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Irreversible phenomena involving phonons in a slightly anharmonic crystal are investigated using co-
herent states as a basis. This basis retains the advantages of the classical theory, in which phase relations
are clearly exhibited, for a quantum-mechanical system. In the coherent-state basis the equation of motion
for the density matrix has an obvious correspondence with the classical Liouville equation. In particular,
the connection with the action-angle variables of Brout and Prigogine is elucidated. A new, rapid proof of
the Brout-Prigogine equation is given using the method of semi-invariants. This technique exhibits higher-
order corrections in a usable form. The quantum corrections to the classical equation of motion for the
density function are shown to be due to extra terms involving second derivatives in the action-angle variables.
The Peierls master equation is then derived from the Brout-Prigogine equation. The important problem of
elastic scattering of phonons is treated by our method in an appendix.

I. INTRODUCTION

HE main purpose of the present work is to exhibit

the utility of the coherent-state basis! for the
description of irreversible processes. Although similar
techniques may be applied to other systems of inter-
acting bosons, we restrict our attention to the problem
of phonons in a slightly anharmonic crystal. Elastic
scattering by defects is discussed in the Appendix. In
the coherent-state representation, the equation of mo-
tion for the density matrix although fully quantum-
mechanical, has an obvious correspondence with the
classical Liouville equation. The correspondence with
theaction-angle variables used by Brout and Prigogine??
is elucidated. (For a coherent state |a), the parameter
a is related to the action J and the angle ¢ by
a=J"? exp(ip).) The coherent states, which in the
classical limit describe classical harmonic-oscillator
motion,!* have other advantages when compared to the
traditional number states. The phase relations so
interesting in a discussion of irreversibility are at all
times clearly exhibited. Number eigenstates have com-
pletely indeterminate phase.® Moreover, the coherent
states correspond closely to nearly all intuitive thinking
on our subject, based as it is on wave propagation. For
the number states |#), the mean oscillator position
(n|x(t)|n) always vanishes, no matter how large ».
In contrast,* coherent states give a mean (a|x(f) |a) of
cos(wi—¢). Finally, we note that a classical driving force
excites the coherent state of an oscillator.* A careful
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treatment of the coupling of crystals to massive heat
reservoirs should take this into account.

In Sec. IT, the necessary mathematical techniques are
developed. These techniques are applied to the evolu-
tion of the density matrix in an anharmonic solid in
Sec. ITI. We shall see that the general quantum Liouville
equation derived differs from that of Brout and
Prigogine by the addition of terms involving second
derivatives in the action-angle variables. The latter
terms are of order N ! relative to the “classical terms,”
where N is the mean occupation of an oscillator, and
hence establish the classical limit and corrections
thereto. In Sec. IV a short derivation of the Brout-
Prigogine master equation?? is given. Higher order cor-
rections are exhibited in a useful form. In Sec. V, we use
the Brout-Prigogine master equation to derive the
Peierls equation®” for the time rate-of-change of the
mean number of phonons in a given mode of vibration.
Finally, some remarks are made on the derivation of the
Peierls equation.

II. MATHEMATICAL PRELIMINARIES

The reader is referred to Refs. 1 and 4 for a full
discussion of coherent states. Normalizing the creation
and destruction operators for an oscillator, at and a, so
that ata=Nop, Nop having eigenvalues 0, 1, 2, - - -, the
coherent state |a) (a is an arbitrary complex number)
is given by

ala)=ala)
an
\/n!
=exp(aat—a*a)|0),
5R. E. Peierls, Ann. Physik 3, 1055 (1929).

"R. E. Peierls, Quantum Theory of Solids (Oxford University
Press, London, 1955), Chap. 2.
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where |n) denotes the normalized number state. The
coherent states are not orthogonal:

(@|B)=exp(a*B—3|al*—3(B]%),

but they are complete, as indicated by the resolution
of the identity,

(2.2)

1
;/la)(a[d2a=1. (2.3)

The integration in (2.3) is to be taken over the two-
dimensional ¢ plane; d%a=d(Rea)d (Ima).

For notational simplicity, let us first consider a single
oscillator. In the coherent state representation, the
quantum Liouville equation is

dp 1
i 2lay=- / &8
at T

X[e|H|B)B|pla)—(alp|8)B|Hla)].

If the Hamiltonian H is expressed in terms of creation
and annihilation operators, we see that Eq. (2.4) in-
volves, in general, terms of the form [ H is assumed to be
expressible as an ordered polynomial as in Eq. (2.12)
below ]:

(2.4)

1
- / B alB)Blpla),  (25)

™

where m, n are integers. This integral can be worked
out by using the following formulas:

1
@ - / de 01017 (%) = [(a*),
1 9 \"
® - gere ) =(—) fa),

) (2.6)
© - / P19 (8) = f(a)

@ - ] d%eaﬂ*—wl”w*)"fw>=(;;)"f(a).

™

The formulas (a)-(d) can be derived by expanding f
in the integrand in a Taylor series and using the follow-
ing formula!:

1
- / d2Be 1B (B*)"d2B = 5pm (Ui )2, (2.7)

™

To illustrate the application of these formulas, we
shall evaluate the integral

1
/ 0238(a| B)(8] o). 2.8)

™
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The expression (3| p|a) in the integrand involves a factor
(8lal), so we shall factor it out and write

Bl pley={(Bla)p(B*e). (2.9)

The functional dependence of p(8*a) on 8* and a is a
result of the left- and right-handed properties of the
states (3| and |a). Notice that

(@|pla)y=p(a*a). (2.10)

Using these definitions and Eq. (2.6b) to do the
integration, we get:

1
- / 88(a|B)(8] pla)

™

1
=g lal’— /dQBea*&—l5|2ﬂ[eﬂ*ap(6*’a)]

™

i)
=e—|aI2;[e°“°‘p (o*,a)]
o

d
= (a+—)p (a*)a) .
da*

(2.11)

In such calculations, it is essential that o* be considered
independent of o. Note that exp(8*a)p(8*,) is identical
to the function R(8*«) defined by Glauber.!

The latter result can be generalized, and the form
(2.9) clarified, as follows. Consider an operator A
expandable in terms of the ordered series:

A=Y Ana(a)™(a)=A4 (al,a). (2.12)
Then we find
al| A4 (at,
l((ih@(;_)@=z Apn(®)mBr=A(a*8). (2.13)

We shall call the quantity A4 (a*,8) the reduced matrix
element of the operator A. Given sufficiently well-
behaved expansion coefficients A, the function
A (a*,8) is an analytic function of two complex varia-
bles.® It is therefore sufficient to calculate A4 (a*a),
which is a boundary value (8=c) of 4 (¢*,8).? In fact,
Eq. (2.11) can be generalized to the matrix element
(a| 4 (at,a)p|a).

(alA (GT;G)PlOO
1
T / 28| (| B)| 24 (o* 8) p(8*)

™

aB
=¢ 192 Y Apn(o*)™ / —ee*B-181%3n o8 (6% )]
mn ™

6 n
=’y A,,.n(a*>’"(_) [efp (8* @) Jpvmar »
mn da*

8S. Bochner and W. T. Martin, Several Complex Variables
(Princeton University Press, Princeton, New Jersey, 1948).

® An important consequence is therefore the reduction of the
number of descriptive real variables from four («,8) to two («).
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d
@{A(af,a>,,{a>=e—lanA(a*,B_;)[ewa,,(a*,a)]. 2.14)

From Eq. (2.14), we can also obtain the expectation
value of the operator 4 immediately

(4)=Tr(4p)

1 a
= / dzae—lal“A<a*,—:>[e"“’p(a*,a)]. (2.15)
0

™ (¢4

The method of integration used in deriving Eq. (2.11)
and Eq. (2.14) will be used repeatedly when we consider
specific models. It is important to note in Eq. (2.15) that
all averages can be expressed in terms of the diagonal
elements of the density matrix. This is an attractive
feature of this representation. According to Eq. (2.15)
the average of the number operator is

(V)= 1 / dha*(a—l—a%*)p (o*). (2.16)

™

Further simplifications occur when p depends only
on the number operator ata. In this case p(a*@) is a
function of the product o*a. Suppose B(a',a) depends on
ata; as a special case of Eq. (2.12) we write

B=Y b,(ata)". (2.17)

Since B is diagonal in the number basis we use Eq. (2.1)
to obtain

kn(a*ﬁl)k
(a[B[B)=an§ P —3la|?2—3%(8]]
= B1(«*B)(a|B), (2.18)
where
Bi(a*8) =3 baF n(a*B) ,
P S k"z". (2.19)
x k!

Thus, if an operator B is a function of ala, its reduced
matrix element {(a|B|B)/{x|B) is a function of the
product o*8. Trivial examples show that this is not the
case for all operators, e.g. (a'a?)? has reduced matrix
element (a*82)2+2a*3® which is not a function of «*38
alone.

Next we describe the transition to action-angle
variables. The action J is defined to be the mean excita-
tion number of the state |a), and ¢ the corresponding
phase:

1 e
a=J1%%; J=qg*a, ¢=-—ln<—-). (2.20)
2t \a*
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Noting that o* should be considered independent of o
(see derivation of Eq. (2.11) and Eq. (2.14), for
example), we find

9 a 1 9
—= ]1lee~i¢(_._.__~) ,
da oJ 2J d¢

(2.21)

7} i} 1 9
— = ]1/2gi¢(__+__ _> .
da* aJ 2J o9
Integrations over the o plane become, in terms of the
action-angle variables

1 0 27
/d2a=—/ dJ/ do.
2 0 0

To illustrate this transformation, consider the Liouville
equation for a free harmonic oscillator:

(2.22)

9p
"’;t':‘ [HO)p]ELOP ’ (2-23)

where H=wa'a. A short calculation shows that p(8*a)
evolves as

9p(8*a)

7

=Ly (ﬂ*’a)P(ﬂ*)a) ’
(2.24)

ad 9
PR LAY
B*  da

Note that if at =0, p(8*a) is a function of B*, then
p is independent of time. This corresponds to the trivial
remark that [p(V),N] vanishes.

For a=g, Eq. (2.24) reduces to

Lo(a*,0)= iwa— (2.25)

independent of the action. The analogy to the classical
oscillator?? should now be obvious. Generalizing to an
arbitrary number of independent oscillators of fre-
quency wg, we have
0
LQ=Z 'iwk—-—- .
k

(2.26)
Ay

The eigenfunctions of L, play an important role in the
perturbation expansion for the density matrix. These
eigenfunctions are the same as in the classical analysis:

J{r}=(Q2m)~ ¥ exp[—i % vidr],

(2.27)
Lof{v}= (; viwi) f{v},

where the v, vary over all the positive and negative
integers and the sum over % covers all N normal modes.
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The set {»} should never be mistaken for the occupation
numbers; rather it specifies the phase of the oscillator.

The normalization in Eq. (2.27) has been chosen
according to the inner product

(glh)=/g*{¢}h{¢}1k1 dér, (2.28)

so that the eigenfunctions f{n} are normalized as

follows:
(A A D=bm- (2.29)

The Kronecker delta in Eq. (2.29) means that vy=»,'
for all k=1, ---N. We have used round brackets to
denote inner products in the space of the eigenfunctions
(2.27) to avoid confusion with the usual quantum
mechanical inner product, which will be written with
sharp brackets.

To conclude this section, we calculate some averages
of functions of the number operator, for density matrices
which depends only on N (or a*a). In this case p(a*,a)
depends on J alone and Egs. (2.16), (2.21), (2.22) show
that

]
(N)=/d]]p(])+/d]]—f;p(f). (2.30)

Integrating the second term by parts and applying the
normalization condition for p(J), we get

(V)= / dJTp(J)—1

or
W= [wrsm=+1. @
A useful generalization is easily proved
((ah)ra)=(=1)" f p(J)La(J)dJ
T =00, 3

where L, is the Laguerre polynomial.!* Many interesting
relations of this sort hold. For a collection of oscillators
with a density matrix depending only on {V;}

Lo({ew*} {au}) =p({J4})]

where N is the occupation number of the kth mode, one

finds
(Ni)=(—D{LiT))=(Tr))—1
(NN kg)= (= D*(L1(T ) Lr(T 2))) = (T 2T k2))
- (_(Jk;»““ ({(Tre)+1 (2.33)
(NN Niy)= (— 1)L k) - *L1(T w)))
= (=)(Ta=T).

1 Higher Transcendental Functions, edited by A. Erdelyi
(Mlcs(graw-Hill Book Company, Inc., New York, 1953), Vol. II,
p- .
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To give an example, consider an oscillator in thermal
equilibrium, for which

e~ﬂwa1‘a
p=———", (2.34)
Tre—ﬁwaTa
where 8= (kT)!;
<a| e—ﬂwaTala> 3
p(J)= (2.35)
Tre—-ﬂqua
Using Egs. (2.18), (2.19), we find
exp[—J (1—e )]
p()= . (2.36)
(1—ef)t
Then we obtain the expected results
W= [arrpn=——,
1—¢Fe
(2.37)

1
N)y=({I)—1= .

efe—1

III. EVOLUTION OF THE DENSITY MATRIX IN
ANHARMONIC SOLIDS; ACTION-ANGLE
VARIABLES

If we denote the displacement of the atoms from the
mth equilibrium lattice site by u,,, the Hamiltonian is"

H=H¢t+V;
H0=% Z M“m2+% Z Amnijumiunj
- - 3.1)
V3="" 2 Binn P uiunua®,
limn
ijk

where M is the mass of the atom and 7, 7, k£ denotes the
x, ¥, z components. In normal mode coordinates'

1/2
ﬁm=2( ) (ake"k‘m—}-akfe—““m)ek, (32)

r \2M Nw k
where %k denotes the wave vector k and the polarization
index; e; is the polarization vector, and we adopt the
convention e_;= —e;. Hence,

Ho=) wi(artar+3)
k

Vi=— 2 (wwwpwer) 2
kklk//

X (Vigr—prrtprtapar+He), (3.3)

11 Notation is the same as given by P. Carruthers, Rev. Mod.
Phys. 33, 92 (1961).

12 The restriction to crystals having real polarization vectors is
of no concern to the purpose of this paper. Similarly, the optical
modes are never considered explicitly.
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where As remarked in Sec. II, it is sufficient to consider the
Ly 1\ diagonal elements of p in this basis. Off-diagonal ele-
V"""‘”=3X;<2 MN) bukeser ments are found by analytic continuation of o* to 8*.
' (3.4) The right hand side of Eq. (3.5) contains the following
brreprr ='§:'k ex'er e " IZ Bimniikei(ke btk omtk’en) terms:
1] mn

The factor of three in V;yx» comes from cyclic permuta- (i) From Ho:
tion of k, k', k””. We have omitted the terms which )
create and destroy three phonons, since they do not
conserve energy. They can and must be considered when Zq: ""4;; I;I @Bilag"Bollar} [{B:}){(Be} | ] {ai})
higher order terms are considered.
If we consider the quantum Liouville equation be- "
tween states |{ox}), where {ai} denotes a set of Batal{an) | o[ {81} )81} [{ar})] (3.6)
amplitudes  for all the modes, we get which upon integration by the methods outlined in

. dp Sec. IT becomes
i({ar) |_a_tl {ar})

J ]
1 > wi| —ar— J{ak Qkg)s (3.7
=:1;./IkIdzﬁch{ak}lHi{ﬁk})({Bk}[p|{ak}) k ( i aak)<{ Heltes)

— (e} [ p|{B:})UB} | H | {er})]. (3.5) (i) From Vj:

1
-2 (wqwq’wq")_”leqq'_q";V‘/I]:c[d2ﬂk[aq”*ﬁq',3q<{ak}l{ﬁk})({ﬁk}lpl{ak}>

q9’q"’

—mew%ﬂMHpHMDGBHHaﬂﬂ+H£}

a le] a
== 2 (wkwk'wk“)_m‘ ka'—k"[ak"*(ak'+ )(ak+ )—(ak"*+ )ak/ak:l—i-H.c.}

kkTE! Aoy * da* s s

X{{a}lpl{er}). (3.8)

Therefore, the Liouville equation in the coherent-state representation becomes

Fe) 0
F%MHMHMD=Zw<m*
ot k ad

ak*

ad
"ak—->({ak} [p]{as})
Ao

i) a a
-2 (wk‘*’k'wk”)—Uz{ka'~k"|:ak"*(ak’+ *)<Olk+ *)—<ak"*+ )ak'ak]-i-C.C.}({ak}lpl{ak}). (3.9)

Kk k' day day, Aa

Using Egs. (2.20)-(2.21) to transform to the action-angle variables, we obtain:

V] i)
i_p({Jkr¢k}7t) =1 Z wk—p({Jky¢k})t)
at ko Ok

. T e T\ 172 , 9 4 o\ 1/1 8 1 a8 1 9
Y (s S NI LR N
K7k |\ wped s oJr 0y 0Jw:/ 2\Jr0¢r Ji Oprr Jir Oprrs

(_ a? 1 e 1 @ 1 @

; — +C.C.}p(],¢ . (3.10
0J:0T 1 2w 0Tk 2T 0T wdde 4T et a¢k,a¢k)] el )

Apart from a difference in sign convention, and the addition of terms involving second derivatives in J and ®,
Eq. (3.10) is identical to that given by Brout and Prigogine. The “quantum corrections” are clearly of order 1/J
relative to the “classical” terms and hence vanish in the classical limit. We thus obtain the advantages of physical
interpretation of the classical approach while keeping the quantum-mechanical accuracy.
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In writing Eq. (3.9) and Eq. (3.10) we have omitted those contributions which do not conserve energy in the
dominant approximation (see next section). A similar calculation shows that these contribute the following terms

to Eq. (3.9)
2 (""k“’k'wk”)—”z[ka'kn[<ak+

Kk’ k7

I¢] lé]
o
da* dap*

)(aku+aa(z”*)——akakraku]+c.c.} {ar}|p|{ex}). (3.11)

In action-angle variables, this contributes the following terms to (Eq. 3.10):

JieJ e e\ 12 9 )
5 {(—) ka,k,,emwwwku)l:(1+__+___)
kb k" |\ 30 g 0T, 2J 9y

a ) /]
>(1+ + )— 1]+c.c.] p( T ,t).  (3.12)
6]1,:' 2]k" a¢k"

]

d i
x(1+—+— —
27w O

J

IV. THE BROUT-PRIGOGINE EQUATION

The development of the preceding section has shown that the time evolution of the ensemble is given by the
solution of the differential equation for the reduced matrix element p({J,dx},?).

a
i;P({Jk,d’k},t): (L0+Ll)p({]’€7¢k} yt) ’

4.1)

where the unperturbed Liouville operator L, is given by Eq. (2.26) and L, by Eq. (3.10)

. T e \'2 _ YA
Li=i 3 [ ———) Vip_reirtor—sen| 4 — 4
kk'k'’ W W g7 1 T i

d d 171 9 1 o 1 9
ajk' a]kll 2 ]k a¢k ]k; 8¢k, ch” ad’k”

a? 1 a2 1 92

92 1
+<i —_— - —1 >:’+c.c.] . (4.2
0J k0T 2Jpr 0T k0pir 201 0T 100 4T 1o J i O Oy

In the present paper, we shall solve (4.1) by well known
perturbation techniques. First define the interaction-
picture density matrix

pr({J e} )=exp(—iLlo)p({Tidi},t) . (4.3)

pr satisfies the equation

Opr

i—=Li(O)pr, (4.4)
ot

where

Li(f)=e—otLgilot 4.5)

The formal solution of Eq. (4.4) is

pr()=T exp(—i/

where T is the usual time-ordering operator. We shall
generally take /o to be zero.

p1(t) may be expanded in terms of the eigenfunctions
of Lo, the f{vr} from Eq. (2.27):

pz(t)={2’ pr({Je}{v},0) fv}

L, (t')dt')pz (t),  (46)

0

4.7

where the expansion coefficients are

pr({T e} (v}, =Lfv} | pr({T,0:},0)]
=/‘f*{V}PI({Jk,¢k},t)I;I d¢k- (4-8)

The coefficients p7({J+}{v},!) resolve the density matrix
into the phase functions f{»}. Inserting Eq. (4.6) into
Eq. (4.8) yields (using the completeness of f{»})

AR (17 exp( =i / ‘ Li(t)ar ) i) )

X (f{ V,} ] PI({]k,¢k},0)) .

This relation is independent of {¢} but still contains
derivatives 9/3J .

We next examine the consequences of the random-
phase initial condition:

pr({J:}{r},0)=0, {»}>={0}.

As explained in Sec. II, the independence of p from the
phase angles only occurs if p is a function of the number

4.9

(4.10)
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F16. 1. The three-phonon collision terms entering in the Peierls
equation are illustrated graphically. Figure 1(a) corresponds to
Egq. (5.9), in which phonon q is emitted or absorbed. Figure 1(b),
which corresponds to Eq. (5.10) shows processes in which phonon
q is produced by the coalescence of the phonons or destroyed by
splitting into two phonons.

operators {V,}. Hence the coefficient

pr({Ji{0},0)=p5({J},))

describes the number of phonons, or the energy dis-
tribution among the normal modes.

The energy-distribution function at time ¢ is then
given by

pE({Jk},z)=<f{0} |T exp(—i/t L,(t’)dt’)f{O})

0

Xoe({Ji},0). (4.11)

Quantities of the type

< T exp( — /0 t L,(t’)dt’>>o

- ( o} T exp(——i fo ‘ L (t’)dt’)f{O}) (4.12)

often arise in statistical and quantum mechanics. A
systematic way exists for the evaluation of such expres-
sions.’®1 In Eq. (4.9) we have to calculate the average
of an exponential over the phase angles. As is well-
known, such an average can be expressed as the expo-
nential of a modified series.

The method of semi-invariants (or cumulants),
explained in Ref. 13, offers a rapid and powerful way
of exhibiting this exponentiation. Complicated summa-
tions are thereby avoided. We state a few relations for
clarity. Consider the moment generating function
(exp(ixt)), where the average is taken over some
probability distribution P(x). The logarithm of this
quantity expands as

= ()"
1n<eXP (ﬁxt)> = Z —'Mn )

n=1 n!

(4.13)

1B R. Brout and P. Carruthers, Lectures on the Many-Electron
Problem (Interscience Publishing Company, New York, 1962).
14 R. Brout, Phys. Rev. 115, 824 (1959).

CARRUTHERS AND K. S.

DY 147

where the first few semi-invariants M, are given by

M= (x),

M= (a*)—(z)*,

M= (a*)— 2(x*)(x)+2(x)?,

M 4= (x*)— 4{x3) () — 3(x2)2+ 12{a2)(x)— 6{x)".
The case of a time-ordered exponential of an operator is
not much more complicated.!®

For the problem at hand (cubic anharmonicities) all
odd M, vanish.

(4.14)

ln<Texp( —i /0 ‘Lz(t’)dt’> = gl (_::)HM,.(t), (4.15)

M= / (Li(¥'))odt' =0,
M= f dn / At (T Ly (0 Lr (t2))o— (L1 (0))o{ L1 (12))o]
=/‘tdt1‘/ddt2<TL1(l1)LI(t2)>0)

M4=/tdll- . -/Otdt.,[(TLx(tl)- <« L))o

—3<TL1 (ll)LI (lg))o(TL[ (ts)L[ (lq))o:l . (4.16)

For long times, the M, are proportional to ¢. Measur-
ing the perturbation by a parameter \, we see that the
contributions are of order M,~\" in this limit. Our
procedure provides a simple method of estimating
higher order corrections to transport quantities.!5:16

Thus we find pg({J},?) to be given by

)n
pz({fk},t)=eXp[Z( Mn(t)]pE({Jk},O), (4.17)

n ol
pe({Jx},)=exp[—3Ms(t) Jor({/+},0). (4.18)

In the last expression we have kept only the term of
order A%. For times substantially longer than that in
which the system adjusts to the perturbation (of
order 1/wp where wp is the Debye frequency) — 1M, (1)
goes over into the Brout-Prigogine operator A%, where
0o is given by

®o=—§(f{0}|L1f{V’})

X6, (2 vi'wr) (f{v'} | L1£{0})
(4.19)

P
woy (x)=md(x)+i—,
x

P being the principal value.

15 The extension to more general interactions should be obvious.

16 P. Carruthers, Phys. Rev. 126, 1448 (1962). In this work the
possible importance of higher order corrections is stressed. Less
convincing techniques were used in that work.
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In differential form, Eq. (4.16) becomes

a
Epa({fk} £)=00p5({J},?) (4.20)
which is the Brout-Prigogine master equation.

The invalidity of this equation for 0<¢< 1/wp is of no
physical consequence, as the assumed initial condition is
unphysical, involving as it does the introduction of bare
phonons.

V. DERIVATION OF THE PEIERLS
MASTER EQUATION

Our expression for dpg/d¢ differs from the classical
one only by the addition of second derivative terms.

IRREVERSIBLE PROCESSES

]k]k']k”
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These give rise to the spontaneous decay of the phonons,
a process not present in the classical theory. To see this,
we shall derive the Peierls equation from the Brout-
Prigogine equation.

Explicitly, the matrix elements (f{»}|Lrf{»'}) are

=R L

Xexp(—i Y vipr)Lrexp(t X vi'di). (5.1)
% %

(A Lifv'}) =

Using Eq. (4.2), we see that the nonvanishing elements

of (f{0}[Lzf{»'}) and (f{»'}|L1/{0}) are

0 (f{O}|inf{—lk—lkrlkl,;0}>=—ka,-kn(

1 1 1

4 |

W Wi

REYAN: a a
Ml
oJr O0Jp 0T

1 ¢ 1 o 1

+—+ o —
2 2Tk 2Tk 0J30Jp 2J1 0Tk 2Tk 0Tk

which can be written as

)e—i(wk+wk'——wk")t (5_2)
4T 1 J &

9 o 8 NI\
(O} | Left—LimLeTr; 0)) = — V( + ; )( ) ittt (5.3)
6]k a]kr a]kw afkafk, W W W
T T \"%/ 0 d 9 92 .
() (A= Li—ledor; 0} | Lof(0))= ka,-kn*( ) ( oy )ewww—ww (5.4)
W g Wper (9]}; 6]1,;/ 6Jku a]ka.]k/

so the Brout-Prigogine equation becomes

9 | Virr—ire |
apﬁ(t) =2r 3 &(wrtwp—wp)—————
k

k'K’ W W g W e

9 0 92

a a i} )
x[( . )kak,fx~<—+——
oJr 0y 0Jpe 0J10J oJr OJp 0Ty

The factor of 2 on the right hand side comes from adding
the complex conjugate term and the principal part of
8, does not contribute because it is an odd function
Of {Vk/}.

We can now calculate the time rate of change of the
average number of phonons in a certain mode q.

d opr _
“wa= [ @anss. 5.6)
dt k ot

When we substitute dpg/d¢ from Eq. (5.5) into Eq.

(5.6), the sum over &, &/, k" will contain four types of
terms:

(a) k, k', k'H#q,

(b) k=gq; K, Ek'#q, -
O 7 (.7)

(C) k =45 k: k ?59,

(d) k'=gq; &, K'#q.

Doing the integration of each of these terms by parts,

+ )]pw). (5.5)
0J 10J i

we see that the first type does not contribute. The
second and third types give

Ted e NHT T D= T e ))= (T k). (5.8)

Note that the last term of Eq. (5.8), which comes from
the second-derivative term, does not appear in a
classical theory and is what gives rise to the spontaneous
decay process. Transforming by Eq. (2.33) to the
number representation, Eq. (5.8) becomes

(NN ey (N N )= (N N i Y4 (Vo)
= <(£Vq+ 1) (:\Tk/'J{— 1)1\"';:”)— <]Vqul (l\‘vk"—f“ 1)) (59)

which corresponds to the processes of Fig. 1(a). The
fourth type gives

(e e )= T o)) =T S NF+{T o))

= (NN )—(NgNi)— (NN )— (N o)

= (VN (N g+1)— (N o(Ver+1) (N +1)), (5.10)
which corresponds to the processes of Fig. 1(b).
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Therefore, changing the index ¢ into %, we have
derived the Peierls equation®7:

a [ Viekr—ire |2

—(Niy=2m 3, ———

dt kk'" W Wy

X {28 (wrtwr—wp )[{((Vit1) (Ve+1)Nir)

——(Nkar(Nku—l—1)):H-6(wk—-wk'—wku)

XN N e (VA1) = (Ve (N oo 41) V1)) ]}
(5.11)

This result is not sufficient for the rigorous derivation
of a transport equation since the density matrix corre-
sponds to a homogeneous (but nonequilibrium) spatial
distribution. When we use the Wigner distribution
function formalism for transport processes, other com-
ponents of the density matrix besides pg(f) have to be
considered. This problem will be dealt with in a sub-
sequent paper.
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APPENDIX

Consider the following interaction Hamiltonian for
scattering by defects:

1 1
= Cqqaqlag+H.c.
Vs N E o) wr@tag+H.c

=3 Ugpaqztap+H.c.

aq’

(A1)
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For example, expressions of this form describe strain

field or isotope scattering.!! The perturbation L, is

L= Z Ui (Jk]k,)llzel'(¢k"‘¢k)

k&’

(6 1 9 o 1

| Li

0
+4 +c.c.> . (A2)
ajk’ 2Jk' a¢k'

oTr 275 O

The nonvanishing elements of (f{0}|L:f{»'}) and
(f{»'}| L1| f/{0}) are:

(A0} | Ly| f{1:—14; 0})

ad 0 .
= Ukk'( ———) (J T g ) V2 (wrwr)t
0Tk

k

(A3)
(f{1x—1x; 0} | Ls| £{0})
9 i)
—_ Ukk’*(]kjk’)”z( ____)ei(wk—wk')t
Ty 90Ty
so
00=2r Y d(wr—wi)| Upn|?
Py
a a i) a
(D).
0Tk 90Tk T 9%
From this result, we get
d(N)
=21 2| Uree |2(Nw)— (Vi) . (AS)
kl

This is simply the “Golden rule” result; see for example
Eq. (4.14) of Ref. 11.



