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A theoretical study of persistent currents in liquid He4 is given, in which a system of Ã interacting bosons
con6ned to a cylindrical container is chosen as a model. It is argued that these currents are metastable and a
general model-independent stability criterion valid for all temperatures is derived. In this formulation it is
essential that there is a single-particle state q, with nonzero angular momentum l, which is occupied by a
macroscopic number to(Ã) j of particles. The stability criterion is applied to the study of two soluble
models, one, an independent-particle model studied for all temperatures, the other a quasiparticle model
studied for T=O'K. For both models persistent currents are possible at T=0 provided that the interactions
between particles are sufBciently strong and l, does not exceed a characteristic critical value l~. The quantity
lw is calculated for different choices of single-particle functions, and in particular for the solutions of a
Hartree equation, which is relevant to a description of line vortices with quantized circulation. The density
p. (T) of particles macroscopically occupying q, at a temperature T, as well as the critical temperature T
above which no persistent currents are possible, are calculated for the independent-particle model.

I. INTRODUCTION

HE varieties of thermal and hydrodynamic
phenomena which strikingly differentiate He II

from other substances are familiar to even the beginning
student of physics. Recent experiments' —' have re-
vealed an additional unique phenomenon, the existence
of persistent macroscopic circulating currents analogous
to persistent electric currents in ring-shaped super-
conductors. On the basis of these experiments con-
siderable quantitative information concerning these
persistent currents is available at present.

The purpose of this paper is twofold: The 6rst is to
obtain a completely general criterion, valid for all
temperatures, for the existence of a persistent current
in a system of interacting bosons conaned to a cylin-
drical geometry. The second purpose is to illustrate the
use of this criterion by studying two interesting trac-
table microscopic models of a many-boson system.

Concerning the format of this paper, Sec. II begins
with a brief critical review of some of the main high-
lights of the Reppy-Depatie experiment. ' In the course
of this review we argue that "persistent" currents must
be interpreted as a metastable phenomenon. This
discussion is followed by the formulation of a general
criterion for the metastability of these currents at
T=o'K, which is based on the assumed existence of a
type of Bose-Einstein condensation. Sections III and IV
are devoted to a study limited to zero temperature of
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the two models presented in this paper. In the simpler
of these models many-body eigenfunctions are re-
stricted to the form of symmetrized products of single-
particle wave functions, the latter being chosen as
free-particle eigenfunctions as well as the approximate
solutions of a Hartree equation. For computational
simplicity we assume that the particles are hard spheres
described in the approximation of the Fermi pseudo-
potential, and we 6nd that the system can, in fact,
support metastable persistent currents. The second of
these models provides a more realistic description of a
many-boson system, whereby Bogoliubov-like terms
are retained in the Hamiltonian. In this model the
stability criterion expresses itself as the positive-
de6niteness of the excitation spectrum, and again the
system is found capable in certain circumstances of
supporting persistent currents. In Sec. V we obtain the
generalization of the metastability criterion appro-
priate to a system in thermal contact with a heat
reservoir. This criterion is used to study' the 6rst model
for nonzero temperatures in Sec. VI. Finally, in Sec.
VII we summarize the main conclusions of this work
and discuss several questions which remain to be
studied theoretically.

II. METASTABILITY OF PERSISTENT
CURRENTS

A. Reppy-Depatie Experiment

1. Description of Experirrlegt

We devote the 6rst part of this section to a brief
review of the Reppy-Depatie experiment' and its
interpretation in order to provide the necessary back-
ground and to set the stage for the development in the
main body of the paper. In the experiment a sealed
cylindrical container of liquid He4 at a temperature Tj
below the lambda point (Tq=2.18'K) was made to
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rotate about its axis at a speed in excess of the super-
fluid critical velocity for a period of time so as to ensure
that the container and the entire liquid rotated together
as a single unit. The container was then gradually
braked to rest. After waiting periods of up to twelve
hours the brake was released so that the container hung
free. When the system was warmed from Tj to above
T~, the container began to rotate. Since warming the
system to above Tz enables the liquid to interact with
the container, the observed rotation implies that just
prior to heating there was a circulating current in the
liquid. Of key interest is the result that the measured
angular velocities of the container were found to be
independent of the length of the waiting period preced-
ing these measurements thereby demonstrating the
"persistence" of these currents. The experiment was
then repeated for a series of temperatures T~ between
1.2'K and Tq. The measured values L„(T)of the angu-
lar momentum I. of the persistent current at the tem-
perature T are compatible with the relation L~(T)
=Ep, (T), where p, (T) is the superfluid density of
stationary He II and E is a temperature-independent
constant. 4 In a variation of the experiment a persistent
current was 6rst prepared at a temperature T~(& Tq)
and then, while the container was kept from rotating,
the system was slowly cooled to a lower temperature
T2. The measured value of I at this lower temperature
was found to be L„(T2), not L„(T&).

warmed to above Tz but also if it was subjected to a
brief heat pulse which hardly raised the temperature
from its original value.

Theoretical support for the notion that the persistent
current is a metastable phenomenon comes from the
following easily proved lemma: The thermal equilibrium
value (I (0)) of the angular momentum of a system of
particles interacting via velocity-independent forces
and confined to a nonrotating container in an inertial
frame is zero. ' If one then assumes that (L(ar)), the
thermal equilibrium value of I when the container ro-
tates at constant angular velocity co, is a continuous
function for small co, it follows that the leppy-Depatie
finding of a measurable circulating current for co=0
relates to a metastable phenomenon. '

An important clue to the origin of the metastability
of the persistent current is provided by the fact that
such currents could not be prepared at temperatures
above the lambda point. If we adopt London's ideas
that the superQuid properties of liquid helium are
manifestations of a macroscopic occupation of a par-
ticular single-particle state then a persistent current
might be described in terms of a macroscopic occupation
of a current-carrying single-particle state. Of course, we
realize that other explanations for the existence of
persistent currents, which do not depend upon the
assumption of macroscopic occupation of a single-
quantum state, may be possible.

Z. Analysis of ExPeriment

These results, first the persistence of the circulating
current and second the apparent dependence of its
angular momentum upon temperature alone, would
suggest that a persistent current is a thermal equilib-
rigm phenomenon and thus, for example, that L„(T)
is a parameter characterizing the equilibrium state. On
closer inspection, however, several aspects of the
experiment dictate against such a conclusion. The
measured value of I. at the lower temperature T2 was
L„(T2) rather than L„(T&) only if (1) T& was below Tz
and if (2) the temperature was lowered to T2 at an
extremely slow rate. The value of I. for the system at
T2 is therefore not entirely independent of the previous
history of the system, and thus a persistent current
cannot be a thermal equilibrium phenomenon.

The apparently contradictory ideas of the previous
paragraph suggest that with careful preparation the
system can be in a state of metasIable equilibrium of
very long lifetime. When subjected to a rapid tem-
perature decrease from Tj to T2 the system is dislodged
from the metastable state so that the measured value
of L at T2 is not found to be L„(T2). The same ex-
planation can be given for the finding by Reppy and
Depatie that solid-body rotation of the container and
liquid could be precipitated not only if the system was

4 Recent work by Reppy (see Ref, 2) suggests that this result
holds for temperatures up to within 10 "K of the lambda point.

'Denote the total angular momentum (vector) operator and
its thermal equilibrium value for the conditions stated in the text
by L and (L(0)), respectively, so that {L(0))=Q I Tr{e &~L),
where H is the Hamiltonian of the system, Tr( ) denotes the
trace operation, 1/p is the product of Boltzmann's constant and
the absolute temperature, and Q =Tre &~ is the partition function.
It is sufIIcient to assume that the force between a pair of particles
is dependent only upon the distance between them so that II is
time-reversal invariant. Thus if T denotes the time-reversal
operator, because Tr( ~ ) is invariant under a cyclic interchange
of factors

{L{0))=Q'TrI (Te &+T ')(TL1 ')$= —Q-'Tr(e &EL) =P.
' The generally accepted idea is that (L(a) ) is a linear function

{L(a))=I~ for smally, where the moment of inertia of the liquid
Io is reduced below its classical solid-body value for temperatures
below the lambda point. To speculate that in place of the above
linear relation one has instead lim 0 (L(w) )& (L(0) )=0 seems to
us ill-advised. For the isotropic Heisenberg ferromagnet below the
Curie point the thermal-equilibrium magnetization (M (8) )
is a discontinuous function of the external magnetic field H:
limH 0 {M{H))& (M(0) )=0. The origin of this discontinuity is of
course well known; the ferromagnetic coupling between spins
s{&0) results in a ground state which, in the absence of an ex-
ternal magnetic field, is infinitely degenerate corresponding to the
equal probability for the magnetization to point in all directions
in space. The application of even an arbitrarily weak uniform
external magnetic field lifts the degeneracy of the system singling
out the particular ground state for which the magnetization points
in the direction of the external Geld. For liquid helium the totally
different character of the particles (no intrinsic spin) and of their
mutual interaction to our mind rules out any such analogy to the
ferromagnet.

Finally, we should mention that for linear Qow of a system of
particles interacting via velocity independent forces, because of
Galilean invariance, one can easily show that the system has
higher energy when its center of mass is in motion than when it is
at rest (Bloch's theorem). For rotating, l Qo~ the analogous
derivation cannot be given.
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B. Stability Criterion (T =0 K')

In order to develop this idea and in particular to
formulate a quantitative stability criterion for a per-
sistent current at 7=0'K, we Grst enumerate a suitable
set of wave functions for the system. Ke consider a
large box of volume Q containing N identical bosons
which are described by a Hamiltonian H. Let (y, (r))
denote a complete orthonormal set of single-particle
wave functions which satisfy prescribed boundary
conditions with respect to Q. The precise nature of this
set is of little interest to us at this point. Boson creation
and destruction operators for the state y, will be
denoted by a,~ and c„respectively. %'e now introduce
the orthonormal set of state vectors

for which
(2.2)

The vector ~0) is normalized to unity, and it is
characterized by

r4i 0)=0 (all s). (2 3)

It will be recalled that
~
{N,)) is the second quantized

representative of the N-particle configuration space
wave function which is a symmetrized product of
single-particle functions, whereby X, particles occupy
the state y, . The set of vectors (2.1) comprise an
orthonormal basis for the Hilbert space appropriate
to the N-particle system.

Consider now the set of eigenvectors
~
u) and eigen-

values E of H or, as is more reasonable to expect, a
suitably truncated form of B. In particular, consider
an eigenvector ~u, N, ) of this set of energy E (N.)for-
which the occupation number X. of particles in the
current-carrying single-particle state q. is macroscopic:

(u,N.
~
a.ta.

~
u,N. )=N, =O(N) . (2.4)

For example if the container is a cylinder symmetric
about the s axis and if l, denotes the s component of the
single-particle angular momentum operator 1 then a
possible choice of y. is one for which (y, ~l,

~
rp. ) is

nonzero. Now imagine that the system is prepared so
that at some chosen instant of time it is in the macro-
scopic current-carrying state corresponding to the
eigenvector ~u,N.). The question is, will the system
remain in this state or, because of small stray external
perturbations, will it undergo rapid transitions to other
eigenstates of H of diminished total currents

To answer this question consider those eigenvectors
of H which differ from

~
u, N, ) in that o(N) particles are

redistributed into other single-particle states. %e label

' A number EI will be called macroscopic or of order N, written
XI=0(E},if in the usual limit that E,O~ ~ with N/0 held
constant ("volume limit" ) the quantity E&/X is nonzero. If in the
volume limit EI/E is zero we write NI=o(E). I'inally, two
macroscopic numbers $1 and E2 will be said to be "equal to order
Ã' if in the volume limit (Eq Xr)/iV is zero. —

Now if the system were inclined to make a transition
because of an external perturbation from the state
corresponding to

~
u,N, ) to a state corresponding to an

eigenvector
~
u) even of lower energy featuring either a

di6erent value (to order N) of (u~u, tr4~u) or macro-
scopic occupation of p, ~~.), the system would, in
general, first have to pass through a succession of
vectors of the type ~u+bu, N, ).s Therefore, if for all
vectors

~
u+bu),

E-(N.) (E~ (N,), (2.7)

the system will remain in the state corresponding to the
eigenvector

~
u,N. ) even though there surely exist other

eigenvectors j u) (not of the form
~
u+bu, N, )) featuring

still lower energy. That is, if (2.7) is satisaed, then a
metastable persistent current occurs in the system
initially placed in the physical state corresponding to
the eigenvector

~
u,N.). If, however, there exists even

one state
~
u+bu, N, ) for which (2.7) fails to hold, the

system will make a transition from
~
u,N. ) to

~
u+bu, N, )

and the prepared current will be rapidly dissipated.
The metastability criterion (2.7) has been stated in

general terms without reference to any given model. '0

In the following two sections we shall apply this crite-
rion to the system of particles when described by two
diferent truncated versions of H. Our immediate goal
will be to obtain quantitative conditions on the class of
acceptable current-carrying single-particle states p, for
which the system will support a metastable persistent
current.

IQ. QTTDEPE5'DENT-PARTICLE MODEL
(7'= O'K)

Assume that the system of N bosons is confined to a
cylinder of volume Q with radius R and height 1. and

Exceptions to this could occur for large coherent perturbations
capable of effecting a simultaneous evacuation of 0(E) particles
from the current-carrying state q, . Such perturbations are eGm-
tively excluded since as is usual in statistical mechanics the
system of interest is to be thought of as weakly coupled to the
external world.'It is perhaps worth pointing out that (2.7} is the analog of
the familiar metastability criterion of classical mechanics for a
particle which is in the immediate vicinity of a local minimum of
a potential 6eld of force.

'0A similar criterion has been employed in the problem of a
persistent electric current at zero temperature in a Bose-Einstein
model of a superconductor by F. 9loch and H, E. Rorschach,
Phys. Rev. 128, 1697 (1962).

these eigenvectors by ~u+bu, N.+o(N)), or, since
N. =O(N), simply as

~
u+bu, N, ), and their eigenvalues

by E +s (N.). More precisely, if bN, denotes the differ-
ence in occupation number of the state q, for the vectors
~u+bu, N. ) and ~u, N, ), i.e.,

bN, = (u+bu, N,
~
a.ta,

~
u+bu, N, )

—(u,N, ia, ~a, iu,N, ), (2.5)
then

(2.6)
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that for simplicity the particles interact via the two-

body potential V;,=X8 2(r,—r,). If A=Stra, this choice
of potential is recognized to be that describing hard
spheres of diameter u in the approximation of the Fermi
pseudopotential. ""The single-particle wave functions

y, (r) discussed in Sec. II will be of the form

tt, (r) = v kgn(»8 s) =f1 '"e'"*+"'f«(») (3 1)

where I is an integer, k is an integral multiple of 2gr//I,

and the radial function ft is real and vanishes for»= R.
Thus q, satisfies the following boundary conditions

following truncated version of (3.S)

Ifg 2 2 eggs tgs+ 2 Vetgstts ttstgg ttg
S et t(+S)

+2+ Vssaatts tte ttstts g (3 g)

where T,= T„.gg The eigenvectors ~tg& and eigenvalues
E of Hg can be written down at once [see Eqs. (2.1)—
(23)j:
I-)= I(A.»=rr [(A.I)-"(.')" jl0&, Z A.=~,

(3 9)

gtg, (E,8,z) =0. +-'.P V...,S,(X,—1). (3.10)

ttg(»8g, s+L) = trg, (r, 8+2grg s) = p, (», 8as), (3.2) Esa P TaEa+ P VaggsEaXg
e s, t (Qe)

(3.3)

Furthermore, the orthonormality of the p, is assured

by the requirement

d»»ftnftn' = 2~ 8nn' ~ (3 4)

where

ss' ee'tt'

Tee& = Te&e= d f Ps& V Pe

2 R

= ——4a ~«
E.' 0

d»»ft„.

idc' d P
X ——

~
» fg„—k'—+—fg„, (3.6)

»d»k d»»
Vstt's' V(klilmlsk2' ' ' skg ' skg ')

d»1 d»2 22 (rl) vgt (f2)Vg2'Pg'(f2) gtg '(rg)

(lt/tl)8kg+kg, kg'+kg'8gg+gg, tg'+lg'(2/1~ )
R

X d»»ftgngfggngfgg'ng'fgg'ng' ~ (3.7)

The selection rules on the z components of linear and
angular momentum in the matrix elements (3.6) and
(3.7) simply reflect the translational and rotational
invariance of the system with respect to the z axis.

The first model we shall investigate as regards the
existence of a persistent current is that described by the

"Except where noted to the contrary we employ units so that
A=2m= 1, where m is the mass of a particle.

~ For example see K. Huang and C. N. Yang, Phys. Rev. 105,
767 (1957).

In the second quantized representation where the p,
are basis functions the Hamiltonian of the system is

+ea'tka tta'+2 Z Vett'a'tta ttt ttt'tts' s (3 5)

ee-.=x(' ) gtt (3.11)

where the subscript a means that the partial derivative
8E/8', is to be evaluated for the occupation numbers
appropriate to the state

~
t2,X.&. As the total number 1V

of particles is fixed, i.e., g, 8Ã, =0, we have

(3.12)

Now the numbers bX, („,) are in the nature of inde-
pendent variables. It then follows that the metastability
criterion can be satisfied if and only if each term of the

"Note that for the delta function two-body potential the direct
and exchange interaction matrix elements V,«, and V,&,& are equal.

Despite their simple structure the eigenvectors (3.9)
can, as is well known, partially incorporate correlations
between particles due to their mutual interactions by
choosing the y, as solutions of a single-particle Schro-
dinger equation with self-consistent potential. For
example, minimizing E of (3.10) for given occupation
numbers E, with respect to the y, yields the usual
"Hartree-Fock" equations. Ke will return to this
question later in this section.

We now consider an eigenvector ~gk, X,& of Hg with
eigenvalue E-($.) whereby a single-particle function

22( )rof the form (3.1) with /NO is occupied by
X,=O(E) particles. As discussed in Sec. IIB, this
eigenvector corresponds to a persistent macroscopic
current state of the system if, for all eigenvectors
~gk+8tg, 1'',) with eigenvalues E +t (X.) which ca-n be
obtained from ~g2,X.& by reshuffhng o(Ã) particles
[see (2.5) and (2.6)j, all energy differences

dE ,=E +t (E.)—E (1V-,)--
are positive-definite. For nonlocalized radial functions
ft„, the matrix elements (3.7) are 0(1/0). Because of
(2.6) it then follows that these energy differences are
0(1V). Thus AE- may be calculated as
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TAaLE I. Assorted roots p~„(n =1, 2, ~ ) of the Bessel functions J~(x).

2.405
5.520
8.654

11.792
14.931

3.832
7.016

10.173
13.324
16.471

5.136
8.417

11.620
14.796
17.960

6.380
9.761

13.015
16.223

7.588
11.065
14.373
17.616

8.771
12.339
15.700

9.936
13.589
17.004

11.086
14.821

12.225
16.038

sum for which bE, /0 is positive-de6nite. ' But such is
clearly impossible if bE, can take on both positive and
negative values t The positive de6niteness of hE- can be
ensured only if all the particles occupy the state p„
i.e., E,=Eh„, in which case 5E,~~,) &0, and further if
the net energy change of the system upon removing one
particle from y, and placing it in any other state y, is
positive-de6nite, i.e.,

co~~~ed to the cylinder. Making use of the boundary
condition (3.3) and the normalization condition (3.4),
one 6nds, in this case,

f(„(r)=Cg„J((pg„r/R), (n=1, 2, ), (3.17)

where p~„denotes the nth root of the Bessel function
J~(x), and C~„, obtained by using the identity

dx xJi(pI, x)Ji(p(„x)= ,'[J('(pi„)-$'8„„, (3.18)
all s 4c. (3.13)

is given by
Thus in the framework of the model Hamiltonian (3.8)
only those of its eigenvectors (3.9) which are of the form

(3.19)Ci.=1/J/(pi ).

I
8'&=(&') '"(~')"I0&

Substituting (3.17) for f~„ in (3.6), the kinetic energy is
(3 14) easily found to be

whereby all particles occupy the single-particle state
y„and which ensure that the inequalities (3.13) are
satisied will, in fact, describe a metastable persistent
current.

%e turn now to the question of which single-particle
functions (3.1) of a given complete set are such as to
ensure that (3.13) is satisfied. Using (3.10) and the fact
that X,=Lb„ for eigenvectors (3.14), one has

=2',+ 21VV„„, (sWc);
(3.1S)

-=T,+ Sv„„, (s=c).

The inequality (3.13) now takes the form

2. r.+X(2V„„V...—.)&0. (3.1—6)

But now in order to proceed further we must become
more explicit concerning the radial functions f~

of (3.1).

A. Free-Particle Eigenfunctions

As a 6rst example we assume that the y, are the
solutions of the Schrodinger equation for a free particle

'4 It is helpful to regard the set of numbers fE,) as the general-
ized coordinates of a point in a space. The physically meaningful
sector of this space is that for which all E,&0. The constraint
Z,E,=E can then be visualized geometrically as the (inite)
portion of a hyperplane passing through the physical sector. Now,
except perhaps for a pathological III, the energy eigenvalue E of
a macroscopic system when regarded as a function of {E,) has no
minimum interior to the physical sector. Hence (3.13) rather than
(BE /BE,)-—(BE /BE,)-=0, is equivalent to the stability
criterion {2.7). Indeed using (3.10) one can explicitly show that
(BE /BE,)-—(BE /BE,)-=0 cannot be satis6ed for all s if E&0
and T,~T,.

V--= (2&/f~)LA'(pi. )j-' dx xJ,'(p, „x),
0

V„,.= (2X/fl) LJ,.'(p, , „,)J,'(,„g-

(3.21)

X dx xJp(p)„x)Jrm(p, , „,x). (3 22)

Ta= I kin =k2+ (p 2/R2) (3 20)

In the following the quantum numbers generically
written as c and s in (3.16) will denote the two sets
(kfn) and (kVn'), respectively. Note first that if the
particles are noninteracting, the inequality (3.16) which
becomes

k" k'+ (pi ~'——p(~')/ 'R) 0, all (O',P, ')n,

can be satisfied for given (kin) only if k=k=0, n=1.
This follows because pQ~ is the smallest of all roots of the
J~(x) (see Table I). Thus for the ideal Bose-Einstein
system only the single-particle state pQQI of lowest
kinetic energy, a non-current-carrying state, satis6es
the stability criterion (3.16). In short, a persistent
current cannot occur in an ideal Bose-Einstein system.
Stated somewhat diGerently, in order that a persistent
current be possible the interacHons between particles
must be such that the net change in energy of the
system upon removing a particle from the current-
carrying state y, and placing it in a diferent state p,
even of lower kinetic energy must be positive.

Substituting (3.17) for fg„ in (3.7), the matrix ele-
ments V„„and V„„become
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TABLE II. Matrix elements (X/0} ' {2V„„—V„„) for the
states p„s= {l„n,), and p., c= (l.,e,), of Eq. (3.17), and the sign
of the kinetic energy differences T,—T,. In all cases, k, =k, =o.

gc (o, i) (i, i) (2,1) (3,1) (1,2)

(0,1) 137—
(o,2) 0.35, +
(o,3) 0.48, +
(0 4) 0.50, +
(0 5) 0.52, +
{1,1) 0.75, +
(1,2) 0.72, +
(1 3) 0.61, +
(2,1) 0.00, +
(3,1) —0.46, +
(4,1) —0.77, +
(5,1) —1.oo, +

0.64, —
0.24, +
0.18, +
0.19, +
0.19„+
1.38, —
0.21, +
0.22, +

0.14, —
0.30, —

—0.03, +—0.02, +—0.01, +
1.04, —

1.45, —

1.46, —
1.26, —

0.65, +
0.21, —

1.05, +—0.25, —
—0.36, —

"This work made use of computer facilities at Princeton
University which are supported in part by National Science
Foundation Grant NSF-GP579.

The integrals in (3.21) and (3.22) have been calculated
with the aid of a computer for a variety of quantum
numbers (ln) and (1'n')."Using these results, we have
collected in Table II sufficient values of (X/0) '
(2V„„—V„„) so as to indicate when the stability
criterion (3.16) is satisfied. The quantum numbers k
and k' have always been set equal to zero since nonzero
values of k" and k' misleadingly enhance or suppress
the possible positive values of the left-hand side of
(3.16).

The relevant parameter in the following discussion
is )pR, which, roughly speaking, is the ratio of the mean
interaction energy between pairs of particles to the
single-particle zero-point kinetic energy. The symbol p
denotes the mean number density X/Q. By consulting
Table II, it can be seen that the states (p = happ]] and

pp», although of higher kinetic energy than the state
(poQ$ are such that the stability criterion (3.16) is
satisfied so long as XpR' is su%ciently large. In particu-
lar, the stability criterion is satisfied if XpR' is larger
than 6.5 and 32.3, for qp~~ and pp» respectively. The
state pp» is a less likely possibility for although transi-
tions to the lower kinetic-energy states ppp&, yp», yp»,
+002 will not occur for sufFiciently large XpR' there
is the added difficulty that 2V„„—V„„is negative
even for the higher kinetic-energy states &003 +004,

~ .Finally, for the state pp» the stability criterion
(3.16) cannot be satisfied since transitions to yogi and

yp3j mill occur irrespective of the value of the ratio
XpR'. We should also point out that, according to the
data of Table II, transitions are possible from p, = pppy

to states q, = F03~, q04~, y05~, . , but only if XpR &70.
For such large values of 3 pR' the use of free-particle
eigenfunctions (3.17) would be unjustified; instead one
should use the Hartree eigenfunctions described in
Subsec. IIIB.

The data in Table III indicate under what circum-
stances the system is stable against transitions from

TABLE III. Matrix elements ('A/0) ' (2V„„—V„„)for assorted
states q., c= {O,l„n,) and q, = qpp1, the single-particle ground
state. All single-particle states are of the type {3.17).

{l„n,}
{1,1}
(1,2)
(2,1)
(2 2)
(3,1)
{4,1)
(5,1)
(6,1)

{X/0) ' (2V„„—V„„)
1.37
1.46
0.64
1.25
0.14—0.24—0.54—0.78

various states p, to the single state q, = happ&. With the
possible exception of the state (pp22 no states other than
those mentioned in the previous paragraph satisfy the
stability criterion. In fact, further analysis shows that
qp~2 also is unacceptable. Thus we conclude that only
the single-particle states yp~~, y02~, and p03~, or more
properly the X-body eigenvectors (3.14) constructed
from these, can support a persistent current and then
only if XpR' is sufficiently large. Note the strong de-
pendence of our conclusions, as to which states satisfy
the stability criterion (3.16), upon the size of the radius
of the container. Finally, it is important to observe that
there is a critical angular momentum which a persistent
current can carry; in the present model it is 3$h, a
value which cannot be exceeded no matter how large
the value of ApR'. The reason for this small value is that
free-particle wave functions are not appropriate for
describing the condensate when the interactions are
strong. Such wave functions decrease the size of the
matrix elements V„„from the value they would have
in the actual system and thus reduce the effective two-
particle interaction. This leads us to consider a more
appropriate set of basis functions.

E (S)=E(T,+i2XV„-„)-
=X — d'r v"*&'y,+pE d'r~ y, ~4 . (3.23)

We will choose for q, that function of the form (3 1)

p, (r) =0-'~2e'i~);(r), (]~p)
which satisfies (3.2), (3.3), and (3.4) and which mini
mizes &-.(N).i6 The minimizing function satisfies the

"In this expression for q, we have chosen k=o so that thfactor e'"* in (3.1) is unity; a nonzero value of k increases the
eigenvalue e in (3.24).

S. Hartree Eigenfunctions

Our second choice for the set of single-particle func-
tions q, (r) will be guided by our earlier finding that
within the framework of the model Hamiltonian B&
persistent current eigenstates correspond to vectors
~cT.,E) of (3.14) which ensure that (3.13) is satisfied.
The eigenvalue of Hi corresponding to

~
cx,A) is
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v(r) = j (r)/p(r)

where j(r) and p(r) given by

(3.25)

and

(3.27)

are the expectation values in the state I%') of the local
current and particle number density operators, respec-
tively. For the Hartree function g; oo, (r;), one finds

v(r) = (h//tnr)8,

where 8 is a unit vector in the direction of increasing
azimuthal angle 8. The vorticity VXv for this Quid Qow

is zero except along the line r =0, whereas the circulation
1s

v dr=hi/no (3.29)

for any closed path encircling this line. These properties
are characteristic of a Quid containing a single line
vortex with circulation quantized in units of h/m. Such
Qow states in liquid helium were 6rst predicted by
Onsager, " and their existence has been conclusively
established experimentally in recent years. "

The objection might be raised that because (3.28)
and (3.29) are independent of the form of the radial
function fg of q, (r) these same equations, and therefore
presumably the above vortex interpretation, apply even
for wave functions of the form g; e'"~J~(p~ r;/8) which
describe the noninteracting system. The answer to this

'7A discussion of the vortex-type solutions of the Hartree
equation (3.24) and a list of references to work by others can be
found in E. P. Gross, J. Math. Phys. 4, 195 (1963).The series of
recent articles by A. L. Fetter, Phys. Rev. 138, A429 {1965);138,
A709 (1965); 140, A452 (1965) should also be consulted."In order to conform with the usual discussion of vortices with
quantized circulation we will in this paragraph employ usual units
so that h =2~5 is Planck's constant and m is the mass of a particle.

'11 L. Onsager, Nuovo Cimento Suppl. 6, 2, 249 (1949).
~ G. W. Rayheld and F. Reif, Phys. Rev. Letters 11, 305

(1963).

Hartree equation

—woo +xNI o I'o = oo . (3.24)

In particular, we are interested in the solution of (3.24),
satisfying the previously mentioned conditions, which
for given / is associated with the smallest eigenvalue.

It is rather remarkable that the vector (3.14) Lor
equivalently the con6guration space wave function
g„P oo, (r„), where y, is the required solution of
(3.24)) describes a vortex with quantized circulation. "'
%e will brieQy review the arguments for this interpre-
tation. One can deine the velocity of a system at a
point r when in a state 4'(r&, ,r„) by

question derives from the essential difference between
the local number density p(r) of the noninteracting
system and that of the system with wave function
constructed from solutions to (3.24). For the non-
interacting system

V'q, +XNI oo—.I'y, =,oo, (3.30)

subject to the boundary conditions (3.2) and (3.3). As
before, q, is the required solution of (3.24). Note that
p, and o,= o, the required eigenfunction of (3.24) and
the corresponding eigenvalue, satisfy (3.30). For pur-
poses of tractability we must settle on an approximate
treatment of (3.30). Based on the discussion in Appen-
dix A, as long as 1/o'=AN/Q))l, o/R' it would appear
reasonable when calculating q, (~.~ to approximate y,
as Q

—'"e"oand o, by X /NQIn that case the solutions of
(3.30) are easily found to be

p, (r)= poi (r)=Q-'~oe' "*+pJ ( „r/p)/J'( „)5,

ooin =h'+ pin'/&'+AN/Q

(3.31)

(3.32)

with the exception that for the set of quantum numbers
(h, l,n) = (O,l„1)we define pot, z and oos, s by the approxi-
mate forms of y, and e,. That is,

Q-1/2~ii g8 (3.33)

oo~,y =XN/Q . (3.34)

Note that the eigenfunctions p, (~,) are identical to
those considered in Subsec. II'.Note further that with
the exception of the matrix elements J'd'r p*«,oooo&, ,
we have J'd'r o,*q, =h„.

In line with our earlier comments that the S-body
state g; oo, (r;) describes a line vortex with circulation

"A similar situation occurs for a cubic container where one has
standing waves or plane waves as solutions of a free-particle
Schrodinger equation depending on whether rigid wall or periodic
bounda~ conditions are prescribed.

N J((pg r/E)-'
p(r) =

Q Ji'(pi„)

which is a function of considerable variation even for
n=1. This behavior is not surprising; because the
function e'"J~(p~„r/E) describes a free particle it is
strongly dependent upon the form of the boundary
conditions imposed at the walls of the container. "By
contrast if y is the required solution of (3.24) and
Io/E C&X1V/Q, as discussed in Appendix A the density is
virtually uniform except in the immediate vicinity of
r=0 and E where it drops to zero. On this basis the
vortex interpretation is justifiably limited to X-body
functions based on (3.24).

In principle, a complete orthonormal set of single-
particle functions can now be obtained by 6nding all
eigenfunctions of the linear self-adjoint equation
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I,k/m, the energy E (E-) of this state Lsee Eq. (3.23)j is

E (E) -=-,') N'/Q+2xlP(E/Q)L ln(R/lo), (335)

where
~=(~p) '" (3.36)

(3.38)

Now even if we drop the positive term pr„'/R', this
inequality which becomes x-lnx) 0, where x=XpR'/I, ',
is satished for all values of x. That is to say, so long as
Xp» lg/R', in which case (3.31) and (3.33) are good
approximate solutions of (3.30), the E-body eigen-
vectors (3.14) constructed from (333) describing single
line vortices with circulation /. (k/ns) correspond to
persistent current-carrying states of the system. When
the strong form of the inequality fails to hold, (3.31)
and (333)no longer comprise the approximate solutions
of (3.30). In fact, for successively smaller values of the
ratio XpR'/l, ', the more nearly does (3.24) become the
Schrodinger equation for a free particle in the cylinder
and the analysis of Subsec. IIIA becomes relevant.
Thus if XpR'/l, m is decreased to a certain critical value
the system becomes incapable of supporting a persistent
current for the single-particle angular momentum t, .

We remark at this point that the fact that our
condensate wave function y, describes a single line
vortex does not imply that our results are invalid for a
system throughout which there are distributed many
vortices. The crucial point here is that (3.37) holds
solely because p, is approximately constant almost

"Inasmuch as the matrix elements V„„and V„„(see (3.7))
remain 6nite when calculated using (3.31) and (3.33) there is no
need to replace (3.33) by an expression which shall vanish as
r —+ 0 as does the exact solution y, of (3.24). Furthermore, the
resulting error in the matrix elements is ignorable since as dis-
cussed in Appendix A the radial part of q, is constant except
within a distance l(Xp)»&~ of the cylinder axis.

As discussed in Appendix A, to is the distance from the
axis of the cylinder beyond which the Hartree function

p, is uniform. Equivalently, 4 can be thought of as the
core radius of the line vortex. The result (3.35) is
obtained by assuming that y, is given by (3.33) in the
range to.&r&E. and zero in the range 0&r&to..~ This
choice of q, is an adequate facsimile of the exact
solution of the Hartree equation (3.24). Note that the
second term on the right-hand side of (3.35) has the
same form as that of the energy of a classical line
vortex.

Using the single-particle wave functions (3.31) and
(3.33), the matrix elements V.„,and V„„are found
to be

V~k k k k. )C p 8 p 8 y C

= V(k, ,k, ,k, ,k. .) =X/Q, (3.37)

so that the stability criterion (3.16) is easily found to
take the form

everywhere. In a system where y, described many
vortices, this would still be true so that V„„would still
be =X/Q. On the other hand, for a given total system
angular momentum, T, would be lowered by the distri-
bution of vortices throughout the volume, as is well
known from the theory of supertIuid hydrodynamics.
We then see from the form of the stability criterion
(3.16) that in this case our basic conclusion would still
be valid.

Summarizing the work of Subsecs. IIIA and IIIB,
we have found that the model Hamiltonian (3.8) does,
in fact, possess eigenvectors which describe persistent
macroscopic current-carrying states of the system.
However, in Subsec. IIIA we found that no matter
how large the value of ApR' the number of single-
particle functions q, for which the stability criterion
(3.16) is satisfied does not exceed a particular finite
number. By contrast, for the single-particle functions
of Subsec. IIIB we have found that so long as
&pR'» l.', p. given by (3.33) is such as to satisfy the
stability criterion.

IV. QUASIPARTICLE MODEL (T=0'Kl

It is a simple truism that the replacement of a
physical system by a model is credible only if there are
strong reasons for believing that the essential features
of the real system are reflected in the model. Now
although the properties of the model studied in the
previous section are quite satisfying and give consider-
able insight into the nature of a persistent current in a
many-boson system, there is little basis for claiming
that the model is an accurate facsimile of the actual
system described by the Hamiltonian (3.5). In this
section we shall formulate a model which is not only
tractable but also has a basis as a reasonable approxi-
mation to the actual system.

It will be recalled that in his classic work on the
nonideal boson gas Bogoliubov~ was led to construct a
model replacement for the actual Hamiltonian by
invoking the following argument: At sufficiently low
temperatures one expects that a macroscopic number
$0——O(X) of particles of a system of interacting bosons
will occupy the single-particle state of zero momentum
(Bose-Einstein condensation), paralleling the behavior
of the ideal boson gas. It is reasonable then in an
approximate treatment to retain only those terms of the
complete second-quantized Hamiltonian which involve
products of two or more zero-momentum single-particle
creation and destruction operators co'~'. In addition,
Bogoliubov23 argued that as a further consequence of
the Bose-Einstein condensation it is plausible to replace
the operators ao and co~ by the c number Eo'I'. Analo-
gously, we argue that if a macroscopic number of par-
ticles occupy a current-carrying single-particle state p„
then it is a reasonable procedure to retain only those
terms of (3.5) which involve products of two or more

~ N. N. Sogoliubov, J. Phys. (U.S.S.R.) 11, 23 (j.947),
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a, (~' operators and further to replace these operators
by E,'I2. Assuming that only one single-particle state
cp, is macroscopically occupied, we obtain a Hamiltonian
of the form'4:

Hg= (T, p)X—,+,'X, (-jtl, 1)—V.„,

In the following it is assumed that the single-particle
functions satisfy (4.4) and thus the linear terms which
would otherwise appear in (4.1) are absent. In particu-
lar, if the macroscopically occupied state is p.= pI, &j.

then, as discussed in Appendix A, if Xp,E.'&&P, the
approximate eigenfunctions of (4.4) are given by

+2'fyq. o.+q,~ 'o.+q, ~ ~ (r) ~ t (r) Q-1/2~i(tcc+tg) (4.5)

where

+~~ q~&aI q, ~ ~ uq+q, ~~+"
+ttgg. q, t+ ttg q, t- )j, (4.1)

+ cpc+~+c~ cpc~ tpc= gccpc I

+ cpc+~lt/cl cpcl tpc= qccp» (s/c) & (4.4)

subject to the boundary conditions (3.2) and (3.3).
These equations differ from those of (3.30) only in that
X, is a number which may differ from Ã; the actual
value of E, will be determined later in this section. A
consequence of these equations is that T„+S,V„„=O
as claimed above.

We have further simplified the Hamiltonian by dis-
carding all terms involving operators a, (~) relating to a
state q „s=(k„l„l,), for which gt, /1 The jus.ti6cation
for this procedure stems from the fact that the single-
particle state with n, =1 corresponds to the smallest
eigenvalue e, for the given quantum numbers k„ l, and
therefore transitions to or from higher energy states
gt, )1 are of less importance. Finally, in (4.1) and
throughout the following, a prime on a summation sign
means that m and g cannot both be zero.

"In the following it will prove convenient to add the terms—pZ, a,~a, to the Hamiltonian (3.5), where p is a Lagrangian
multiplier. One should not identify jib, with the usual chemical
potential of a system, a parameter characterizing the thermal
equilibrium state of the system. The actual definition of p will be
given somewhat later in this section."The linear terms arise because of the absence of any selection
rules for the quantum number n in the matrix elements of (3.6)
and (3.7).

"This procedure has been used by E. P. Gross, Nuovo Cimento
20, 454 (1961).

fqm= Tg+qt+m,

+2Ã, V(k+q, 1+m; kl; kl; k+q, 1+gtt), (4.2)
and

h,„=h,, =X.V(k q, l —gttk+—l, t1+m;kl;kl). (4.3)

In obtaining (4.1) we have eliminated terms of the
form" E,t tgP, '(T„+X.V,...) (u,+a.t). The presence of
these terms can be a source of great difhculty, for upon
diagonalizing the Hamiltonian which includes them one
finds, in addition to the consistent result that the
single-particle state q, = q I, ~„ is macroscopically oc-
cupied, that all states yI, ~„(g ~

are likewise macro-
scopically occupied. Such a result contradicts the start-
ing premise that the sole "preferred" single-particle
state is p, . This difhculty is avoided by choosing the
single-particle functions q, as solutions of "

cpc tccct = cpg't't (r)
=0 't'e" '*+""LJ t. (pt. tr/&)/Jt'(pt. t)j. (4.6)

The diagonalization of (4.1) is readily achieved by
introducing new boson destruction and creation opera-
tors bI, q, ~ and bI, q, & ~, respectively, defined by

ak—q, l—re Nqmbk —q, l—m+vqmbk+q, /+m (4.7)

where the c numbers u, and v, are such that I,„,
=u q, ~=uq~~ and vqm ——v, ~=vq~~. To ensure that
these operators satisfy the Bose-Einstein commutation
relations, we must impose the restriction that

Nqm' —vq~'= 1. (4.8)

Substitution of (4.7) into (4.1) yields an expression
which is diagonal in the new representation if

(fqm+ f q, m)Nqm'Vqm— +—hqm(gtqm +Vqm )=0 ~ (4 9)

The simultaneous equations (4.8) and (4.9) have as
their solutions

Nqm'= g[ggqm '(fqm+f q, m)+15-, -
&q-'= g Pg gq='(fq-+f q.=) 1jc-—

where

gqm=~q m=f ,'(fqm-+f q,-=)' hq 'j'"—
As a result of this transformation, II2 becomes

H, = IV+ Q'ggqmbg+q, t+ tbg+q, t+„,

(4.10)

(4.11)

(4.12)

and
tdq =gq +g(fq f q)&tg —

q, -,— (41-4)—

The form of (4.12) shows that Hg possesses a ground-
state eigenvector, i.e., the eigenvalue spectrum of H&
has a finite lower bound, if in fact

tdq )0, (all q, gtt/0). (4.15)

This eigenvector, denoted by ~0), describes a state
with no b excitations:

b, ~0)=0, (all q, m&0). (416)

The ground-state energy of Hg, again only when (4.15)

where

W= (T. tt)1V,+xgS, ($,—1)V„„—
+gE'L~qm g(fqm+ f q, m) j—) (4.13)-
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holds, is lV. Note carefully that because

E,= (0[a,ta, [0)=O(E)

the ground-state eigenvector of H2 corresponds to a
macroscopic current-carrying state of the system.

The parameters p, and S, are determined by the
auxiliary conditions, erst, that the total number of
particles in the system is E, and second, that 8" is
minimized with respect to variations of X„'~ that is,

E,=E P'(0—[as s, i tas s, ) [0) (4.17)

and
(BW/BE, ) (E.,ii) =0 (4.18)

Upon using (4.13), one easily finds that (4.18) becomes

p = Ic+~~cVcccc ~ (4.19)

Using (4.2), (4.3), (4.11), and (4.19) one can solve for
X, from this equation. Note carefully that the value of
E, will depend upon / but not k.

We are now in a position to discuss the possibility of
II2 describing a persistent current. The normalized
eigenvectors and eigenvalues of this Hamiltonian are
given by

[a) = [(tt,))=II [(tt.[)-"~'(b.-, i ')" j[o), (4.»)

E.=W+Q' tta-, , i ~s-s, i- . (4.22)

Note that the eigenvectors (4.21) are not subject to the
auxiliary condition p. n, =E as was the case for the
eigenvectors (3.9) of Hi. For those eigenvectors (4.21)
for which g, n, is a finite number, the expectation
values (a[a,ta, [a) differ from E.=(Ola. ta

I

number o(E).ss In terms of the notation of Sec. IIB the
current-carrying ground state [0) of Hs corresponds to
[a,E,), whereas the eigenvectors described in the

'7 N. M. Hugenholtz and D. Pines, Phys. Rev. 116, 489 (1959);
A. E. Glassgold, A. N. Kaufman, and K. M. Watson, ibid. 120,
660 (1960).

"This can easily be verified by using (4.7) to express a, tu, in
terms of the b(t& operators.

In obtaining this result we have ignored a term of the
form E, V...,(pcs)' IsXF(X pR'), when F is a function

only of the indicated variable. It is well known that the
Fermi pseudopotential V;, =ebs(r, —r,), ), =8wa, de-

scribes hard spheres, of diameter a, only if pa C&1."Thus
it is justified to approximate p by (4.19) since the re-

striction pa C(1 nevertheless allows Xp,E.' to be very
large compared to one; as discussed in Sec. IIIB, this
allows us to interpret the single-particle solutions of
(4.4) in terms of line vortices. Returning now to (4.17),
this equation can be rewritten with the aid of (4.7) and

(4.16) as

E,=E ',P'[-'», —-'(f. +f ., ) 1j-—(4 2—0)

so that

fs(v)=q'+Xp, +v q, h, (v)=X.p,

e.(v) =V(V'+»p )'"
(4.23)

(4.24)

a&, (v) =q(q'+2Xp, )'"+v q=u, (0)+v q. (4.25)

This expression gives the energy of an excitation, with
momentum q relative to the drifting condensate (drift
velocity v), as measured by an observer at rest in the
reference frame in which the container is stationary
(lab frame). It is essential to note that the second
equality in (4.25) holds only because p, is independent
of v (for s(v, ), which is easily shown to follow from
(4.20).

~ One might legitimately question our result that the energy
difference between the state [a) baI.~ ~ 1[0=) and [0) isa'+~ i+,
citing the need for our calculations to regect the fact that as one
considers excited states of B2 the number 1V, decreases. This could
be partially incorporated by replacing N, wherever it appears,
especially in W, by the o'aerator a ta, . Then one hss (a[Ps[a)—(0[Hs [0)—as+~, g+~

——(n W[a) —(0 [W [0). Now because

(u [a,ta. [a)—(0 [a,ta. [0)=O(1),
one might argue that (a [W [n) —{0[W [0) is an O(1) quantity and
thus not ignorable. This argument is easily countered by noting
that were we to follow such a procedure the Taylor expansion of
{u[W[a)—(0[W[0) is {0[BW/8{a,ta, ) [0)bN, +o(1), where bN,= (a[a.ta. [a)—(0[a.ta, [0). But (0[BW/S(a, ta, ) [0) is the same
as the partial derivative BW/8Ã, in (4.18) and thus is zero. Hence
(n)W)o. ) —(0)$'t0) =0(1.) and thus is ignorable. Because of this
result we have chosen to follow the simplified, but ultimately
correct, procedure described in the text.

30 L. D. Landau, J. Phys. (U.S.S.R.) 5, 71 (1941).

previous sentence correspond to the eigenvectors
[a~+Ra,E.). We see at once, then, that for the present
model the stability criterion (2.7) is equivalent to the
demand (4.15) that all excitation energies co, of Hs be
positive-definite. " As we pointed out earlier in this
section, this demand must also be satisfied in order that
II2 possess a ground state. That is to say, the state-
ments that IJ2 possesses a ground-state eigenvector and
that it describes a metastable persistent current state
of the system are entirely equivalent.

Before proceeding to study under which conditions
the stability criterion (4.15) is satisfied, we shall utilize
our formalism to study the metastability of linear Qow

through a long channel. We will find that, for this case,
(4.15) reduces to Landau's~ well-known criterion for
linear "superQuid Qow. "

Assume that our system is confined to the interior of
a stationary long channel with, say, a square cross
section. Assume further that a macroscopic number E,
of particles occupy the single-particle state 0 '1'e'"'
where k points along the axis of the cylinder. Instead of
the wave vector k, it will be useful in the following to
introduce the velocity v=2k (in terms of usual units
hk= mv). For this system the interaction matrix
elements V,«... of (3.7) are all given by

V,ii, ——(X/Q)b(k, +k(, k..+k, .),
where B(ij) is the Kronecker delta function. Further,
upon referring to (4.2), (4.3), and (4.19), we find
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that is, if

where
V&, Vg q

s,= (2',)'I'
(4.27)

(4.28)

is the sound velocity in this model. As mentioned above,
the metastability criterion (4.26) for linear fiow was
first obtained by Landau. ~ It is important to remark
that (4.26) can be derived without basing the discussion
on the Hamiltonian IJ2 describing a drifting condensate:
because of the Galilean invariance of the system in

According to (4.15) the metastability of the current
Qow is ensured if the velocity v is such that

co, (v) =~,(0)+v q&0, (all q/0), (4.26)

question, if the spectrum of the excitations is known for
v=0 a simple kinematical transformation yields (4.25),
the spectrum for v/0. The Galilean invariance of the
system is reQected further in the fact that v, is inde-

pendent of v. For the cylindrical geometry and the
persistent rotational Qow, which is the primary subject
of discussion in this paper, there is no symmetry
principle to invoke analogous to Galilean invariance,
and thus the discussion must be based on II2.

Ke turn now to a study of the stability criterion
(4.15) for our system confined to the cylindrical
geometry. Because the single-particle functions are
given by (4.5) and (4.6), the matrix elements V„..and
V„„are again X/0 (see (3.37)j. Straightforward
calculations then yield as the stability criterion

1 ( Xp R' q
~pm= q +

~
p~~, P+p~ P 2P ln — ~+Xp, —X'p 'v'(/ m& /—+m) /, /)

2E p

I /2

where
+2kq+ (1/2R') (p~m, P—pm~, P)&0, (4.29)

l

/+ / /)=2LJ '(p . )A+ '(p4- . )j ' d**J (1,*)J (p, *),
0

(4.30)

and q and m cannot both be zero. We will first demon-
strate the existence of a critical value for k, the s
momentum of the state p, . All quantities within the
square root in (4.29) are independent of k.a' On the
other hand, if ~k~ is chosen suSciently large then for
given

~ q ~
and m, because of the term 2kq, it follows that

co, can be made negative in violation of the inequality.
Note also that the critical value of k is dependent upon /.

Ke shall now determine l~ the largest value of / for
which the inequality (4.29) is satisfied when k=q=0.
This quantity must be such as to satisfy the require-
ment Xp,R'» /jr' so that the single-particle functions of
(4.5) and (4.6) continue to be accurate approximate
solutions of the Hartree equations of (4.4). We now list
several properties of the matrix element (4.30). Using
the Schwarz inequality and (3.18) it is easily seen that

v(/ —m, /+m, /, /) & 1. (4.31)

The equality holds only if m=0. In fact, for fixed l, as
m increases from zero the matrix element decreases
monotonically, at least until m becomes about the same
size as /. Further, as / increases, the value of v(/ —1,
/+1, /, /) approaches unity from below; that is

a(/) =—1—v(/ —1, /+1, /, /): 0+. (4.32)

This result follows from the fact that if pg~' denotes the
location of the 6rst maximum of J~(x), then pn'/pn
approaches unity as / increases. Utilizing these proper-
ties one 6nds that for given / the inequality (4.29) is

"A careful inspection of 44.20) will show that p, is independent
of k.

most suspect when m, =i. Further, we suppose that
&pR'» / P&&1. Using (4.32) and the fact that pl~=/ for
large /, the inequality (4.29) is found to reduce to

Xp,R'//2& expt 1+a(/)l p,R'/Pg. (4.33)

Evidently, the critical value /~ for satisfying (4.33)
will depend sensitively upon the functional form of
n(/). Despite this fact, in order to avoid extensive
numerical work, we have calculated a(/) for large / by
approximating J~(pox) in the interval 0&X&1 by a
function f(X) which is only nonzero for 2(pn'/p«)—1&x&1.In this region it is constant and so normal-
ized that JPdx xf P(x) = 1. With this approximation we
obtain an a(/) which for large / approaches 2/(3/).
Using this result, one finds that if Xp E =10 and. 10
then 4f = 13 and 200, respectively. We must emphasize,
however, that these values of l~ very likely differ
considerably from the values that would result if the
correct form of a(/) were known.

It is worth remarking that, if the matrix element
v(/ —es, /+m, /, /) were identically zero, (4.29) would
reduce to (3.38), the stability criterion for the inde-
pendent-particle model. We therefore conclude that the
effect of the pair excitation terms (uk „~ to~+„~+ t
+H.c.) in (4.1) is to greatly reduce /~ from its value in
the case of the independent-particle model.

V. STABILITY CRITERION (T&0)

In these remaining sections we will extend some of
our previous considerations to the case of Gnite tem-
peratures (T&0). In particular, we will generalize the
stability criterion (2.7) and then study the independent-
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particle model, described by the Hamiltonian of (3.8),
for nonzero temperatures.

Statistical mechanics is concerned with determining
the macroscopic properties of a system of interest about
which only limited information is available. This is
achieved by the general procedure of determining the
average behavior in an ensemble of systems, each
system being specified by the same limited information
which specifies the original system of interest. In
addition, the composition of the ensemble is made in
accordance with the postulate of equal a prMri prob-
abilities and random a priori phases for the quantum-
mechanical states of the system. " For example, con-
sider a system in statistical equilibrium for which we
only know its volume 0, particle number E, and total
energy E with an accuracy hE. According to the above
postulate the member systems of the representative
ensemble are to be chosen to have volume 0 and
particle number E. In addition, it is necessary that
when averaged over the ensemble the probability
amplitude of a system being in an energy eigenstate has
random values for its phase and the same magnitude
for all energy eigenstates of the system lying within the
speci6ed range E and E+AE. For all other energy
eigenstates, the corresponding average is to be zero.
The underlying idea of the postulate is that any
assignment other than equal a priori probabilities and
random a priori phases would favor some of the energy
eigenstates with eigenvalues in the range E and E+dE
in preference to others; this could not be justified in the
absence of more information concerning the system than
is actually available. To date the use of this procedure,
which is based on the notion of a representative en-
semble, has been restricted mainly to the study of
macroscopic systems in thermodynamic equilibrium.

In order to study persistent currents in finite tem-
perature systems, it is convenient to exploit the notion
of an ensemble of systems which correspond to a system
in metastable equilibrium. A system in metastable
equilibrium will be understood to mean one whose
macroscopic properties do not change noticeably over
periods of time which are very long compared to the
time needed for the establishment of equilibrium for
typical thermal phenomena. Implicit in this definition
is the idea that the system in metastable equilibrium
can be described during very long periods of time by one
or more essentially constant macroscopic variables~
X, V, ~ besides the volume 0, particle number X, and
temperature T. The representative ensemble must
therefore be composed of systems all of which are
described by the same values of all of these macroscopic
variables. Furthermore, these systems must be distrib-

"R.C. Tolman, The Principles of Statistical Mechanics (Oxford
University Press, London, 1938), Chap. IX.

gs By a macroscopic variable we will understand any quantity
which serves to characterize a macroscopic state of the system.
For example, the s component of the total angular momentum of
the system is a macroscopic variable.

uted in accordance with the postulate of equal a priori
probabilities and random a priori phases.

All these requirements can be met if one chooses as
representative ensemble what we shall call the restricted
canonical ensemble. In the representation in which the
Hamiltonian of the system of interest is diagonal the
elements of the density matrix describing this ensemble
are to be defined as

(5 2)

where X, 'JJ, . are the quantum-mechanical operators
corresponding to X, I . . ..~ The quantity P ' is the
product of Boltzmann's constant X and. the absolute
temperature T. The quantity g in (5.1) is a normaliza-
tion factor so chosen that Trp=g„p„= 1. By analogy
to the usual nomenclature for the canonical ensemble,

(5.3)

will be called the partition function of the system in
metastable equilibrium. Finally, the ensemble average
(6) of any quantity described by an operator 6 is
given as

(e)=Tr(pe), (5.4)

where Tr( .) denotes the trace operation.
Equations (5.2) ensure that (X)=X, ('ti)= F,

and that the mean-square Quctuations of I:, 'g, are
small; that is,

L(X')—X')/X'= 0 (1)

and likewise for 'ti, . This, in turn, guarantees that
all systems composing the representative ensemble are
specified by the same values of the macroscopic vari-
ables X, Y, as those that specify the original system
of interest. Note further that because X, P, will, in
general, be temperature-dependent, it follows that the
set of eigenstates for which p „ is nonzero also changes
with temperature. Ke should also emphasize that the
elements of the density matrix (5.1) do not vary with
time, for with the aid of the Liouville equation,

i(8p „/W)= (E E„)p „=0. (5.5—)
The last equality in (5.5) follows because, according to
(5.1), p „is zero for m&N. Thus the ensemble average

'4There are metastable systems which require for a proper
treatment consideration of a superposition of nearly degenerate
eigenstates, which is to be contrasted with the demands of (5.2),
which gives conditions on the exact eigenstates of the Hamiltonian.
One example of such a metastable process is a decay. However,
we feel that our treatment is suf6ciently general to be valid for
almost all systems of interest in statistical mechanics. Vfe wish to
thank Professor J. J. Hop6eld for bringing this point to our
attention.

(5.1)

The quantity I„in (5.1) is nonzero and has value unity
only for energy eigenstates n such that
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(8& corresponding to a Schrodinger operator 6 is time-
independent. In summary, the restricted canonical
ensemble differs from the ordinary canonical ensemble
in that the former is composed of a considerably smaller
class of systems, namely, only those systems which are
speci6ed by the same constant values of the macro-
scopic variables 0, E, T, X, Y, as specify the
original system of interest which is known to be in
metastable thermal equilibrium.

It is extremely important to note that the restricted
canonical ensemble defined by (5.1) and (5.2) must be
such that the calculated mean-square Quctuation of the
energy of the system must be small, that is,

(5.6)

If this fails to be the case, a trustworthy treatment of
the system of interest based on the methods of statis-
tical mechanics would be impossible. "

In the above discussion the actual system of interest
is known to be in metastable thermal equilibrium. If,
on the other hand, we attempt to set up a restricted
canonical ensemble to represent a system which we
presume to be in metastable equilibrium, then the
values X, Y, are of course not known, so that in this
case I in (5.1) is nonzero only for energy eigenstates m

such that (5.6) and

where a, ta, stands for X. Note in fact that (5.9) is the
generalization of (2.6) to finite-temperature systems.
Thus the question of whether or not a system at a 6nite
temperature can support a persistent current reduces to
the question of whether or not (5.8) and (5.9) can be
satisfied for the restricted canonical ensemble (5.1).

VI. INDEPENDENT-PARTICLE MODEL (I')0)

In this section we shall 6nd those conditions which
ensure the existence of a persistent current at nonzero
temperatures in the model system described by the
Hamiltonian (3.8). In this model an energy eigenvector,
given by (3.9), is completely specified by the set of
occupation numbers (1V,} for the single-particle states
y, . The corresponding energy eigenvalues are given by
(3.10). On the basis of the discussion of the previous
section, we will set up a restricted canonical ensemble
of the form (5.1). Specifically, the admissible energy
eigenstates, i.e., those for which the density matrix
elements in (5.1) are taken to be nonzero, will be such
that the occupation numbers (1V,}do not differ greatly
from a speci6ed set of values. We further demand that
these speci6ed values of S, be the same as the resulting
ensemble averages &1V,) of the number operators a, ta. .
That is, the admissible energy eigenvectors, to be
denoted by

~
a+bn), are described by the set of occupa-

tion numbers (1V,= (1V,)+n,}for which

(5.7) p~n,
~
=0(1V). (6 1)

are satisfied. Equations (5.6) and (5.7) severely restrict
the number of energy eigenstates n for which p„„ is
nonzero. If an ensemble satisfying these equations can
be found, then it ensures the existence of a metastable
state, for, as pointed out earlier, (5.1) defines a station-
ary ensemble. If, however, these restrictive conditions
cannot be satisfied, then the presumption that the
system is in metastable equilibrium is false.

The above remarks which pertain to any system in
metastable thermal equilibrium are easily applied to the
theoretical study of a system in which a persistent
current is presumed to Row. Based on the work of
earlier sections such a system is to be speci6ed not only
by 0, X, T, but also by a macroscopic occupation of a
current-carrying single-particle state p, . The actual
system of interest is replaced by the restricted canonical
ensemble which corresponds to it. This ensemble is
characterized by 0, 1V, T, and (a,ta, )=0(N), where, as
earlier, &a,ta, ) is the occupation number operator for
the single-particle state p, . In this case, Eqs. (5.6) and
(5.7) are satisfied if

The eigenvector for which (1V,= &1V,)}will be denoted
by

~
a). Now if an ensemble can be found which satisfies

(6.1) and, furthermore, is such that

(1V,)= (a, ta, )=0(1V) (6 2)

for a current-carrying single-particle state y„ then a
persistent current occurs in the system.

Because of the restriction on the size of the n, which
is required by (6.1), the eigenvalue E~ corresponding
to a state

~
n+Bn) is well approximated by the first two

terms of a Taylor expansion

E-+y =E-+Q N, e„ (6.3)

where"

BE )
B1V,)-

= V",+(&1V,)——,') V„„+2P &1V,&V,g„. (6.4)
t (gs)

&a,ta, )=0 (1V),

g ~
(a,'a, ).—&a,ta, ) ~

= o (1V),

(5.8)

(5 9)

It will prove to be somewhat more convenient in the
following to utilize a restricted grand canonical en-
semble. Thus if p denotes a Lagrange multiplier, playing

"K. Huang, Statistica/ Mechanics (John Wiley R Sons, Inc. ,
New York, 1963), p. 161.

"To avoid any possible confusion, throughout this section we
will use the symbols V', to denote the kinetic energy matrix element
of (3.6) and T to denote the absolute temperature.
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where
X=Q(X, ) (6.6)

is the mean total number of particles in the system.
The allowed values of m, in (6.5) should be chosen to

be compatible with (6.1), but as regards this calculation,
we can actually relax this restriction to allow each n,
to take on all values from —(X,) to ~. This procedure
can be justified as follows: The condition (6.1) is
sufhcient, but not necessary, for ensuring that the mean
square fluctuation of the total energy of the system is
small [see (5.6)]. It will, in fact, turn out that (5.6) is
satisfied, when the sum in (6.5) is calculated without
use of (6.1), as long as

e,—p)0, (all s). (6.7)

Thus (6.7) is essentially equivalent to (6.1) for the
purpose of satisfying (5.6), although it should be borne
in mind that (6.1) is essential for the purpose of yielding
(6.3) for the relevant energy eigenvalues E +s .

Following this procedure and using (6.6) and (6.7),
one 6nds

=exp[ —P(E.- —Q(1V,&e,)]II[1—e—«"—»]—'. (6.8)

We have written out one of the intermediate steps in
this calculation to show that (6.7) is necessary to insure
that the geometric series in (6.8) are all convergent. "
The thermodynamic potential is then given bys

XT jng=E- ——P(X,&e,+XTP in[1 —e ~~" »].
8 8

(6.9)

The mean number (V, ) of particles occupying the state
q, is easily found to be

(Ã, )=+'Q ((X,)+I,)
In(}

Xexp[—P(E-—rsX+Q ng(e( —p))]

= [ee&' » —1]—'. (6.10)

Equation (6.10) is the familiar result for the distribution

3' Note that because of (0.7) the terms in the geometric series
for large values of n, are very small, thus justifying their inclusion
in (6.8)."e have denoted the thermodynamic potential by 0, although
the conventional notation for this quantity is 0; throughout this
paper the latter symbol is used to denote the volume of the system.

the role of the chemical potential appropriate to this
ensemble, the grand partition function for a system
presumed to be in metastable thermal equilibrium is

g= Q exp[ P—(E. -g—X++(e, p—)n,], (6.5)

This, of course, does not yet assure that (X,) is in fact
of order X; one needs further that the calculated value
of 1V—g,«,&(a,ta, ) is of order X. The procedure we
shall follow will be to assume that (6.2) is satisfied so
that as regards single-particle states q „s4c, one may
replace p by its value in the volume limit. Equation
(6.10) then reads

so that
($,)=[ee'" '~ —1] ' (sWc),

(N, )=7V P[ee"—"'—1] '.
e(gc)

(6.12)

(6.13)

The starting assumption is veri6ed if the right-hand
side of (6.13) is of order 1V. We will return to this ques-
tion later in this section.

With p given by (6.11) we can rewrite (6.7) as

BE) BE
e,—e,=

i

— )0 (sWc). (6.14)
BXP- BX.

This requirement can be restated in the following
physical terms: q, may be chosen as the macroscopically
occupied state only if the net energy difference upon
transferring a particle from that state to any other state
y, is positive-definite. Note further that (6.14) reduces
at T=O to (3.13), the stability criterion in the zero-
temperature treatment of this model in Sec. III. This
result follows since (6.13) and (6.14) imply that
E,=Lb„at 1=0, in agreement with our earlier work,
thereby ensuring that the derivatives in (6.14) are
evaluated for the same values of (1V,) as in the zero-
temperature work. As such we shall refer to (6.14) as
the persistent current stability criterion for all tem-
peratures for the independent-particle model.

At this juncture we remark that upon using the
formula

—Q, zy

(6.15)

where
s= e», (6.16)

and the expression (6.9) for 0, one finds that (5.6) is

function of a gas of noninteracting bosons with single-
particle energies e, . Note that as a consequence of (6.7)
all the (X,) are positive.

At this point we wish to call to the reader's attention
the fact that this result can also be obtained from a
method based on maximizing the entropy of the system.
This method, which is treated in detail in Appendix B,
gives added insight into the treatment of persistent
currents in 6nite temperature systems and complements
our present approach which is based on ensemble theory.

To ensure that the current-carrying state y, is the
only state which is occupied to order E, the I.agrange
multiplier p, is taken to be

(6.11)



180 W. D. GROBM AN AN D M. LU BAN

satis6ed. This important result is ultimately a conse-
quence of (6.7) Lor (6.14)7, the condition which ensures
that (6.9) is the correct expression for 0.

In order to determine when the stability criterion
(6.14) is satisfied, it will be necessary to have an
explicit expression for e,—e. as a function of the tem-
perature. Towards this end we begin by choosing the
y„which appear in (6.4) via the matrix elements 9; and
V,~&, Lsee (3.6) and (3.7)j, to be the approximate solu-
tions (4.5) and (4.6) of the Hartree equations (4.4). It
will be recalled that (4.4) explicitly takes into account
the fact that the state a, is occupied by X,=O(lV)
particles. Furthermore, as discussed in Appendix A,
(4.5) and (4.6) will be reasonably good approximate
solutions as long as Xp&)l,'/R'.

At 6rst sight the prospects for obtaining an explicit
expression for ~, as a function of the temperature are
poor since ~, as given by (6.4) depends on the (1V&),
which, in turn, are functions of the ~t according to
(6.12). In addition, the matrix elements V, ~~, and V„„
are given by integrals of products of four Bessel func-
tions when s, tWc which further complicates (6.4).
However, after making one reasonable assumption it
will be possible to explicitly evaluate the ~, without
diKculty in spite of these apparent complications.
Using (3.7) we rewrite (6.4) as

feel justified in the following to replace p(r) and p. (r)
by the constants p= X/0 and p, = (1V,)/0, respectively.
Finally, upon using the normalization condition, (3.4),
(6.17), and (6.18) become

6e V @+2' &

&e= ~a+~(2P Pc) ~

(6.22)

(6.23)

Ke now substitute these results into the stability
criterion (6.14) to obtain

1,—9,+Xp,&0. (6.24)

Note that at T=O'X, when (1V,)=1V, this becomes
identical with (3.16) since V„„=V,.„=X/0 for the v,
we are employing. Thus as long as Xp,R'))lP, in which
case the y, of (4.5) and (4.6) are good approximate
solutions of the Hartree equations (4.4), our finite-
temperature criterion (6.24) is satisfied. This is the
same conclusion that we reached at the end of Sec.
IIIB in the discussion of the zero-temperature version
of this model. Note that as the temperature is increased
p, will decrease, so for given /, it becomes increasingly
more difficult to satisfy the demand P pjP)&lP. In order
to clarify this matter we will now calculate p, as a
function of temperature.

Using (6.22) and (6.23) we can rewrite (6.13) as

& = &,+2K d'rl q, l'Q(AI ~) I pe|I', (sWc), (6.17)
1

p =p Z(em—D1(~.—~.+1p.)1—1)-' (6 25)
0 c(8c)

c,= V;+7 (AT,) d'r
I a, I

'

+21 d'rl v. l'Z (1V )I v I'. (618)
tgc

p(r) = Q'(r)4 (r)),
where f(r) is the field operator

P(r) =P a, v, (r).

(6.19)

(6.20)

Because (a,ta~)= (fV, )8.~, we have

In obtaining (6.17) and (6.18) from (6.4), we have
dropped several terms which are of order 1/0. Now the
ensemble average of the local number density p(r) is
conveniently written as

It is an impossible task to obtain a closed expression for
this sum since 9",

~ ~,&, given by k'+ (pi '/R'), s= (k, l,n),
is a complicated function of I and n, %e agree, however,
that because Xp+'&)1 it is justified to replace 9', by the
corresponding quantity for a particle in a cubic geom-
etry. For states of low kinetic energy E,=POP/R'«Xp„
so that altering the form of V, causes an insigni6cant
change in (6.25); on the other hand, this procedure is
justj'L6ed for single-particle states of high kinetic energy
(short de Broglie wavelengths) because these wave
functions are necessarily insensitive to the particular
boundary conditions or container geometry that we
utilize. The former reason also allows us to replace the
sum in (6.25) by an integral, whereby we imagine that
the height L and radius E. of the container become
infinitely large. Equation (6.25) now reads

p(r) =Z@'*)
I a. (r) I' (6.21)

where
p p.= (4x&) "Fw2—(1p&) (6.26)

Now in Appendix A we have pointed out that p, (r)= (AT, )l q, (r) I' is essentially a constant through the
container except in the immediate vicinity I distances
of the order of /, (Xp,)—"'«Rj of r=0 (vortex core) and
r=R (container wall). Furthermore, we can anticipate
that except in these small regions the system will be
characterized by an over-all uniform density because of
the repulsive interactions between particles. As such we

1
Fws(~PA) =

I'(5)
dx . (6.27)

exp(x+XP,P)—1

Tg ——47rX '(p/2. 612)"' (6.28)

In obtaining (6.26) we have dropped the term 9", in
(6.25) since 1',= (1,'/R')ln P.p R'/l ') is very small
compared to Xp, when Xp+'&)/, '. An analytic solution
of (6.26) is readily obtained if Xp/XT&«1, where



P E RSI STENT CURRENTS IN MAN Y —BOSON S YSTEM 5 181

is the transition temperature of the ideal boson gas. For
parameters appropriate to liquid He4 the value of
7 p/XT& is actually about 2.3, so that we have resorted
to numerical methods to solve (6.30) in this case~ (see
Fig. 1). Despite the large value of 7 p/XT, for liquid
He4 the analytic solution which we present in the follow-

ing does not diGer in a qualitative way from the correct
numerical solution.

For T=O, Eq. (6.26) has as its solution p, =p. As the
temperature is raised, p, decreases monotonically.
However, if T is raised above T~, the function p, (T)
becomes double valued as shovrn in Fig. i. The physi-
cally relevant portion of the curve p, (T) versus T is
indicated by a full line in Fig. 1. This double-valued
behavior is maintained until a temperature T* is
reached; for T)T*, Eq. (6.26) fails to possess a solu-
tion. T~ is therefore the actual transition temperature
for this system. The discussion in Appendix C shows
that vrhen Xp(&XT~ the upper and lower branches of
p, (T) are given by

1.50-

1.25-

.50-

.25-
IIIIr/rr

1.0 1.5
T/yt

2.0

FIG. 1. The solid curve gives the fraction of particles occupying
the current-carrying state q, as a function of the reduced tem-
perature T/Tl for liquid He4 parameters. T4 is the transition
temperature of the corresponding ideal boson gas. The dashed
curve is an unphysical solution of (6.26), and the dotted curve is
the fraction of condensed particles for the ideal bose gas. It can
be seen that, in this case, (6.26) fails to have a solution when
T/Tl & T4/Tl =1.65.

vrh ere

Further,

(T, ~& T ~& T*, a&&1),

a'= 1.842 (Xp/XTg) .

otherwise independent of the value of l,. This also can
be seen from (6.26) which holds even when 7p/XT& is
not small compared to unity.

BrieQy summarizing the results of the latter half of
this section, an analysis based on a reasonable approxi-
mation procedure shovrs that the stability criterion
(6.14) is satisfied for a large number of current-carrying

(6.29) single-particle functions q, of the form (4.5). In
particular, if Xp/XT~&&1 the single-particle angular

(6.30) momenta l, of these states satisfy the inequality (6.37).
The follovring section is devoted to a thorough review

of the essential results of this paper, and to a brief
discussion of several questions which remain to be
studied theoretically.

FI'nally,

p.(T')/p= k~'L1+o(~')7
=-'5.+(T~)/p7L1+o(+)7 (6 32)

These results will apply in the full temperature range
T&T* for current-carrying states q, of the form (4.5)
as long as Xp, (T~)2F&)l,'. This inequality serves to
determine the values of l„and thus the functions q „
for which the stability criterion (6.24) is satisfied.
Making use of (6.30) and (6.32) one finds that stable
persistent currents are characterized by values of l, for
vrhich

l'&&l~'=0 461(Xp/XTg). XpR', (lIp/XTg&&l)
=43.9(pa')'"pu2P (pu'((1) . (6.33)

%'e should also point out that as long as l, is in accord
with (6.33) the form of p, (T) and the value of T~/T& are

'9 To evaluate this ratio for liquid He4 parameters we have taken
X =Sea where a=2.2 A. is the nearest distance of approach of two
atoms as determined from measurements of the radial distribution
function by D. G. Henshaw' t Phys. Rev. 119, 14 (1960)j.Further-
more, the mass density of He at 7=0 is 0.145 g/cm'.

VII. DISCUSSION

This work has been devoted to providing a first-
principles explanation for the existence and nature of
persistent macroscopic currents in He II, utilizing as a
model a system of interacting bosons confined to a
cylindrical container. We have argued that these
currents are metastable, and we have formulated a
general, model-independent criterion for their stability
both at absolute zero as vrell as at elevated tempera-
tures. In our formulation a fundamental requirement
for the metastability of these currents is that a current-
carrying single-particle state y, with angular momen-
tum l, is macroscopically occupied. The finite-tem-
perature stability criterion is derived vrithin the frame-
work of ensemble theory, suitably generalized for
metastable equilibrium situations, and the underlying
method should also be useful in studying other meta-
stable phenomena.

%'e have applied our general stability criterion to the
study of tvro soluble models of interacting bosons. One
of these, an independent-particle model, was studied for
all temperatures, whereas the second, a quasiparticle
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model, wa, s studied only for T=O'K. In a subsequent

publication we will report our results for the quasi-

particle model for T&0. For both models we have found

that metastable circulating currents are in fact possible

at T=0 provided the interactions between particles are
suKciently strong, and that the angular momentum /,

of the macroscopically occupied state p, does not exceed

a critical value l~. Equivalently, the total angular
momentum of a persistent current cannot exceed a
particular critical value. The specific value of l~ depends

sensitively upon the dimensions of the container, the
nature of the single-particle basis functions employed,
and the model under discussion. Of particular interest
are those single-particle functions chosen as solutions of
a Hartree equation, which is relevant to a description
of a line vortex with quantized circulation. For the
independent particle model at temperatures T&0 the
stability criterion can be satisfied as long as l, &l~(T)
and T does not exceed a certain value T*.For the single-

particle functions previously described, both T~ and

p, (T), the (number) density of particles occupying y„
are independent of l, whenever l, &4i (T). These results

are analogous to the findings of Reppy and Depatie that
the total angular momentum of a persistent current at
a temperature T, L„(T),is proportional to the superfluid

density p, (T) of stationary He II, and further that
persistent currents can exist for temperatures up to the
lambda point for the stationary liquid.

In this connection we are hopeful that a study of the
quasiparticle model for T&0 will provide a derivation
of the observed relation between J~ and p, . In particu-
lar, we hope to show that L„(T) is proportional to the
standard formal definition of p, (T); we do not, however,

expect to be able to derive an expression for p, (T) in

agreement with experiment.
One could improve upon the treatment given here by

studying a more refined model, and, in addition, by
considering interparticle potentials other than the
Fermi pseudopotential which we have employed here for
computational simplicity. Nevertheless, we believe that
the present work, and in particular our general dis-

cussion built around the stability criterion does provide
a satisfactory explanation for the existence of persistent
currents in He II.
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o=(~u) '". (A4)

Because of the normalization condition (3.4) we can
typically expect f& to be of order unity. Thus for values
of r small compared to lo the centrifugal potential P/r'
dominates the term hpfP so that in this regime fi is
approximately proportional to the 8essel function
Ji(e"~'r). Now if /o((R, for values of r large compared
to lo we can ignore P/r2 compared to XpfP so that (A3)
has as an approximate solution a constant

fi =oe'i" (lair &R) . (A5)

Finally, because of the boundary condition (3.3) f&

drops to zero at r=E. within a distance of the order of
e' 'l'~. If it is assumed for the moment that the latter
distance is very small compared to E we can determine
e using the normalization condition (3.4) in conjunction
with (A5).

dr ryP =-',o&,'R2=-'R2

so that
e= k'+ (1/o2) . (A6)

Note that the assumption e'—'"«E is satisfied since we
have in mind those cases where la&&8.. In summary, if
lo&&R then (A3) possesses a solution which in the range
10&r&E—0 is essentially constant with value unity.
For this solution the eigenvalue e is given by (A6). In
addition, the number density p(r) of the system Lsee
(3.27)j is in this same range lo&r(R constant with
value p=X/Q. In the opposite limit that Xp(&P/R' the
nonlinear term in (A3) can be ignored and the solutions
of (A3) revert to those of a free particle confined to the
cylinder.

APPENDIX B

In Sec. V we formulated a criterion which when
satisfied ensures the existence of a persistent current in
a system at finite temperatures. This formulation is
based on the procedure of replacing the actual system
of interest by a representative ensemble of systems.

APPENDIX A

In this Appendix we will qualitatively discuss the
solutions of the Hartree equation LEq. (3.24) in the
text)

—V p+XA t p~ q=ep
of the form

rp(r)=Q 'i e'&"'+'eifi(r), (l/0) (A2)

subject to the conditions of (3.3) and (3.4). The radial
function fi(r) satisfies the differential equation

fi"+fi'/r+L~' (P/r')—XpfPj—f,=0, (A3)

where 6 =~—k'. In the following it will be useful to
define the characteristic length
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This method was subsequently applied in Sec. VI to the
study of the independent particle model which is
described by the Hamiltonian H& of (3.8). In this
Appendix we shall adopt a diA'erent approach to the
question of the existence of a persistent current in this
particular model. Our method will be based on finding
that macroscopic condition of the system which is most
probable, or, equivalently, is characterized by a
maximal "entropy. "

Consider an eigenvector ~cz) of (3.8) which is de-
scribed by a specified set of occupation numbers, of the
type {X,«, &

——Q(1),¹=0($)), for the various single-
particle states p. of (3.1).The macroscopically occupied
state cp, is a particular current-carrying state, that is, a
state for which /, /0. Consider also those eigenvectors
of H&, to be denoted by

~
a+bn), which are described

by occupation numbers {X,) differing from {E,) by an
amount which is 0(X); that is,

piÃ, E,
i

=—0(x),

where the sum over s includes the term for which s=c.
The energy eigenvalue E-+& corresponding to ~a~+5n)
is given by (3.10), but, because of the restriction of the
size of the 1V, which is required by (81) it may be
approximated as

(82)

where

C, = (BE /BX,).

dependent on the specific form of the single-particle
energy spectrum.

The most probable values of the cell occupation
numbers, to be denoted by N;, are found by maximizing

W({E,)) subject to the constraints, first, that the
allowed energy eigenvalues of the system, given by
(82), are equal to a previously specified system energy
E, and, second, that the total number of particles in the
system is fixed and has the value E."At the end of the
calculation we shall allow the number of levels in a
given cell to be one, thereby obtaining X„ the most
probable occupation number of a given single-particle
state p, . Finally, this entire procedure is consistent only
if the X, agree with the initially specified values X,.
Satisfying this consistency requirement ensures that the
predicted (most probable) properties of the system are
actually realizable among the set of eigenvectors
~n+ha) which are restricted according to (81).~ The
present approach of maximizing 8' is well known in the
theory of equilibrium statistical mechanics. We must
emphasize, however, that this is only a formal similarity
since in the present discussion the set of eigenvectors
~a+Ra), restricted according to (81), does not cor-
respond to a true equilibrium state of the system.
However, if the consistency requirement just stated is
satisfied, and in particular 8,= ¹

=0 (1V), then a
persistent current exists in this model system.

To find the set {8,) of the most probable cell occupa-
tion numbers we follow the usual procedure of maxi-
mizing

lnW —aQ X,—PQ X,4;,

For nonlocalized wave functions p, the interaction
matrix elements in (83) are O(1/0) and thus the energy
eigenvalues (82) differ from each other by a quantity
o (Ã).

We now divide the single-particle energy spectrum of
(83) into groups of levels or "cells." The ith cell will
contain a large number g; of energy levels all of which
are nearly equal to an average energy, to be denoted by
~;. Further, let S; denote the sum of the occupation
numbers E„for levels situated within the ith cell. The
number of distinct E-body boson energy eigenvectors
~u+8a) corresponding to a set of cell occupation
numbers {1V,} is given by

(84)

This is a familiar result in the case of the ideal boson
gas, but it applies equally well in the present discussion
as a consequence of the fact that the energy eigen-
vectors

~
a+bn) are specified by single-particle occupa-

tion numbers; the validity of this formula is not
"See, for example, p. 369 of the reference cited in Footnote 32.

where 0. and P are Lagrange multipliers; according to
this procedure we are maximizing 8' subject to the
constraints stated in the previous paragraph. For the
actual calculation we employ the Stirling asymptotic
formula loglV! =X log(Ã) —X. In this way, one easily
finds

g =g LWt'* —1] ' (85)

The Lagrange multiplier P is identified in the usual way
with 1/XT, since the familiar results of thermodynamics

4' The entropy of the system is given by S=X Z{~;l ln W'({X&}),
where the sum extends over all cell occupation numbers which are
compatible with (B1).Now if the fluctuations of the X; are small
one can approximate S by X lnW({A;}). Thus the 8; can be
regarded as those cell occupation numbers which, subject to the
stated constraints, maximize the entropy. Finally, as discussed in
Sec. VI, the fluctuations of the E; are in fact small.

42 There is a dual purpose in our having selected a restricted set
of eigenvectors ~ex+So. ), conforming to (Bi), for this discussion.
To compute W({E;})presupposes a procedure for dividing the
single-particle energies into cells. This in turn assumes that for a
single-particle state p, there is associated but one energy e,. Now,
in contrast to the ideal gas, the e, are functions of all the occupa-
tion numbers {Ã&}.Qnly by specifying a particular set of occupa-
tion numbers, and we have chosen {gg}, is one able to have a
unique energy, e„ for a given state y, . Secondly, calculus provides
us with a procedure for finding a local, rather than a global,
maximum of W. Thus, only those values X;which are nearly equal
to those, ¹,which maximize W are of any interest.
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must apply during the very long time span when the
system is in metastable equilibrium. Finally, ot is
identi6ed with —Pp, , where p, is the chemical potential
of the system, which satis6es the equation

energies and occupation numbers, as well as for the
metastability criterion for a persistent current.

APPENDIX C

N=P g;[es&" "'—1P'.
i

(86) In this Appendix we shall obtain an approximate
so1ution of

The most probable occupation number N, for the state
p„which must equal N„can be written, using (85),

N, = [es/" » -1j— (87)

p = c.—(XT/N, ) (89)

so as to ensure that only the current-carrying state q,
is macroscopically occupied. Since X, is of order X, as
regards single-particle states q„s/c, one can rewrite
(87) as

simply because P; is proportional to g;, the number of
single-particle energy levels in the ith cell. Finally, in
order to ensure that theN, of (87) are positive we must
impose the requirement

«, &p, (alls).

In fact, we shall choose

/ /. =—(«P) "'F1(&n.P), (C1)

which is valid when Xp/XTg«1 [see (6.26) and (6.28)j.
For small values of x the function F1(x) possesses the
following expansion~:

For T~&T& the quantity Xp,P is surely smaller than
Xp/XT/ since p, cannot exceed p. Thus for sufficiently
small values of Xp/XT, one can legitimately drop all but
the first two terms of the expansion (C2) of Fy(kp, P)
With y= p, (T)//p, x= T/T/, and n' given by (6.30), y is
found to satisfy the quadratic equation

y'+y[2(x'/' —1)—a'x'1+ (x"'—1)'=0, (x &~1) . (C3)

The solutions of (C3) are given by

and (88) as
N, = [es'"="'—1+', (810) yk —1&2x2 (xe/2 1)~1&x[o2x2 4 (x3/2 1)jl/2

(x &~ 1) (C4)

Ke conclude then that a persistent current occurs in the
independent-particle system if (83), (810), and

and they are displayed in Fig. 1. Finally, the value
x*=T*/T/ at which (C4) no longer possesses a solution
is such that

[es (ea-ec) 1+1 (812)
a'(x*)'—4[(x*)'/' —1]=0. (C5)

Ogd

possess consistent solutions satisfying the inequality
(811).These equations are seen to be formally identical
to (6.4), (6.12), and (6.13) which were derived in Sec.
VI. The only di6erence is that the latter equations
depend upon the (N, ), which are the average single-
particle occupation numbers for the systems composing
the restricted grand canonical ensemble. %e now see
that these two treatments, determination of the en-
semble averages (N, ), on the one hand, and determi-
nation of the most probable occupation numbers 8;, on
the other, yield identical results for the single-particle

Although (C5) is a quartic equation for x*, the root of
interest for small values of o. is easily obtained. Noting
that if a=0, the relevant root of (C5) is x*=1, it
follows that @*=1for small values of n'. Thus we can
write (x~)'/'= [1+(x*—1)j'/'=1+-,'(x*—1)+s'(x*—1)'.
Equation (C5) then simplifies to a quadratic equation
for x~ with solution

P' 2(1—-2cP)'/2 —1
=1+-,'cP.

Tg 1—3'
"F. London, SepergNids (John %'iley R Sons, Inc. , Neer Vork,

1954), Vol. II, Appendix.


