(11) for the perturbed orbital component x is only
known for the case of atomic hydrogen t in which case
Eq. (11) is the exact equation) and the uperturbed
functioll lPipp has the simple form exp( —zr). The desire
to have a tractable analytical approximation for the
perturbed orbital component y was dictated by the
complexity of the expression (16) for the operator D
and the form of the exchange terms in the polarized-
orbital equation mentioned at the end of the previous
section. We thus have drawn upon the known solu-

"R.W. LaBahn, Ph.D. thesis, University of California, 1965
(unpublished)."C.C, J. Roothaan, L. M. Sachs, and A. W. Weiss, Rev. Mod.
Phys. 32, 186 (1960).

tions of Eq. (11) for the case of atomic hydrogen to
obtain an approximate analytical solution for helium.

The approximate analytical solution of Eq. (11) for
helium was obtained as follows. We begin with a trans-
formation given by Schwartz" to write

where
x(rs rs) = IX(rs' rs) —(F)jAso(rs) (17)

(F)=
~
Piss(rs)

~
F(fs ' rs)drs . (18)

The function F is then analyzed in partial waves through
the relation

F(rs, rs) =P Fi(rs, rs)Pi(cosess) . (19)

dglnNe *'j/dr=1/r z—(22)

The logarithmic derivative for the analytical approxi-
mation to ui, (r) that we are using here, on the other
hand, has the form

dglnui, (r) j/dr = 1/r z'+ur+ br'+, —(23)

where s', a, b, . . ., are constants depending upon the 12
parameters in the Roothaan, Sachs, and Weiss func-
tion. "We now approximate the logarithmic derivative
in Eq. (20) by Kq. (22) and thus neglect the terms
ar+brs+ on the right-hand side of Eq. (23). When
this is done, analytical solutions of Eq. (20) are known

"C.Schwartz, Ann. Phys. (N.Y.) 6, 156 (1959).
"The use of Eq. (10) in the reduction here entails the so-called

"Sternheimer approximation" which, however, is rigorously exact
for the helium self-consistent-field equation Lsee R. M. Sternhei-
mer, Phys. Rev. 96, 951 (1954)j.

Since Piss is spherically symmetric, we see from Eq.
(18) that (F) vanishes for all f/0. $A nonzero value
of (Fs) insures that x as given by Eq. (17) satisfies the
orthogonality relation (13).)

When Eqs. (17) and (19) are substituted into Eq.
(11) and the result reduced with the aid of Eq. (10),"
we obtain the partial-wave equation for J ~,

"
d' ui, '(rs) d l(1+1)—2 —+ — Fi(rs, rs)

drs ui (rs) dts'
= 8i, s V.(rs) —2r&'/r&'+', (20)

where
ui, '(r)/ui, (r) = dt lnui, (r)j/dr, (21)

ui, (r) is the reduced radial part of the unperturbed
orbital, lPigp(r) = L4sr] '"ui, (r)/r, and r& is the smaller
and r& is the larger of r2 and r3.

The transformation of the perturbed orbital equation
(11) into the form (20) is exact. However, to obtain
analytical expressions for the components F&, we must
make an approximation. We do this by observing that
the logarithmic derivative (21) for a hydrogenic orbital,
ui. (r)=IV exp( —zr), has the form
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and have been given (implicitly) by Reeh" and Bethe"
(l= 1 component only).

The analytical solutions to Eq. (20) given by Reeh
and Bethe are complete solutions, that is, they are
defined for all values of r2 and r3.24 In a similar analysis
for atomic hydrogen, Temkin and Lamin' considered
the perturbation to exist only when the scattering elec-
tron was "outside of" the atomic electron (r~&r~).
Their perturbed orbital component then contained a
unit step function, e(r2, rg), to enforce this restriction.
However, in derivation of their Anal scattering equa-
tion, they neglected all terms containing any deriva-
tive operators operating on the unit step function.

The neglect of terms coming from operating with
the Laplacian on the unit step function was an unwar-
ranted omission in the calculation of Temkin and
Lamkin and the method of polarized orbitals should
be understood to include these terms. "These terms,
which were correctly included by Sloan, "appear in the
polarization exchange portion of the scattering equation
(which is neglected in our present formalism) and give
rise to a velocity-dependent interaction with an ex-
ponentially decaying coefficient. The resulting terms
would not be present if a perturbed orbital properly
dedned for all values of r2 and re had been used.

The dynamic term D defined in Eq. (16), consists
of terms involving various derivatives of the perturbed
orbital x. To avoid the introduction of questionable
terms, we have used the complete solutions of Eq. (20)
discussed above to approximate y. For future reference,
we shall denote the equivalent components of P by
the following notation:

F~(r2, rq) =F~(r2(rq) for the region where r2(rq,
24

=F~(r2) r~) for the region where rm) r3.

The expansion of the perturbed wave function, Kq.
(19), can be used to generate a multipole expansion of
the polarization potential, Eq. (15). This becomes,
after substitution of Eqs. (12) and (17)—(19):

QQ 2
V~(r~)=P ~$~,0(r2)~'F~(r2, r~) P~(cos—82~)dr2

f23

~' H. Reeh, Z. Naturforsch. , 15A, 377 (1960).
2' H. A. Bethe, Hem('buck der Physik (Edwards Brothers, Inc. ,

Ann Arbor, Michigan, 1943), Vol. 24, pt. 1, p. 339 ff."The r«/r&'+' factor on the right-hand side of Eq. (20) results
in a discontinuity in the equation for Ff as rm goes from values
smaller than r3 to values larger than rg (or vice versa). The usual
procedure in solving equations of this form is to Gnd separate
solutions of the complete inhomogeneous equation valid in the
regions r& &raa nd r~)re. Arbitrary multiples of the equivalent
homogeneous equation solutions are then added to these inhomo-
geneous equation solutions and the multiplicative constants
deter~~~ed by matching the functions in magnitude and slope at
the boundary r~ ——rs. See Ref. 22 for more specific details.

~' A. Temkin (private communication}."I. H. Sloan, Proc. Roy. Soc. (London) A281, 151 (1964).

We shall denote the multipole components of V„
by V„&'&. They arise upon expansion of the term 2/r93

in Eq. (25). After performing the integration over the
angular coordinates of r2, these components have the
fOD11

Vy (&3) Nl (r2)Fl(r2(&3)ra'«2
2l+1i r '+'

+ra' Ng, '(rm)F)(r2) rs)rm
—&'+'&drm

where we have used the definitions of Eq. (24).
Inspection of Eq. (20) shows that for large values of

the separation ra, F~(r2(r~) behaves like r~ &'+" for
l/0 Dor /=0, Fo(rm(rz) decays exponentially with
increasing rzj. Thus, from Eq. (26), we see that

const
V,"'(ra) .-, for /NO.

re~oO ~ 2l+2
(26')

'7A. Dalgarno and J. T. Lewis, Proc. Roy. Soc. (London)
A233, 70 (1955); Proc. Phys. Soc. (London) A69, 57 (1956).

The perturbation analysis we are using here uses a
6rst-order perturbed orbital x, to determine a second-
order polarization potential or energy correction V~.
If we were to consider a second-order perturbed orbital
in addition to x, we would introduce third-order inter-
action terms. The long-range nature of these third-
order interactions has been shown'~ to exhibit a be-
havior beginning with terms proportional to r3 '. Thus,
to be consistent with the inclusion of distortion eGects

up through second order, we may only retain terms
which are larger than those given by third or higher
order perturbation theory. From this analysis, it
follows that only the erst three, or 1=0, 1, 2, components
of V„can be included under this criteria. Moreover, by
a similar analysis, it is seen that only the Grst two com-
ponents of the dynamic terms D can be retained under
this criteria.

An additional comment in regard to the 3=0 com-
ponents of the distortion terms is in order. We have
noted above that Fo(r2(r3) decays exponentially with
increasing r3 and thus the l=O components of the dis-
tortion terms will vanish exponentially. Under the
above restrictions, then, it would appear that the k=0
components should also be neglected here. However,
the l=O components of all the distortion terms are
signi6cantly larger for small r3 than any other com-
ponents. We thus feel that they should be included to
be consistent with our perturbation formalism. More-
over, in all previous electron-helium scattering cal-
culations, excepting the recent work of Kestner,
Jortner, Cohen, and Rice," the l,=0 component of the
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polarization potential has been neglected. Thus, by
including it here, we may examine the consequences of
this omission in other works.

The analytical solutions to Eq. (20) obtained by
using the 6rst two terms of Eq. (23) to approximate the
logarithmic derivative depend upon the constant s'.
The value chosen for this constant was not taken as
that deduced from the 12 parameters in

gazoo

but rather
chosen to best approximate the exact solution of Eq.
(20) in the region where the perturbed orbital has the
greatest signiacance. These criterions lead to a di6'erent
choice of s' for each partial wave component I'~ and
also for //0, a diferent choice for a particular com-
ponent depending upon whether it was used in the
polarization potential or the dynamic terms.

The l=0 component of the polarization potential was
obtained by numerical integration of the analytic ap-
proximation for Fo(ro, ro) and 12-parameter SCF
orbital lPyoo in Eq (26.). The constant s' in Fo(ro 13)
was chosen to make the analytic approximation to
Fo equal to the exact function at r3=0 since this is
where the E=O component of g has the greatest signih-
cance. This selection determined s' for Fo(ro., ro) through
the relation

so'=-,'V.(0)=1.6872761. (27)

"D.R. Johnston, G. J. Oudemans, and R. H. Cole, J. Chem.
Phys. 33, 1310 (1960).

The l=O component of the polarization potential
was also obtained by numerical integration of Eq. (26)
with the analytic approximation for F~(ro, ro) and the
12-parameter SCF orbital fioo. The constant s' in Fq
was chosen here to make the asymptotic form
2V„"'(ro) —+ n/ro ' as r—o —+~, exhibit the correct
polarizability, 0., for helium. We have used the recent
value, n=1.395ao', determined from the experimental
data of Johnston, Oudemans, and Cole" for the polari-
zability and this selection resulted in the value s~'
= 1.6245458 for the constant in Fq(ro, ro). The resulting
single-electron polarization potential is shown by the
solid curve in Fig. 1.

In our previous paper, ' we used an earlier value of
a=1.376@0' for the polarizability of helium and the
analytic form for V~&'& obtained by Bethe" upon using
the hydrogenic form, Popo(r)=(s'/m)'~'exp( —sr), for
the unperturbed atomic orbital. This form of V~&'~

is shown by the dashed curve in Fig. 1. Because of
the importance of this component of the polarization
potential, we have examined it in still greater detail.
This examination entailed an exact numerical solution
of the perturbed orbital equation (20) with the proper
logarithmic derivative term Eq. (23). The resulting
solution was properly continued'4 through the boundary
r2=re and then integrated numerically, along with the
12-parameter SCF orbital, in Eq. (26). Only selected
values of the sepa, ration ro were considered /because of
the complexity of the numerical processing required to

0

p -O. l

0
L,

Z
O
I-
M
lL

o-0,2

r /oo

Fro. 1. Comparison of various forms of the /=1 component
of the single-electron polarization potential. The dashed curve is
Bethe's analytic form, the solid curve is the approximate form dis-
cussed in the text, and the crosses are from the exact numerical
solution of Eq. (20). (a.u. —=atomic units. )
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+ x" Ei(—2x), (28)

135

where x=sro and Ei(—2x) is the negative exponential
integral. "The constant s in Eq. (28) was chosen to
make the asymptotic form, 2V ~ (ro) ~ —g/ro' for
r3~, exhibit the correct quadrupole polarizability
q for helium. There is no experimental value for q
and thus we have used the value q= 2.3265ao~ calculated
by Dalgarno and McNamee" through a variational

"K. Jahnke and F. Kmde, Tables of Functions (Dover Publica-
tions, Inc. , New York, 1945), p. 1.

'0 A. Dalgarno and J. M. McNamee, Proc. Phys. Soc. (London)
77, 673 (1961).

determine the function F~(r&, ro)] and the resulting
values of this "exact" form of V„&'~ are shown by the
crosses in Fig. 1. Comparison of the three forms of
V„&') in Fig. 1 shows only negligible differences for all
values of r3 and thus one could use any one of these in
scattering calculations. We have used the approximate
form erst discussed above (solid curve in Fig. 1) in all
of the new calculations reported in this paper.

Because of the similarity of the analytical and ap-
proximate forms of V~&'& and the fact that V~&'& is
small for all values of r3, we have used the analytical
form of V„&'& instead of performing the numerical
integration as done for V~&'~ and V„&'&. The analytic
form of V„&'& was obtained by Reeh" by using the
hydrogenic form of lgyoo in Eq. (26) and is given by
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equations for the various reduced radial components
L&(ro). This transformation has no eRect upon the
various potential terms in the scattering equation ex-

cepting that they now multiply the reduced radial
components N&(ro), instead of the total wave function
oo(ro). However, the velocity-dependent interaction
must now be redefined in terms of the corresponding
operator for the reduced radial components of the
scattering electron wave function.

The transformation of the dynamic terms defined in
Eq. (16) is accomplished as follows: we first substitute
expression (19) into Eq. (1/) and substitute the result
along with Eq. (30) into Eq. (16). Since the Laplacian
V3' and gradient V3 are independent of the atomic
electron coordinate r2, we can perform the integration
over dro, we multiply then on the left by roFo*(0o) and
integrate over dQ3. The transformed dynamic inter-
action may then be written as

Pro. 2. Total distortion terms in the electron-helium interaction.
The dotted and solid curves display interaction potentials while
dashed curves represent coeflicients for the velocity-dependent
interaction.

method using the same 12-parameter SCF orbital we
are using here. A value of a=1.5313332 was obtained
from this analysis.

The total polarization potential is composed of
twice the sum of the first three partial-wave components,

l-0
(29)

oi&(ro)
o (ro) =Z I'&'(IIo)

3=0 P'3

(30)

for the scattering electron wave function. The resulting
equation is then multiplied on the left by rol'&o*(IIo)
and integrated over the solid angle d03, to obtain

and. is displayed by the dotted curve in Fig. 2. This
potential was used to represent the adiabatic polariza-
tion interaction in two of the calculations reported in
Sec. V, while in a third calculation we used only the
l=1 component of this potential.

The dynamic terms D defined in Eq. (16) are also
subjected to a multipole analysis and, as mentioned
above, only the first two or /=0 and 1, components are
retained. Before discussing these though, we must
consider briefly the method used to solve the scattering
equation which will be discussed in more detail in Sec.
IV. This preview is required to provide proper treat-
ment of the term oooo(ro) in Eq. (16).

The scattering equation (14) is actually sloved for the
reduced radial components of a partial-wave expansion
of the scattering electron wave function &p(ro). For this,
the scattering equation is first reduced to the corre-
sponding radial equation by substituting the expansion

where we have introduced the notation

Dr, &'&(ro) =—
8' l(I+1)

F&(ro, ro) — F&(ro', ro)
Br3 r3

and

d2

XN&, (ro)dro —bi, o(Fo(ro)) (Fo(ro)), (32)

D.&"(r )= —2
8

F&(r2 ro) Fl(ro ro)gi (r2)dr2
lgf 3

for the multipole components of the respective terms.
The first term Dr, &'&, defined in Eq. (32), gives the

components of the Laplacian part of the dynamic terms;
that is, it corresponds to the

&t*(ro, ro) Vo'&t(ro, ro) dro

part of Eq. (16). This term acts as an additional dis-
tortion interaction potential to be added to the polariza-
tion potential, Eq. (29).

The second term D, o&(ro), defined in Eq (33), gives.
the coe%cient of the gradient operator in the equation
for the reduced radial components of the scattering
electron wave function. This term can be interpreted
pictorially as a correction to the adiabatic theory to
account for the fact that the atomic electron distribu-
tion cannot instantaneously follow the motion of the
scattering electron if this possesses a finite velocity.

D(ro)li(r, ) = —P Di, "'(ro)
l'=0

+D,&'&(ro) Q&(ro), (31)
dr3-
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The 1=0 components of Eqs. (32) and (33) were

obtained by numerical integration using the approxi-
mate perturbed orbitals discussed above and the same
constant zo', defined by Eq. (27) for the polarization
potential.

The l= 1 components of Eqs. (32) and (33) were ob-

tained in more approximate form. Since the numerical

polarization potential agrees quite well with Bethe's
analytic expression, we have omitted the numerical

integration procedure here and used the hydrogenic
form of P&00 to determine analytic forms for D, &'&

and DJ."'. These are given by

Dr&'&(r3) = —(1/x'){43/2+Ei( —2x){ 43x —4x'+3x' —2x'+3x —6+e *(4x&+2x~—4x5—2x'+8xa+18xn+24x

+12)j+e '*{19/2 —Sx—39x'—45x' —(69/2)x' —(47/2)x' —(13/3)x' ——,x'j—e 4*{31+100x+154x'
+157x'+(237/2)x'+72x'+37x'+12x'+12(x+1)'(1+2x+ —',x'+2x'+x'){ y ——,

' Ei(2x)+1n2x]}}, (34)

and

D &'&(rs) = (1/z x~) {43/2+Ei( 2x)—L4x' 2x'—2x —+6x 6+—4e z*(x'—2x —x'+3x +6x+3)j+e 2*L19/2 —Sx
—49x~—53x —29x'—(16/3)x' —zzx j—e *{31+100x+144x +129xz+82x'+40x~

+12x'+12(x+1)'{(x+I)'—xj{y ——,
' Ei(2x)+ln2xj} }, (35)

where x= zrz, y is Euler's constant, and Ei(2x) is the positive exponential integral. "

The constant z used in Eqs. (34) and (35) was chosen
as the value which gives the proper polarizability for
the corresponding analytical (Bethe's) form of V„&'&.

This was shown in our previous paper' to be given by

potential V~ defined in Eq. (29), and the l=0 and 1
forms of Eq. (32). Specifically

Dn&r&(rz)=2L P V„&'&(r8)+ P Dl. ~'
(r&&)7 (39)

z= (9/o)'" (36)

which, for +=1.395ao', gives s= j..5937387.
Speciic forms for the dynamic terms are shown in

Fig. 2 as summed together with the corresponding
polarization potentials. The dashed curve marked D, '~)

corresponds to twice the sum of the 1=0 and 1 forms of
Fq. (33) L2(D, &'&+D„&'&)j which constitutes the total
coefFicient of the velocity-dependent interaction con-
sistent with second-order perturbation theory. The
dashed curve marked D, &~) corresponds to 2D. ('&

which is required in the calculation using only the t= 1,
or dipole, components of the distortion terms. The long-
raage behavior of both D„&~& and D, ("'}are dictated by
the form of D, &" since D,"' vanishes exponentially.
Observation of Eq (35) show.s that

D, &r&(rs) —+ D,&+(ra) —+ v/rs~, as rq -+0&&, (37)

and by observation of Eqs. (26'), (34), and (38) we
Gnd that asymptotically,

V»& &(rs) ~ —n/rz' —(q+&&)/r3', as rz~~, (40)

with n=1.395co, q'=2. 3265ao', and @=2.624ao .
The solid curve marked V~("~ in Fig. 2 represents the

sum of the dipole components of the potential part of
the distortion terms { 2V~&'&(r3)+2Dr, &'&(ra)j.This term
is used in conjunction with D, (") to examine the eGects
of using only the dipole components of the distortion
terms and has the asymptotic form as given by Eq. (40)
with q =0. The results of using these various approxima-
tions for the distortion interaction are considered in
Sec. V following a discussion in the next section of the
methods used to solve the scattering equation.

&&
=43/z'= 2.624a, '. (38)

IV. SOLUTION OF THE SCATTEMNG
EQUATION

The total potential part of the distortion terms is
shown in Fig. 2 by the solid curve marked VDt' '. This
curve represents twice the sum of the total polarization

The radial form of the scattering equation obtained
by substituting Eq. (30) into Eq. (14) and integrating
out the angular dependence becomes

f(1+1) 4 2 Oc&

+2D„(R) + ——+2V,(R)+2V„(R)+2Dr(R)—k2 u~(R) = z'f'&&0(e kz) ,uq, (—r)N&(r)dr
dR' dE E' E 2t+1' '

+R &'+'& N&, (r)u&(r)r'dr+R' N&, (r)N&(r)e &'+'&dr uq, (R), (41)
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where, for convenience, we have introduced the new notation E.=re and r=r2. This equation was solved by using
the noniterative method independently introduced by Omidvar" and Marriott. "

The noniterative method as applied to Eq. (41) consists of first defining the operator

d I(3+1) 4
8(R)f(R)= — +2D„(R) + — +2—V,(R)+2V„(R)+2DI.(R) k' —f(R)

dE2 dE E~

2
g—(~+i)

2l+1

R R

uq, (r)f(r)r'dr R' —ur, (r)f(r)r o+'&dr ur, (R). (42)
0 0

We then solve the two uncoupled equations

6(R)u&'o& (R) =0,
8(R)u&&'&(R) = LR'/(2l+1))ur, (R), (43)

were extracted from these by matching them with the
spherical Bessel functions in the form

u, (R) ~RPCj&(kR) Dn, (kR)—). (47)

and join these to obtain the complete solution of Eq.
(41). The joining relation is

where

with

u&(R) = u& &'&(R)+C&u& &"(R),

21&o"'+»,o(o—k')ln"'
C)——

1—2I&o&'&+8&,o(&—k')1&xo&

I&„&*'&= ur, (r)u&&'&(r)r" '-'dr

(44)

(45)

(46)

"K. Omidvar, New York University Research Report No.
CS-37 (unpublished) quoted in the paper by Temkin and Lamkin
(Ref. 6).

'~ R. Marriott, Proc. Phys, Soc. (London) 72, 121 (1958)."We actually extended the starter value power series out to the
point where the Qrst lnR term appeared so as to get very accurate
starting values. The lnR terms arise in our equation whenever
the l=o or 2 components of the polarization potential and/or
any of the dynamic terms are included.

The integro-differential equations (43) were solved
on a digital computer using a new method introduced
by Sloan26 to iterate the differential equation and
Simpson's rule for the integrals. Sloan's method re-
quires four starting values, two of the function and the
two corresponding second derivatives. The function
starting values were obtained by expanding the u&t'&(R)
near the origin in a power series in E, substituting these
into Eqs. (43), and solving for the first few coefficients. oo

The second-derivative starting values were computed
from the expression obtained by taking the second
derivative of the function starting-value expansion.

Having a set of starting values, the integro-di6eren-
tial equations (43) were iterated from the origin out to
R=25ao. LThe integral parts of these equations were
stopped at E= 22ap since the integrands become
vanishingly small by this point due to the exponential
decay of the atomic orbital q,u(r).) The resulting func-
tions u&&o&(R) and u&o&(R) were then joined by relations
(44), (45), and (46), to form the partial-wave com-
ponents of the scattering-electron wave function. Only
the 6rst three, or /=0, 1, and 2, partial-wave com-
ponents were determined and approximate phase shifts

The scattering phase shifts were then found from the
relation

»&(R) = tan-'(D/C), (48)

where»&(R) indicates the phase shift induced by the
interaction between the origin and the point R.

By a similar procedure, we determined a scattering
length by iteration of the l=0 component equations
with k=O. The corresponding scattering length was
then determined from the composite solution by match-
ing this to the form

uo(R) & G/1 R/a(R)), — (49)

where G is some constant and a(R) is the scattering
length appropriate to the interaction between the origin
and the point R.

The actual phase shift and scattering length re-
quired to calculate the cross section are»&=»&(oo) and
a=a(oo). These generally differ from»&(R) and a(R)
because of the long-range nature of the polarization
potential and velocity-dependent interaction which are
truncated when the iteration process is terminated at
some inite value of E.

To correct for this truncation, we have modi6ed the
formalism developed by Levy and Keller'4 for pure
potential scattering to include the velocity-dependent
interaction. This modi6cation leads to the correction
formula"

tanq, = tang&(R) —k ()rD, (r)+r'V(r))

&& Lj&(kr)—tanri&(r)n&(kr))

+r'D„(r) Lj&'(kr) —tan»&(r)n&'(kr))}

X Lj&(kr) —tan»&(r)n&(kr))dr (50)

for the phase shift, where primes indicate differentiation
with respect to r and D,(r) and V(r) are (for R=25ao)
the asymptotic forms (37) and (40), respectively, for
the velocity-dependent interaction and polarization
potential. In using Eq. (50) to correct the iterated

"B.R. Levy and J.B.Keller, J.Math. Phys. 4, 542 (2963}.
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phase shifts, we have also made the 6rst-order approxi-
mation of replacing g&(r) inside the integral by the
constant g~(R). This approximation is reasonably valid
here since for E as large as 25ap the difference between

g~(R) and g~ is small.
The iterated scattering length o(R) is also corrected

by this technique. The appropriate correction formula
is obtained by dividing both sides of Eq. (50) Lwith
l=0j by k and then taking the limit as 0 ~0. This
limit yields the formula

a = a(R) n[1/R— a(R)/—R'+ a'(R)/3R' j
+vt a(R)/4R4 —a'(R)/5R'j

qadi/3R—' u(R)/2—R4+a'(R)/SR' j (51)

for the scattering length, where o, and q are the dipole
and quadrupole polarizabilities, respectively, of helium
and v is the velocity-dependent interaction coef5cient
dered in Eq. (38). The 6rst terms in Eq. (51) Li.e.,
those multiplied by nj were originally obtained by
Temkin35 through similar considerations but using
only the 1=1 component of the polarization potential.

We have used the formulas (50) and (51) to correct
the iterated phase shifts and scattering lengths and
these are presented in Sec. V.

The mesh sizes used in these iterations were chosen as
follows. The various distortion interaction terms which
required evaluation by numerical integration were
processed using Simpson's rule and a mesh size of 0.01ap.
Thus, since Simpson's rule only gives values of the
integral for alternate mesh points, the differential equa-
tions could be iterated for any multiple of 0.02ap."

Preliminary solutions of Eqs. (43) were processed by
a binary-coded-decimal machine (IBM 7074) using
single-precision arithmetic. Two test calculations using
the constant mesh sizes of 0.04ap and 0.08ap were con-
ducted and comparison of the resulting phase shifts
showed only negligible differences. " Following this, a
subsidiary set of calculations were processed on a
straight binary machine (IBM 7094), also in single
precision, and with a mesh size of 0.04ap. Large di6er-
ences were then observed between the low-energy phase
shifts and scattering lengths obtained from the two
machines. (These differences appeared to arise from
conversion errors in the binary machine and round-o8
errors in both machines. )

A second set of test calculations were then processed
on another binary machine (IBM 7040) using double-
precision arithmetic. For these tests, the equations were
iterated at several test energies for each of the mesh
sizes 0.02, 0.04, 0.06, 0.08, and 0.1ap. Comparison of
the resulting phase shifts and scattering lengths showed
that accurate solutions were obtained with the mesh
sizes 0.06up for energies corresponding to the wave-

"A. Temkin, Phys. Rev. Letters 6, 354 (1961)."The use of Simpson's rule for the integral terms in Eqs. (43)
necessitated the interlacing of two simul. taneous integrals for
alternate mesh points.

vector region 0~&k~&0.5ap ' and 0.04up for 0.5(k
~&2.0ap '. All new calculations reported in this paper
were processed with double precision arithmetic (on
the IBM 7040) using the above mesh sizes. '"

V. RESULTS AND DISCUSSIOH

Electron-helium phase shifts and scattering lengths
have been calculated using three diGerent approxima-
tions for the distortion interaction terms: (1) an
adiabatic-exchange calculation using the total polariza-
tion potential of Eq. (29) (dotted curve in Fig. 2);
(2) the dynamic-exchange calculation using the total
potential terms and velocity-dependent interaction
coefficient (Vn' ' and D. ' ' curves in Fig. 2); (3) an
additional dynamic-exchange calculation using only
the /=1 (or dipole) components of all the distortion
terms LVn'+ and D,&+ curves in Fig. 2j. The phase
shifts from these calculations are listed in Table l and
also plotted in Fig. 3 in conjunction with the static-
exchange calculations of Morse and Allis" (where all
distortion effects were neglected) and the adiabatic-
exchange calculations of our previous paper. ' The
corresponding scattering lengths are listed in Table II
in comparison with other calculations and experimen-
tally determined values. We shall 6rst discuss the
scattering lengths.

Bm/4
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FIG. 3. Comparison of calculated electron-helium scattering
phase shifts. Solid curves indicate present calculations.

"Comparison of the double-precision calculations with the
earlier binary-coded-decimal single-precision calculations showed
only negligible differences in the phase shifts for k&0.25a0
Moreover, the only place where the differences seriously affected
the calcul. ated scattering cross sections where in the scattering
lengths at k =0. Thus, the scattering lengths quoted in Ref. 18 are
in error and should be replaced by the results quoted in this paper
{Table I).
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TABLE I. Electron-helium partial-wave phase shifts in radians.

Energy
(eV)

Adiabatic exchange
(Total pol. pot. )

50 $1 re

Dynamic exchange
(&=

g0

(All components)
'90 Ql 'll2

1 components only)
'g 1 n2

0.01
0.05
0.10
0.1917
0.25
0.2/12
0.3835
0.4287
0.50
0.6063
0.75
0.8575
1.00
1.25
1.50
1.75
2.00

0.00136
0.034
0.136
0.50
0.85
1.00
2.00
2.50
3.4
5.00
/. 65

10.00
13.6
21.25
30.60
41.65
54.40

3.1305
3.0839
3.0222
2.9039
2.8274
2.7995
2.6538
2.5965
2.5083
2.3830
2.2266
2.1200
1.9923
1.8028
1.6503
1.5264
1.4243

0.000029
0.00078
0.0034
0.0139
0.0251
0.0300
0.0647
0.0823
0.1143
0.1682
0.2463
0.3021
0.3667
0.4476
0.4935
0.5175
0.5296

0.000005
0.00010
0.00039
0.0015
0.0026
0.0032
0.0067
0.0085
0.0119
0.0184
0.0296
0.0398
0.0551
0.0849
0.1149
0.1424
0.1663

3.1296
3.0794
3.0135
2.8878
2.8068
2.7774
2.6232
2.5624
2.4687
2.3345
2.1648
2.0471
1.9029
1.6799
1.4888
1.3226
1.1763

0.000029
0.00074
0.0030
Q.0117
0.0203
0.0241
0.0493
0.0619
0.0836
0.1198
0.1702
0.2058
0.2460
0.2947
03196
0.3291
0.3300

0.000005
0.00010
0.00040
0.0014
0.0026
0.0030
0.0061
0.0076
0.0104
0.0154
0.0238
0.0310
0.0417
0.0613
0.0800
0.0962
0.1092

3.1296
3.0797
3.0141
2.8893
2.8090
2.7799
2.6278
2.5682
2.4765
2.3460
2.1828
2.0712
1.9369
1.7362
1.5732
1.4399
1.3293

0.000029
0.00073
0.0029
0.0111
0.0190
0.0225
0.0456
0.0574
0.0772
0.1111
0.1590
0.1939
0.2339
0.2849
0.3125
0.3234
0.3235

0.000004
0.00010
0.00038
O.Q014
0.0025
0.0029
0.0058
0.0071
0.0097
0.0141
0.0213
0.0276
0.0369
0.0547
0.0725
0.0890
0.1033

TABLE II. Comparison of calculated and experimental
electron-helium scattering lengths (in Bohr radii).

Source

Static exchange
Moiseiwitsch

Adiabatic exchange
analytic l = 1 polarization potential'
total (1=0, 1, and 2) polarization potential
Bauer and Browne
Williamson and McDowell
Kestner, Jortner, Cohen, and Rice

Dynamic exchange
all components of the distortion terms
l =1 components only

Experimental
Ramsauer and Kollathb
Golden and Bandel
Frost and Phelps
Crompton and Jory

Scattering length

1.442

1.132
1.097
1.21
1.146
1.193

1.186
1.181

1~ 19
1.15
1.18
1.18

a Extrapolated from the very low-energy phase shifts in Ref. i.
b Extrapolated from the data of Ref. 40 by O' Malley, Ref. S.

' B.I . Moiseiwitsch, Proc. Phys. Soc. (London) 77, 721 (1961).

The static-exchange value in Table II, a=1.442ap,
was computed by Moiseiwitsch ' by numerical integra-
tion of the appropriate HF scattering equation without
any distortion-interaction terms. This value thus
closely represents the scattering length for the static
atom with exchange and provides a basis for comparison
with calculations including some distortion effects.

The adiabatic-exchange entries in Table II represent
calculations wherein the distortion interaction was
represented by some form of an adiabatic polarization
potential. The 6rst value, a= 1.132ap from our previous
paper, the value a=1.21ap, by Bauer and Browne, ~

and the value a= 1.146ap by Williamson and McDowell'
were computed by approximating the distortion inter-
action with a dipole polarization potential. The resulting
scattering lengths differ somewhat and this is due to
differences in the scattering equations and/or forms of

the polarization potentials used in these calcula-
tions. "The remaining two adiabatic-exchange values,
a=1.097ap of the present work and a=1.193ap by
Kestner, Jortner, Cohen, and Rice" were computed by
approximating the distortion interaction with the sum
of the first three (1=0, 1, and 2) multipole components
of the total second-order adiabatic polarization potential.

The calculations of Kestner, Jortner, Cohen, and
Rice were based upon a pseudopotential formalism in
which the exchange interaction is represented by a
scalar potential. They also calculated a scattering
length in the static-exchange approximation (i.e.,
neglecting the polarization potential) and obtained a
value of a= 1.502ap. Thus, inclusion of the total
polarization potential in their formalism resulted in a
decrease of 21% in the scattering length. Using Moisei-
witsch's value of 1.442ap, the inclusion of the total
polarization potential in our formalism resulted in a
decrease of 24% in the scattering length. The behavior
of the scattering length upon including an adiabatic
polarization potential is similar in both calculations
even though the 6nal results differ by almost 10%.
The agreement between their scattering length and ex-
periment is probably accidental, resulting from the
fact that their representation of the exchange interaction
gives too large a scattering length.

The dynamic-exchange values of the scattering
lengths in Table II are nearly identical. This indicates

"Bauer and Browne solved a simplified form of HF scattering
equation wherein exchange and close-range correlation were ap-
proximated by interaction potentials drawn from the quantum
statistics of free electron gas. The distortion interaction was
then included by replacing the close-range correlation potential
for E&4.745e0 by the asymptotic form, —a/8' of the dipole
polarization potential. Williamson and McDowell calculated the
scattering in a one channel approximation using Bethe's form of
the dipole polarization potential but representing the atomic elec-
trons by a nonseparable variational wave function. Their calcula-
tion thus includes some close-range radial correlation which is
completely neglected in our HF approximation.
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Fro. 4. Comparison of calculated electron-helium total scatter-
ing cross sections with experimental data (Ramsauer and Kollath,
Golden and Bandel). Solid curves indicate present calculations.

' C. Ramsauer and R. Kollath, Ann. Physik 3, 536 (1929); 12,
529 (1932)."D. E. Golden and H. W. Bandel, Phys. Rev. 138, A14 (1965).

4' L. S. Frost and A. V. Phelps, Phys. Rev. 136, A1538 (1964}."R.W. Crompton and R. L. Jory, in IVth International Con-
ference on the Physics of E/ectronic end Atomk Colhsions (Science
Bookcraf ters, Hastings-on-Hudson New York, 1965), p. 118—125.

that the 1=0 component of the dynamic terms almost
completely cancel the effects of the l=0 component of
the polarization potential. Furthermore, these values of
the scattering length are in a very good agreement with
most of the experimental values listed at the end of
Table II.

The Ramsauer and Kollath' scattering length,
a= 1,19ap, was extrapolated from their very low-energy
experimental data by O' Malley' using the modified
effective range theory of Spruch, O' Malley, and
Rosenberg. 4 The Golden and Bandel" scattering length,
a=1.15ap, was also extrapolated with the use of the
rnodified effective range theory from their very low

energy measurements. Both of these experimental
data were obtained by direct measurements of the
total scattering cross section using electron-beam
techniques (see Fig. 4). The Frost and Phelps" and
Crompton and Jory" values (a=1.18ao in both cases)
on the other hand, were obtained from the diffusion
cross section for helium determined by analysis of
transport coe%cients measured in swarm experiments
(see Fig. 5). Greater accuracy can be obtained in swarm
experiments as compared to electron-beam experiments
at very low energies, and thus this value of a=1.18ap
is the best estimate of the electron-helium scattering
length presently available. Our dynamic-exchange cal-
culations are in remarkably good agreement with
this value.

The scattering phase shifts displayed in Fig. 3 show a
comparison of the calculations using only the l=1 or
dipole components of the distortion terms —the curves
labeled with a (d)—and the calculations using the total
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FIG. 5. Comparison of calculated electron-helium diffusion
cross sections with experimental data (Frost and Phelps, Cromp-
ton and Jory).

distortion terms discussed in Sec. III above —the curves
labeled with a (T)—along with the static-exchange
phase shifts of Morse and Allis. "These curves show the
expected differences as the various distortion terms
were included in the calculations. That is, the effects
of including or neglecting the 1=0 components of the
distortion terms is more pronounced in gp than in q~

and g2. This results since the centrifugal barrier pre-
vents electrons with /)0 from penetrating too deeply
into the atom, which is the region of greatest significance
for the E=O components of the distortion terms. The
effects of the repulsive velocity-dependent interaction
is also seen to be most pronounced in gp and so much
so in fact that, for k)1.5ap ', the dynamic-exchange
calculations using the total distortion terms give values
for go which are lower than the (no-distortion) static-
exchange calculations of Morse and Allis. The effect
of the velocity-dependent interaction on g&, on the other
hand, results only in the approximate cancellation of
the effects of the (attractive) adiabatic polarization
potential for k&1.5ap '.

The behavior of the dynamic-exchange 1=0 phase
shift computed using the total distortion terms is in
disagreement with an informal theorem44 on the effects
that the distortion interaction has upon the scattering
phase shifts. 4' This theorem states that the e6ect of
distortion of the target is a purely attractive interaction
and hence raises the phase shifts above those of the
static-exchange approximation. It further states that
if the distortion is divided up, either by putting in ex-
cited states one at a time as is done in the close coupling
approximation, or by making a multipole decomposi-
tion of the distortion as we are doing here, then the
effect of any component is purely attractive and must
raise the phase shift.

44 Y. Hahn, T. F. O' Malley, and L. S ruch, Phys. Rev. 128,
932 (1962); I. C. Percival, ibid. 119, 159 1960).

"We are indebted to Dr. T. F. O' Malley for pointing out this
discrepancy and informing us of the origin of the theorem.
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This disagreement appears to result from neglect of
the distortion eGects in the exchange interaction. This
hypothesis is supported by the results of some inde-

pendent calculations of electron-helium scattering by
Pu and Chang. "Their work is based upon an entirely
different formalism which does not involve the adiabatic
approximation. They can, however, separately deter-
mine the direct and exchange distortion efI'ects and have
found that, for the 1=0 phase shift, these have similar
magnitudes but opposite signs for higher values of k
and hence tend to cancel. 4'

Some very preliminary results from solution of the
polarized-orbital form of scattering equation mentioned
at the end of Sec. II above also support this view by
giving a value for go at k=2 which is almost exactly
equal to the Morse and Allis static-exchange value.
Further work is presently in progress to obtain the
polarized-orbital phase shifts and these will be reported
elsewhere.

The scattering phase shifts of Table I were used in
the well-known partial-wave expressions to compute the
total scattering and diffusion cross sections for helium.
The results of these calculations are displayed in Figs. 4
and 5 in comparison with the calculations of our
previous paper and experimental data. The labeling,
(d) and (T), in these is the same as in Fig. 3.

The total cross sections shown in Fig. 4 show good
agreement between the adiabatic-exchange calculations
and the Golden and Bandel" data at low energies
(&3 eV) but poor agreement with these at higher
energies. The adiabatic-exchange calculation of our pre-
vious paper (d) though, show fairly good agreement with
the Ramsauer and Kollath4o data in the high-energy
region.

The dynamic-exchange calculations displayed in
Fig. 4 show relatively negligible differences between the
calculations using the total distortion terms (T) and
those using only the l=1 components (d) of these
terms. Moreover, both of these calculations show very
good agreement with the Ramsauer-Kollath data for
all energies considered and a better agreement for
higher energies with the Golden and Bandel data than
was obtained with the adiabatic-exchange calculations.

The diffusion cross sections in Fig. 5 show only
moderately good agreement between the adiabatic-

4g R. T. Pu and E. S. Chang, Bull. Am. Phys. Soc. 11, 40
(1966).

'7 R. T. Pu and E. S. Chang (private communication).

exchange calculations and experiment. The dynamic-
exchange calculations, on the other hand, showvery
good agreement at low energies with both the Frost
and Phelps" and Crompton and Jory4' data. These
data, though, differ quite significantly above 1 eV and
the dynamic-exchange calculations follow quite closely
the behavior of the Crompton and Jory data in this
region.

The comparison of our calculations with each other
and experimental data shows two important results.
Better over-all agreement between the dynamic-
exchange calculations and experiment is obtained than
with the adiabatic-exchange calculations. Second, the
differences between the dynamic-exchange cross sec-
tions calculated with two different approximations
(/=1 components only or total components) to the
distortion terms are generally small. These results show
conclusively that the pure adiabatic approximation is
only of marginal validity even at very low energies and
thus some form of the velocity-dependent interaction
must be included in the formalism to give adequate
treatment of the scattering. Moreover, the fact that our
dynamic-exchange calculations including the total dis-
tortion terms appear to produce incorrect l=0 phase
shifts at high energies indicates that best results for
this method are obtained when only the /=1 com-
ponents of the distortion terms are included. This
feature is also evident in our adiabatic-exchange cal-
calculations when compared with experiment and
further agrees with the results of an adiabatic
analysis of positron-hydrogen scattering by Drach-
man. "This feature is also a useful one since the l=0
components of the distortion terms are generally quite
complicated and difFicult to evaluate.
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