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Irreversible phenomena involving phonons in a slightly anharmonic crystal are investigated using co-
herent states as a basis. This basis retains the advantages of the classical theory, in which phase relations
are clearly exhibited, for a quantum-mechanical system. In the coherent-state basis the equation of motion
for the density matrix has an obvious correspondence with the classical Liouville equation. In particular,
the connection with the action-angle variables of Brout and Prigogine is elucidated. A new, rapid proof of
the Brout-Prigogine equation is given using the method of semi-invariants. This technique exhibits higher-
order corrections in a usable form. The quantum corrections to the classical equation of motion for the
density function are shown to be due to extra terms involving second derivatives in the action-angle variables.
The Peierls master equation is then derived from the Brout-Prigogine equation. The important problem of
elastic scattering of phonons is treated by our method in an appendix.

I. INTRODUCTION

HE main purpose of the present work is to exhibit
the utility of the coherent-state basis' for the

description of irreversible processes. Although similar
techniques may be applied to other systems of inter-
acting bosons, we restrict our attention to the problem
of phonons in a slightly anharmonic crystal. Elastic
scattering by defects is discussed in the Appendix. In
the coherent-state representation, the equation of mo-
tion for the density matrix although fully quantum-
mechanical, has an obvious correspondence with the
classical Liouville equation. The correspondence with
the action-angle variables used by Brout and Prigogine' '
is elucidated. (For a coherent state ln), the parameter
n is related to the action J and the angle @ by
n=J'" exp(+).) The coherent states, which in the
classical limit describe classical harmonic-oscillator
motion, "have other advantages when compared to the
traditional number states. The phase relations so
interesting in a discussion of irreversibility are at all
times clearly exhibited. Number eigenstates have com-
pletely indeterminate phase. ' Moreover, the coherent
states correspond closely to nearly all intuitive thinking
on our subject, based as it is on wave propagation. For
the number states ln), the mean oscillator position
(mix(t) lm) always vanishes, no matter how large n
In contrast, ' coherent states give a mean (n l x(t) ln) of
cos(~t —g). Finally, we note that a classical driving force
excites the coherent state of an oscillator. ' A careful

treatment of the coupling of crystals to massive heat
reservoirs should take this into account.

In Sec. II, the necessary mathematical techniques are
developed. These techniques are applied to the evolu-
tion of the density matrix in an anharmonic solid in
Sec. III.%e shall see that the general quantum I.iouville
equation derived di8ers from that of 8rout and
Prigogine by the addition of terms involving second
derivatives in the action-angle variables. The latter
terms are of order E ' relative to the "classical terms, "
where E is the mean occupation of an oscillator, and
hence establish the classical limit and corrections
thereto. In Sec. IV a short derivation of the Brout-
Prigogine master equation" is given. Higher order cor-
rections are exhibited in a useful form. In Sec. V, we use
the Brout-Prigogine master equation to derive the
Peierls equation" for the time rate-of-change of the
mean number of phonons in a given mode of vibration.
Finally, some remarks are made on the derivation of the
Peierls equation.

II. MATHEMATICAL PRELIMINARIES

The reader is referred to Refs. j. and 4 for a full
discussion of coherent states. Normalizing the creation
and destruction operators for an oscillator, at and a, so
that ata=E, ~, X„having eigenvalues 0, 1, 2, , the
coherent state ln) (n is an arbitrary complex number)
is given by

ao; =no.
*Research supported in part by the U. S. Atomic Energy Com-

mission and the U. S. OfEce of Naval Research.
' R. J. Glauber, Phys. Rev. 131, 2766 (1963).' R. Brout and I. Prigogine, Physica 22, 621 (1956).
I. Prigogine, Non-Equilibrium Statistical Mechanics (Inter-

science Publishers, New York, 1962).
'P. Carruthers and M. M. Nieto, Am. J. Phys. 33, 537 (1965).' P. Carruthers and M. M. Nieto, Phys, Rev. Letters 14, 387

(1965).

ln)=exp( —klnl') Z
m=0 ~!

= exp(na~ —n*a)
l 0),

(2.1)

6 R. E. Peierls, Ann. Physik 3, 1055 (1929).
~ R. E. Peierls, Quantum Theory of Solids (Oxford University

Press, London, 1955), Chap. 2.
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so Noting that n* should be considered independent of o,

(see derivation of Eq. (2.11) and Eq. (2.14), for
& ~"&eee~e~~. ~= "'"(" L "'&";~j &'"~ e*emple) we fied

BA

From Eq. (2.14), we can also obtain the expectation
value of the operator 3 immediately

8 8 i 8)
!J1/2g —s$

ae BJ 2J By)
(2.21)

(A)=Tr(Ap)
t'8 i ej)—JI/2eeO +
(BJ 2J 8&beBQ

a
Integrations over the n plane become, in terms of the
action-angle variables

1
(S)=— d'nn* n+ p(n*,n) .

g atx
(2.16)

Further simplihcations occur when p depends only
on the number operator a&a. In this case p(n*,n) is a
function of the product n*n. Suppose B(ut, u) depends on
&rtu; as a special case of Kq. (2.12) we write

The method of integration used in deriving Eq. (2.11)
and Eq. (2.14) will be used repeatedly when we consider
specific models. It is important to note in Eq. (2.15) that
all averages can be expressed in terms of the diagonal
elements of the density matrix. This is an attractive
feature of this representation. According to Kq. (2.15)
the average of the number operator is

1
&f'n=- dJ

0 0

(2.22)

ap
i =f—&o,pg= Lop-,

at
(2.23)

where B=oout&J. A short calculation shows that p(P*,n)
evolves as

~p(P*,n)
i =Lo(P*,n) p(P*,n),

(2.24)

To illustrate this transformation, consider the Liouville
equation for a free harmonic oscillator:

B=g b„(at&z)". (2.17)
8 8)

L.(P*;)=-I P*
op* an/

Since B is diagonal in the number basis we use Eq. (2.1)
to obtain

p ee
(nop )o

(-IBIp&=Z b- Z
k~

=B~(n*P)(nlP)

where

expI:—z lnl' —
z IPI'j

(2.18)

Bi(n*P)=E b& (n*P),

F„(z)= e-*P
kt

(2.1V)

Thus, if an operator 8 is a function of ata, its reduced
matrix element (nl B

I p)/(nl p) is a function of the
product n*P. Trivial examples show that this is not the
case for all operators, e.g. (ata')' has reduced matrix
element (n*P')'+2n*P' which is not a function of n"P
alone.

Next we describe the transition to action-angle
variables. The action J is de6ned to be the mean excita-
tion number of the state In), and o& the corresponding
phase:

1. cx

n= J"'e'o; J=n*n, &t
=—ln —. (2.20)

2i 0;*

a
Lo(n*,n) =i&o-

ay
(2.25)

independent of the action. The analogy to the classical
oscillator" should now be obvious. Generalizing to an
arbitrary number of independent oscillators of fre-
quency co&, we have

B
Lo =+ z&oy

k
(2.26)

The eigenfunctions of I.o play an important role in the
perturbation expansion for the density matrix. These
eigenfunctions are the same as in the classical analysis:

f(v) = (2z)-&""&exp! —i Q voyoj,

Lof(v) = (E»~o)f(v)
(2.27)

where the sI, vary over all the positive and negative
integers and the sum over k covers all E normal modes.

Note that if at t=0, p(p*,n) is a function of p*n, then

p is independent of time. This corresponds to the trivial
remark that Lp(X),1V) vanishes.

For n=P, Eq. (2.24) reduces to
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The set {v} should never be mistaken for the occupation
numbers; rather it specihes the phase of the oscillator.

The normalization in Eq. (2.27) has been chosen
according to the inner product P=

Tre—P~ata
(2.34)

To give an example, consider an oscillator in thermal
equilibrium, for which

e
—Peeate

(glh) = a*{4}h{4}II4., (2.28) where )3= (kT)—'.

so that the eigenfunctions f{n} are normalized as
follows:

&ole "'la&
p(J)=

Tre—t'" ~
(2.35)

(f{v}I
f{v'})= 6),)(,) . (2.29) Using Eqs. (2.18), (2.19), we find

The Kronecker delta in Eq. (2.29) means that vk ——vk'

for all k=1, .V. Ke have used round brackets to
denote inner products in the space of the eigenfunctions
(2.27) to avoid confusion with the usual quantum
mechanical inner product, which will be written with
sharp brackets.

To conclude this section, we calculate some averages
of functions of the number operator, for density matrices
which depends only on 'V (or a*a). In this case p(a",al
depends on J alone and Eqs. (2.16), (2.21), (2.22) show
that

expl —J(1—e-t) )]
p(J)=

(1—e-e )-'

Then we obtain the expected results

((J))= dJJp(J)=
1—e—t'"

(»'&= &(J)&—1=
et'"—1

(2.36)

(2.37)

P') f~&&~(J=)+ ~&& ~(J) (2.30)

(»r)= dJJ p(J) —1

Integrating the second term by parts and applying the
normalization condition for p(J), we get

III. EVOLUTION OF THE DENSITY MATRIX. IN
ANHARMONIC SOLIDS; ACTION-ANGLE

VARIABLES

If we denote the displacement of the atoms from the
mth equilibrium lattice site by u, the Hamiltonian is"

or

(&J»=— dJJp(J) =P&+1' (2.31)

B=HP+ Vk

a,=-', p mn„k+-', p a „„)N„N„~
(3.1)

A useful generalization is easily proved

&(a') "a"&= (—1)" p(J)L-(J)dJ
—= (—1)"(&L-(J)&) (2 32)

where L„is the I aguerre polynomial. ' Many interesting
relations of this sort hold. For a collection of oscillators
with a density matrix depending only on {»)'k}

Lp({~k*}{~k})=p({Jk})j
where. V~ is the occupation number of the 4th mode, one
finds

&»'")= (—1)«Li(Jk )))=(&Jk ))—1

P'kP'kk) = (—1)'((Li(Jk,)Li(Jk,)))= ((Jk,Jk, ))
—«Jk ))—«Jk*))+1
~ ~ ~

&».,» .. » ..&=(—1)"((L (J.,) L (J..)»
= (—1)"«II(1—Jk;)».

i~1

' Higher Transcendenta/ Functions, edited by A. Erdelyi
{Mcoraw-Hill Book Company, Inc., Net York, 1953), Vol. II,
p. 188.

1
V,=—P Jl, *)'kk;kk )kk.',

3!t~~
ijk

where M is the mass of the atom and i, j, k denotes the
x, y, z components. In normal mode coordinates"

I/2

(ake'"'~+ak te '"'~)ek, (3.2)
2M')I,

where k denotes the wave vector k and the polarization
index; eA,. is the polarization vector, and we adopt the
convention e I,

———ek. Hence,

+0 Q k)k(aktak+2)

Vk= —P (k)Wk~k")

X (Vkk —k"ak" ak ak+H c ), (3.3)

"Notation is the same as given by P. Carruthers, Rev. Mod.
Phys. 33, 92 (1961).

"The restriction to crystals having real polarization vectors is
of no concern to the purpose of this paper. Similarly, the optical
modes are never considered explicitly.
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where
i i

~kk k" =3X— b'k k' k"
3! 2MÃ

$pB,B„—Q e),Be~Be~,„)B Q 21 ij))ei()B )+)2"m+)2'"22)

As remarked in Sec. II, it is sufhcient to consider the
diagonal elements of p in this basis. OR-diagonal ele-

ments are found by analytic continuation of o,* to P*.
(3.4) The right hand side of Eq. (3.5) contains the following

terms:

The factor of three in Vkk k" comes from cyclic permuta-
tion of k, k', k". Ke have omitted the terms which
create and destroy three phonons, since they do not
conserve energy. They can and must be considered when
higher order terms are considered.

If we consider the quantum Liouville equation be-
tween states I(ni, )), where {n),) denotes a set of
amplitudes nk for all the modes, we get

Bp
Z 0!k —0,'k

8t

II d'P. C&( .) I&l (P.)&&(P ) I I( ) &

(i) From Hi)..

II d'P~Cne*Pa&{a~)
I (P~) &&(P~) I pl (n~))

8 8
&fn~) I pl (n~));

i7a)B Bnp
(3.7)

which upon integration by the methods outlined in
Sec. II becomes

—&{a.) I p I {P.)&&{P~) I
&

I (n~))3 (3 5) (ii) F«m V:

—2 (~ae~a-) '" 1'aa-e" „ II d'P~Cae-*Pe Pa&{a~) I(P~))&{P~) I pl(a~)&
fee e k

Pe"*—na ne&(a~) I pl (P~))&(P~) I fa~) &j+H c.

8 ( 8 8
((0kldi. "M)B") Vkk' —k' ~ n)2 a +

I
nk+ —ak + a)B na +H.c.

Bn), * k i7n),* Ba),

X&(a.) I p I (a.) & (3.g)
Therefore, the Liouville equation in the coherent-state representation becomes

t9 8 8
i—&(n~) I pl(n~)&=K ~~ n~*, n~ &(a.)—I pl(a~)&
8$ k 8&k BCLk

8 tB 8 8
(iB)kiB))2'iB)"") 1 ii -' a' *I n'+ —,

-
I a)B+, —n' *+ n, n)B +c.c. . &fax) I p I {n)2)& (3 9)

kk'k" Bai; k 8n)B Bag

Using Eqs. (2.20)—(2.21) to transform to the action-angle variables, we obtain:

8 a
p((J~,Bf—))),&) =i g ~) p((A, 42:),&)

Bt k Bpk

)J„J„,J„„')' —
tB 8 27 & ~ 1 1 & 1 c) 1+' P I

P, „'(4a+4B —4B")
fl + I + +-

— EBB BJ, BJ, , ) 2 J, BB J.BB, J, BB, )

+ i
i 8' 1 8' i 8'

1 +c.c. p(f Ji,gq), t) . (3.10)
BJkDJk 2Jk OJk~gk 2Jk ~Jk 8&k 4Jk Jk ~@k ~@k—

Apart from a difference in sign convention, and the addition of terms involving second derivatives in J and p,
Eq. (3.10) is identical to that given by Brout and Prigogine. The "quantum corrections" are clearly of order 1/J
relative to the "classical" terms and hence vanish in the classical limit. %e thus obtain the advantages of physical
interpretation of the classical approach while keeping the quantum-mechanical accuracy,
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In writing Eq. (3.9) and Eq. (3.10) we have omitted those contributions which do not conserve energy in the
dominant approximation (see next section). A similar calculation shows that these contribute the following terms
to Eq. (3.9)

8 l( 8 a
P (o)»(d», oo»„) '('—P»», »„'n»+

II
a», + n»„+ a»a—».a»" +c.c. ({a»}I p I

{n»}). (3.11)
kk'k» 8a»*i E 8a,.* aQk»

In action-angle variables, this contributes the following terms to (Eq. 3.10):

(I'»'o"(o o"'+o»")
I

1+ +
aJk 2Jk aPkr

a z a 8 i 8
X 1+ 1+ + —1 +c.c. p Jk,pk, t . 3.12

8J» 2J». 8(t)». 8J»" 2J»" 8P», &

IV. THE BROUT-PRIGOGINE EQUATION

The development of the preceding section has shown that the time evolution of the ensemble is given by the
solution of the differential equation for the reduced matrix element p({J»,(t)»},t).

a
i—({J.A.},t) = (L.+L )p({J.A.},t),
at

(4.1)

where the unperturbed Liouville operator Lo is given by Eq. (2.26) and Li by Eq. (3.10)

JJ J" '" 8 8 8 l 1 1 8 1 8 1 8
Li i-— + —

I

——— +— +
aJ, aJ,. aJ,-) 2 J, ay, J,. ay, , J,-ay, -

( 8' 1 8' 1 8' 1 8'
+I i +c.c. . (4.2)

5 8J 8J 2J ~ 8J 8(t) ~ 2J» 8J» 8(t)» 4J».J» 8$» 8(t) I

»({J»}{v}t)=Lf{v}I pr({J»4»},t)]

In the present paper, we shall solve (4.1) by well known where the expansion coefficients are
perturbation techniques. First define the interaction-
picture density matrix

»({J» (t"}t) =—exp( —i«)p({J»,4»},t) (4 3)

p& satisfies the equation

f*{v}pr({J»A»} t)II &» (4 g)

where

apr
i =I.r(t) pr,

The coeff)cients pr({J»}{v},t) resolve the density matrix

(4 4) into the phase functions f{v} Inserting .Eq. (4.6) into
Eq. (4.8) yields (using the completeness of f{v})

jr (t) —(e i r o(L)(eeLO)—

The formal solution of Eq. (4.4) is

(4 5)
e ((r )( ),A=X r( )l»*)e —e r. (e')«' lff '))

{v') 0 )

X(f{v'}I pr({J»A»},0)) (49)
e, (e) re*p( — r;(e')«' le. (e =)

to )

where T is the usual time-ordering operator. Ke shall
generally take t0 to be zero.

pr(t) may be expanded in terms of the eigenfunctions
of Lo, the f{v} from Eq. (2.27): (4.10)pt({J»}{v},0)=0, {v}W{0}.

(4.6)
This relation is independent of {)t)}but still contains
derivatives 8/8 J».

%e next examine the consequences of the random-
phase initial condition:

pr(t) =Z pr({J)e}{v},t)f{v}, ' As explained in Sec. II, the independence of p from the
phase angles only occurs if p is a function of the number
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In differential form, Eq. (4.16) becomes

a
p—s({Ja),t) =0ops({Ja) t)

at
(4.20)

which is the Brout-Prigogine master equation.
The invalidity of this equation for 0 &~t &~ 1/a)r) is of no

physical consequence, as the assumed initial condition is
unphysical, involving as it does the introduction of bare
phon ons.

These give rise to the spontaneous decay of the phonons,

a process not present in the classical theory. To see this,
we shall derive the Peierls equation from the Brout-
Prigogine equation.

Explicitly, the matrix elements (f{v} I
Lzf{v')) are

(f{v) I Lrf{'))=
(2s) ~

0

Xexp( —i P varfaa)Lr exp(i P va (ka). (5.1)V. DERIVATION OF THE PEIERLS
MASTER EQUATION

Our expression for i)pz/()t divers from the classical Using Eq. (4.2), we see that the nonvanishing elements

one only by the addition of second derivative terms. of (f{0}I
Lrf{v')) and (f{v'}

I
Lrf{0})a«

JkJk Jk
(i) (f{o}ILrlf{—la —la 1';o))= —~»-a" +

GO~k~COk«a Jk aJk' aJk"

which can be written as

1 1 1 a 1 a 1 a 1
+ + — + + + + (,

—((~a+~a'—~a") r (5 2)
2Jk 2Jk. 2Jk" aJkaJk. 2Jk aJk. 2Jk aJk 4JkJk

JaJa Ja" "( ()

(f{—1 —1 1" ' o}
I
Lrf{0))= I'»-a"* e((raa+cua' —&aa") r

(r)a(r)a tea" ((tJa BJa (tJa" (tJ (tJa

so the Brout-Prigogine equation becomes

—ps(t) = 2s P b(a)a+(da. a)a.)—
at kk'k« 4)~kiCOk~ ~

a a a a' JkJk Jk" "'
(f{0)I Lrf{ 1a 1 a 1—a-; —o) ) = —I'» a ~ + — + ~

—t'(o)k+(dk —(ok' ) f

aJk aJk aJk«aJkaJk
(5.3)

(5.4)

a a a a a a a a
X + — + JaJa J " + — + ps(t) (5 5)

aJk aJk aJk aJkaJk aJk aJk aJk" aJkaJk

apE—&N.)= (II ~Ja)J.
dt k at

(5.6)

When we substitute BpE/Bt from Eq. (5.5) into Eq.
(5.6), the sum over k, k', k" will contain four types of
terms:

(a.) k,

(b) k= q;

(c) k'= q;

(d) k"=q;

0', 0"/q,
k', k"/q,
k, k"/g,
k, k'4q.

(5.7)

Doing the integration of each of these terms by parts,

The factor of 2 on the right hand side comes from adding
the complex conjugate term and the principal part of
tI)+ does not contribute because it is an odd function
of {va').

We can now calculate the time rate of change of the
average number of phonons in a certain mode q.

we see that the erst type does not contribute. The
second and third types give

«J'J' ))+«J.Ja"))—«J.Ja ))—«Ja )). (5 8)

Note that the last term of Eq. (5.8), which comes from
the second-derivative term, does not appear in a
classical theory and is what gives rise to the spontaneous
decay process. Transforming by Eq. (2.33) to the
number representation, Eq. (5.8) becomes

(cVa rVa")+&NaVa ) (rV,Na ")+—&Na )
= ((rV,+1)(.Va +1)Na )—(rV,Na (Na" +1)& (5.9)

which corresponds to the processes of Fig. 1(a). The
fourth type gives

«J'J' ))-(&J,J'))-«J,J' ))+«J,))
= &rV a rV a") &rV,rVa ) &N,.Va )—&N,)——
= (,Va.,Va" (.V,+1))—(N, (Na. +1)(Na. +1)), (5.10)

which corresponds to the processes of Fig. 1(b).
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Therefore, changing the index q into k, we have
derived the Peierls equation":

l
vxa —a" l—(Np)=2s P

dt kk™k"

X (2~(~~+~~ —~k")l ((No+1) (Na +1)Na")

(Ns—NI, (Nv. +1))j+6(cog (oI, —col,")—

X L(Np Ng" (Na+1)) —(N„(N, .+1)(N~„+1))]}.

This result is not su%.cient for the rigorous derivation
of a transport equation since the density matrix corre-
sponds to a homogeneous (but nonequilibrium) spatial
distribution. When we use the Wigner distribution
function formalism for transport processes, other com-
ponents of the density matrix besides ps(t) have to be
considered. This problem will be dealt with in a sub-
sequent paper.

ACKNOWLEDGMENTS

The authors are indebted to Professor J. A.
Krumhansl and Professor G. V. Chester for many
interesting and helpful discussions.

1 a( 8 8 1 8
Xl +i — +i +c.c. . (A2)

tBA. 2Jq 84q. BJq 2Jq Bfq

The nonvanishing elements of (f(0}l
Lrf(v'}) and

(f(v'} ILr I f(0})»e:
(f(0}ILr l f(1~—1~ 0})

8 8 )—U,
l (J J,)1/2s—i(ark —uk ) t

(f(1~-1~ ' 0}ILr I f(0})

f 8 8
=U *(JaJ )'"l

(BJg BJp
so

80= 2Ã Q h (coy cdv, ) l Uk g—'
l

For example, expressions of this form describe strain
field or isotope scattering. "The perturbation I.~ is

Li=p Uvv. (JaJIv)'"r"~' 4"
kk'

APPENDIX

Consider the following interaction Hamiltonian for om h's es l we g
scattering by defects:

1 1
Vs= CqqI cgtQql+H. c.

43EN ee' (co~ )'i'
—=Q Uqq a,tu;+H. c.

(AS)

This is simply the "Golden rule" result; see for example
Eq. (4.14) of Ref. 11.


