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Bound State Due to the s-d Exchange Interaction
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The possibility is discussed that the s-d exchange interaction gives rise to a bound state between the
conduction electrons and a localized spin, and it is shown that a singlet bound state is realized for the case
of antiferromagnetic exchange interaction. It is therefore concluded that the logarithmic divergence which

appears in the perturbation expansion is connected with the appearance of this bound state.

1. INTRODUCTION

INCE Kondo' has found the logarithmic singularity
in the scattering of a conduction electron by an

impurity spin in third-order perturbation theory, many
investigations have been made in order to clarify the
origin of this logarithmic singularity. '—' Nagaoka' has
pointed out that the perturbational treatment breaks
down below a critical temperature and that a quasi-
bound-state would appear near the Fermi surface if the
interaction were antiferromagnetic. On the other hand,
Yosida and Okiji' have calculated the magnitude of the
localized spin and the spin polarization of the conduc-
tion electrons by the perturbational approach and have
shown that for the case of antiferromagnetic interaction
the perturbational treatment leads to unreasonable
results for the magnitude of the localized spin below a
certain critical temperature, namely that the magnitude
of the localized spin decreases and becomes negative
through zero as temperature is lowered. Basing them-
selves on this result, they have confirmed Nagaoka's
assertion that the per turbational treatment breaks
down and furthermore have inferred that the localized
moment would disappear below the critical tempera-
ture. The purpose of this paper is to show that a bound
state does really appear due to the s-d exchange
interaction.

2. BOUND STATE DUE TO THE TRUNCATED
HAMILTONIAN

The Hamiltonian for the system consisting of the
conduction electrons and a localized spin is expressed as

J
H=P a~a~.~ak.— g((a~ trajet —a .i&a ~)S,

ka 2g kk'

+a, t~a, ~S +ak g&aagS+}, (I)

vector k and spin 0., ek is its band energy measured from
the Fermi energy, and 5, and 5+ are the components of
the localized spin. In this Hamiltonian, we assume that
electrons below the Fermi level are unaffected by the
s-d exchange interaction, namely, that the summation
in the second term of Eq. (I) is taken over the states
higher than the Fermi level. Such a simplification for
the Hamiltonian has been used with a great success by
Cooper7 for explaining the formation of Cooper pairs
in the theory of superconductivity and it may also be
justified for the present case in which a dynamical
character of the localized spin is taken into considera-
tion. The same simplification for the present Hamil-
tonian has been used by Rondo' for another purpose.
Then, we can consider the eigenstates of an electron
with wave vector k larger than k p.

The eigenfunction of an electron for the truncated
Hamiltonian can be expressed by a linear combination
of plane waves as

(r, t&a, t&+I'-„~~a,~t)4,P}, (2)

where P, denotes the wave function for the Fermi sea
and a and P denote, respectively, the eigenfunctions for
up and down spin states for the localized spin, whose

magnitude is assumed to be —,'.
Inserting the wave function (2) in

we obtain the following four equations which determine
I'k and the energy eigenvalue:

I'qr (e~—E)—(J/4')Q I'
g =0, (4a)

I'I i (~~ ~)+(J/4&)Q I'a i—
where ak t and ak, are the usual creation and annihila-
tion operators of the conduction electron with wave
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From these four equations, we obtain the two secular
equations corresponding to triplet and singlet states as

J
1——Q =0

4%k&k —E

3J
1+ Z

4g krak —E

It can easily be shown that for J)0, Eq. (5) gives a
triplet bound state whose energy is lower than the
Fermi level by

E= —D/Lexp(4%/p J)—1$ —D exp( —4X/pJ), (7)

and that for J(0, Eq. (6) gives a singlet bound state
whose energy is

E= —D/(exp(4$/3pi Ji)—1j
—D exp( —4$/3pi J~), (8)

where p and D express the state density and the band-
width. The eigenfunctions of these bound states can be
obtained as

ft ——const P a~t tank. ,
k&ky gk —g

1
P, =const g (al,gta a„ttP)f„, ,

—
k&kg qk —P

and their spatial extension is given by coskrr/rt for large

distance from the impurity atom. The bound state will

disappear at a temperature of an order of kT, ~E~.
As one can easily see, there are two difhculties in

these bound states. One difhculty is that the truncation
of the Hamiltonian gives rise to bound states for both
ferro- and antiferromagnetic couplings and even for an
attractive impurity potential. Since there has been
found no difhculty in the perturbation expansion for
the ferromagnetic interaction, "' the bound state found
for the ferromagnetic interaction may be 6ctitious. On
the other hand, the bound state found for the anti-
ferromagnetic interaction is expected to be real. How-
ever, even for this case the other dHBculty occurs that
the numerical factor of the exponent in the energy
expression (8) is —', instead of unity, contrary to the
inference drawn from the perturbation calculation.

These two diKculties are obviously originated from
the truncated Hamiltonian which takes into account
only the electron-electron or hole-hole interactions but
neglects the electron-hole interactions. Thus, the second
step which we should take is to investigate how the
bound states will be affected by the existence of the
electron-hole interactions.

3. EFFECT OF THE ELECTRON-HOLE
INTERACTIONS

In order to take into account the electron-hole inter-
actions in the results obtained in the preceding section,
we proceed along a similar principle to the perturbation
method. First, we expand the ground-state wave func-
tion in the following series:

4'= t E(I'k aait~+I'a'an't'P}+ 2 (I'kk ~"'al ita~ i taa-in+r„. ,"»apt tag t ta„"tp
k kk'k"

+I'gg I- tait tal, .ttaj;tn+I'I g I "»apttat. ita~-~P}+ ]P„, (11)

where 1» k" are regarded Bs quantities of higher order in J, compared with Fk. Then, we insert this wave function
in the Schrodinger equation (3) in which the full Hamiltonian is used, and solve I'&, I'» &, etc. by the successive
approximation.

In conformity to this prescription, the Schrodinger equation can be written down as

Q(61, E){Ik a $ ex+I a t P}+ Q (6g+6 —eg —E)(r„„.„~ &a t taq gta paar»', -P a»ta& tta. -tP
k kk'k"

J J+isa&"' ass aa t at "t&+laa a" ajt aa a aa"sP}+- 2 I g ass &+ 2 I y 2 At P
4E I a 4X fJ J Jg I'„ Q a~ttP — P I'„~P a~qta — P I'» (a~qtat, ttal, ta —a&qtal, qta~"qa)

2X f k 2X ~ k 4Ã k

J+ Z, a (an't ai't aa" tP a~t ai s al "sP) E I I aIs—taI ttaa"sP Z I ~Pa—etta~'staa"t&
2X k

J
+ j Q I'~~ p. . ~(adyta —a~ gta)+ Q I'i, g.g"»(aj, ttP at, ttP)}— .

4+ kk'k&' kk'k"

+ P (I'~~ q" taq ttP+r„.,-»a„.,ta}— — g (r„.,-.ta, ~ta+r...-»a ttP}+ . $,=0. (12)2g aa a- ~aa a-
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From this expression we obtain the relations which hold among F k and I'kk k ~ as follows:

r.-(..—E)+(J/4N)P r„-—(J/2N)g r„s+(S/4N)P(r, „„.~ —r„,„-~)

+(J/2N)E I' .~~ (J/4N)Q F ~ t=0, (13)

r„s(~„—E)+ (J/4N)p r„~—(J/2N)g r -+ (J/4N)g (r„„st—r„,„st)

+ (J/2N)Q F»g„ t —(J/4N)Q Fg»„» =0, (14)

(r„„,„„-~—r, ,„„-~)(„+,„,—,„„—E)+(z/4N)(r, -—r, .-) =o, (is)

(F ~t —F st) (6 +»—6 —' E)+ (J/4N)(F ~—I ) =0 (i6)

~ t(e +e —eg —E)—(J/4N)I', +(J/2N)r„. &=0, (17)

r s a"» ( + —a"—E)—(J/4N)r, ~+ (S/2N)r, "=0. (ig)

Using Eqs. (15)—(18), we can eliminate F~~.q ~ from Eqs. (13) and (14) as

J 2 j. J
Fp e» E 6—— +—gr„-

„+
J J 2 ( J 2 r„-

Zr.~+4 Z +I Z =o, (19)
&" &p+Ek &v E 44g & Ey+6k ev

J 2 1 J
r.& „—E—6 + Zr»'

4E I e„+ok—e„—E 4$ ~

J J 2 a J 2

Zr..+4 —Z + —Z
2X P 4X &" 6y+6k 6v E 4Ã &" Np+Ek tv

=o. (2o)

If we put, here, F& ———F&j' for the singlet state and F& ——F&~ for the triplet state, Eqs. (19) and (20) become,
respectively,

J 2 1 J J 2 Fp
r ~„—E 6 g +3 Pr„—3 Q =o,

4N»v 6»+6„—6„—E 4N» 4N»v f +»E„t„E.— —
k
~

v

J 2 1 J J 2

r, „—E 6 p — pr+s p " =o.
4X P& 6p+Ek cp E- 4E & 4X &" 6y+6k Eju ~ E~ Ek

(21)

(22)

In these two equations which determine the energy eigenvalues, the shift of the kinetic energy 6k 56k can be
calculated as

Jp 2 D

Ask= —6 de
D If'+ 6k Cy

Jp 2

=+6 —(eg —E) ln
4X

&k

~k+D —E
(23)

D—E

eg, +D E-Jp 2
~k —E

+ (»g+2D E)ln——6 (ep —E) ln
ek+2D —E 4g

This is expected to have no essential influence on the energy eigenvalue. Therefore, we neglect this shift in later
calculations.

Now we consider the bound state for the antiferromagnetic interaction, namely, for the singlet state. For this
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case, Eq. (21) can be written in the following form:

J 1
I'»= —3— C.G+ f(»») J,

4X (»» —E)

(25)

J D

f(») = p' I'(»g) ln
4X eg+e+D —E

(26)

By the method of successive approximation the integral equation (26) with respect to f(») can be solved as

Jp )' deg
~

eg+e —E
f(») =G —3

~

ln
4E) p eg —E eg+e+D —E

Jp )' n d»j»g+» —&
ln

4X) p e,-E „+,+D-E
de2 e2+ei —E

ln (27)
e2+ei+D —E

Inserting Eq. (27) into Eq. (24), and summing up with respect to»» we obtain, up to the fifth order in j, the follow-

secular equation:

Jp ~ de
1=—3

4Ã p e—E

ey+ e—E
ln

el+ e+D—E
ln

el —E el+e+ D—E

eg+e —E ' Jp ' de)
+9

4X p

(28)

The integration with respect to e& included in this equation can be carried out as follows:

1(»)=
D ey+e E

ln
ej.+e+D—E

=~ n' (»+D E)" (» —E)"——(»+D)"
(»+ 2D—E)" (»+D E)"—

—-', ln2
e+D—E e+ 2D—E

+~ ln' +- ln'
D—E D—E

e—E e+D—E—-' ln' (29)

1I (») =— ln'
2

(30)—ln'
Thus, it is found that for the antiferromagnetic inter-
action the bound state which has appeared in the start-
ing approximation still survives the effect of the elec-
tron-hole interactions. Here, it should be noted that the
value of 1.22 is nearer to the expected value of unity
than ~3=1.33. The term of x' has no essential effect
because of a small value of xp. The spatial extension
of the bound state in this stage of approximation is not
essentially different from that of the zero approximation.

For the triplet state, the same procedure applied to
Eq. (22) leads to the following secular equation:

With the use of Eq. (30) in Eq. (28), the secular
equation for the singlet state becomes

(31)1—3x—3x'—(18/5) x' = 0,

(32)
4E D—E

LHere ln'x—= (lnx)'. ] Neglecting regular parts in this solution of Eq. (31) is obtained as
expression, we can put the above integral as Jp

xp=0.305, or —ln —= 1.22.
D E D

Since Eqs. (21) and (22) have been obtained by retain-
ing only the first term of I'»»»" in its expansion, Eq. (31)
is correct up to x'. Therefore, we neglect x'. Then, the

1+x—(5/3) x'= 0. (34)

This equation has no solution in the minus side of x.
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Therefore, the solution xo ———1 which has been obtained
in the zero approximation for the ferromagnetic ex-
change interaction disappears in the present approxi-
mation. This seems to be a reasonable result.

4. DISCUSSION AND CONCLUSIONS

We have started, as a zero approximation, with those
states of a free-electron gas in which one electron is
excited above the Fermi sea and have treated the e6ect
of the s-d exchange interaction of the conduction elec-
trons with a localized spin whose magnitude is one-half

by the generalized perturbation method. In the zero-
approximation of this approach, bound states have
appeared for both ferro- and antiferromagnetic ex-
change interactions and further it has been found that
the bound state for the antiferromagnetic interaction
remains with no essential change in its binding energy
in the first approximation, although the bound state
for the ferromagnetic interaction disappears in this
approximation. Whether these results obtained in the
first approximation remain unchanged even when the
approximation is proceeded up to higher order should
be confirmed by the actual calculations. However, it
may be concluded from the present calculations that at
least the singlet bound state will ultimately be realized
for the antiferromagnetic exchange interaction.

In the singlet bound state for the antiferromagnetic
exchange interaction each component of the localized

spin vanishes in its average and the spin polarization
of the conduction electrons also vanishes. Therefore,
it is expected that the magnitude of the localized spin
moment will begin to vanish with the appearance of
the singlet bound state below T&. This result agrees with
the inference drawn out of the perturbation calcula-
tions. ' Thus, it can be said that the breakdown of the
perturbational approach below T, for the antiferro-
magnetic exchange is related to the fact that the con-

servation of the spin moment is broken.
The present calculation can be extended to the case

of localized spins greater than —,'; for example, for 5=1
two electrons are expected to form a singlet bound state
combined with the localized spin for the antiferro-

magnetic interaction. The extension of the present
calculation to this case and also to higher approximation
will be published in another paper.
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The microwave absorption at 9.2 kMc/sec in Glms of gold and copper plated onto bulk tin has been
measured as a function of the temperature in the range 1.4&7&4.2'K. The results are extrapolated to zero
temperature, where they indicate the presence of an energy gap of 0.61&(2~J at the surface of a 190-A 61m
of gold and at the surface of a 500 -A. 61m of copper on tin. The normal bulk resistivity of the gold was esti-
mated from dc measurements as mell as from the microwave data. The theory of the proximity effect, that is,
the influence of adjoining normal and superconducting metals, as given by de Gennes and Werthamer, was
applied to the measurements, and yielded an estimate for N(0) V for gold of 9)(10 3. Assuming that the sign
of N{0)V is positive, this leads to a very low transition temperature.

I. INTRODUCTION

''N recent years several investigators have studied
~ - proximity eGects between superconductors and
normal metals. This interest began after it had been
shown' that supercurrents can be passed through thin

~ Work supported by a contract with the U. S. Ofhce of Naval
Research.

f Based upon a thesis {R.F.) submitted to the Department of
Physics of Stevens Institute of Technology in partial fuldllment
of the requirements for the Ph.D. degree.

f Now at Brooklyn College of the City University of New York,
Brooklyn, New York.' H. Meissner, Phys. Rev. 117, 672 (1960).

films of normal conducting metal sandwiched between
bulk superconductors. Studies of multiple films con-
sisting of a layer of a superconductor and a layer of a
normal metaP 7 showed that the composite samples

' P. H. Smith, S. Shapiro, J. L. Miles, and J. Nicol, Phys. Rev.
Letters 6, 686 (1961).' W. A. Simmons and D. H. Douglass, Jr., Phys. Rev. Letters
9, 153 {1962).' P. Hilsch, Z. Physik 167, 511 (1962).' P. Hilsch and R. Hilsch, Z. Physik 180, 10 (1964).' J. J. Hauser, H. C. Theurer, and N. R. Werthamer, Phys.
Rev. 136, 637 (1964).' J. J. Hauser and H. C. Theurer, Phys. Letters 14, 270 (1965).


