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Ke solve exactly the nonlinear, relativistic equations of motion for an electron moving in a right circularly
polarized wave which propagates along a static uniform magnetic Geld Bpe, . In the wave frame where the
induction electric Geld disappears, we Gnd two constants of the motion. With their aid, we examine the
particle trajectories and obtain the periods and amplitudes of oscillation in the z direction. In the absence of
collisions, the exact solution of the relativistic Vlasov equation in the wave frame is an arbitrary function
of these constants. The requirement of self-consistency imposed by Maxwell's equations is examined and,
in particular, we show that sufBcient arbitrariness remains that no dispersion relation exists for these waves.
However, for less general distribution functions, one may still have a dispersion relation independent of
wave amplitude. %'hen we require that the moments of the distribution be correct to Grst order in the
amplitude of the wave, in analogy with the electrostatic case, we recapture the linearized distribution func-
tion together with a principal-value prescription for treating the usual singularity, and we also obtain the
transverse Van Kampen modes.

I. INTRODUCTION

' 'N most conventional treatments of the problem of
~ ~ electromagnetic waves propagating in a fully ionized
plasma, "the wave amplitudes are taken to be small
quantities to permit linearization of the relevant equa-
tions. For the special case of propagation in the whistler
mode parallel to an external magnetic field Boe„Stix
has investigated the linearized equations of motion for
electrons with no perpendicular energy, but with a
zero-order velocity in the z direction. ' The solutions
have the following properties:

(a) The component of electron velocity parallel to
the zero-order (external) magnetic field is constant
through first order in the wave amplitude.

(h) The perpendicular velocity is oscillatory except
at cyclotron resonance, where it increases linearly with
time.

These solutions are restricted to small times over which
the phase-space trajectories of the particles do not diGer
appreciably from the zero-order trajectories.

In this paper, 4 we begin by transforming to the wave
frame and finding the two single-particle constants of
the motion. In terms of these constants we solve the
nonlinear relativistic equations of motion for an electron
moving in the prescribed whistler field. In the nonlinear

*Present address: The RAND Corporation, Santa Monica,
California.' T. Pradhan, Phys. Rev. 107, 1222 (1957).

~ I. B.Bernstein, Phys. Rev. 109, 10 (1958).
3 T. H. Stix, The Theory of Plasma 8'aves (McGraw-Hill Book

Company, Inc., New York, 1962), p. 160.
4 The main results of this analysis have been announced in the

form of an abstract; R. F. Lutomirski and R. N. Sudan, Bull. Am.
Phys. Soc. 10, 205 (1965).

regime we fjt,nd, as predicted by Stix, ' an oscillatory
nature to the motion in the z direction analogous to the
motion in a longitudinal wave, '7 although the situation
is considerably more complicated. Ke find that a num-

ber of oscillatory modes are possible depending upon the
values of the constants of the motion. For one set of
values, the nonlinear particle trajectories reduce to the
usual helices of zero-order theory as the wave amplitude
tends to zero. However, for other values of these con-
stants we find trajectories that have no linear counter-
parts, and, in the limit of zero-wave amplitude, motion
prescribed by such constants is not possible. Special
attention is given to those electrons which have a z
component of velocity near that particular velocity
which makes the electrons feel the wave frequency
Doppler-shifted to their own cyclotron frequency, i.e.,
the cyclotron-resonance velocity. These particles are
analogous to the electrons trapped in an electrostatic
wave. However, unlike the trapping of electrons in the
potential troughs of an electrostatic wave, where the
average velocity of all of the trapped electrons is the
wave velocity, the average z velocity of the resonant
electrons is not equal to the cyclotron-resonance
velocity. Hence, if the motion is viewed from the cyclo-
tron-resonance frame, the resonant electrons will be
observed to have a slow drift in the z direction. This
drift velocity tends to zero faster than the first power of
the wave amplitude. A precise definition of particle
trapping in the context of an electromagnetic wave is
given in Appendix A, where the phase-space trajectories
of the particles are examined in detail. The periods and

' Reference 3, p. 163.
6 D. Bohm and E. P. Gross, Phys. Rev. 75, 1851 (1949).' I. B.Bernstein, J. M. Green, and M. D. Kruskal, Phys. Rev.

108, 507 (1957).
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amplitudes of velocity oscillation are obtained in Sec. II,
and in the limit of small wave amplitude the motion is

compared with that predicted by linear theory (see
Secs. II and IV).

Stix has also hinted at the possible existence of solu-
tions to the Vlasov and Maxwell equations for electro-
magnetic waves of arbitrary amplitude in analogy with
the electrostatic waves considered by Bernstein et Ol. '
For the case of parallel propagation we treat these
equations relativistically in Sec. III and show that non-

linear solutions do indeed exist. The exact distribution
function is not completely determined by the above
equations, and we 6nd these waves can propagate with-
out satisfying any dispersion relation (neglecting colli-

sions and questions pertaining to the stability of these
solutions). However, it is possible to choose a distribu-
tion function such that these waves still satisfy a dis-

persion relation even in this nonlinear regime.
The electrostatic analogy is completed when we pass

to the limit of vanishing wave amplitude in Sec. IV and
6nd that, for the trapped electrons, the distribution has
an expansion in half-integral powers of this amplitude.
Requiring only that the moments of the distribution
function be correct to 6rst order in the wave amplitude,
the usual linear results are obtained with a Dirac delta
function appearing in the "6rst-order" distribution to
account for the effects of the resonant or trapped
particles. A Cauchy principal value prescription for
treating the analytic portion of the first-order distri-
bution function is also obtained explicitly.

IL EXACT PARTICLE TRAJECTORIES

We consider an infinite, collisionless plasma placed in
a uniform magnetostatic 6eld Boe,. The ions are im-
mobile and constitute a uniform background of positive
charge. A right-circularly-polarized wave of arbitrary
amplitude, frequency ro, and wave vector k, is assumed
to propagate parallel to $0. We restrict ourselves to
whistler waves having phase velocity co/k=—cv less than
c, the speed of light, and transform to the wave frame
where most of our calculations will be performed. In
this frame the induction electric field vanishes and,
because we only consider transverse waves with no
density perturbations, the only 6elds encountered are
the external and wave magnetic 6elds

B=Bpe,+Bq(e coske —e„sinks). (1)

All quantities are measured in the wave frame unless
otherwise indicated. The equation of motion can be
written in the wave frame as

du/dt = —(eP/I) (u & B), (2)

where e and m are the electronic charge and rest mass,
u=p/cP is the reduced velocity, and P=(1—e'/c')'"
=(1+u') "' with u'=u '+u '+u '

Reference 3, p. 166.

We introduce a cylindrical coordinate system in u

space with e~= (u '+u„')"', tang=up/u, and define

f=ks+P, the angle between the wave magnetic Geld and

the transverse velocity of the electron. Then, with

de/dt=Pcu. , the components of Eq. (2) yield

du, /dt =PQ~u~ sini,

du~/dt = P—Q~u, sini,

(3a)

(3b)

gy= Nj +ZCz )

'Itp= (u, +vp) +2v&s& cosf,

(4a)

(4b)

where vp= Qp/kc is the cyclotron-resonance reduced

velocity as measured in the wave frame, and v&
——Q&/kc.

Noting that P=(1+pe) "' is constant (in the wave

frame), we substitute the expressions (4a) and (4b) into
Eq. (3a) and obtain

where

2 dgz dlz= 2u. =a(F(u.))'",
Pc dt d(ke)

F(u,)= (2vg)'(gg —u, ') —((u.+vp)' —rtp)'. (6)

We observe tha, t Kq. (5) is mathematically just the
differential equation describing one-dimensional motion
in a "potential well" F(u,).p Because F(u,) -+ —pp as
u, ~ &, e, must oscillate in this pseudo-potential
well between two of the real zeros of F(u,), which we
denote by (1,2). By calculating the zeros of the fourth-
order polynomial F(u,), we can formally express t as a
function of u, in terms of elliptic integrals. The solution
is formidable and cannot be inverted in terms of ele-
mentary functions to 6nd u, as a function of time, and
for numerical computations, it is simpler to deal with
Eq. (5) directly. However, much information can be
obtained by considering the 6rst and second terms of
Eq. (6) separately and plotting the curves

yq(u, ) = 2v&(g& —u.')"' and yp(u, )=
~
(u, +vp)p —

gp~

(the positive square roots of the respective terms),
and considering the regions where y&&y2. As an ex-
ample, in Fig. 1 we sketch the two curves for the case
(gy —vp) & gp& 2v~(q~ —vp )'". Oscillations of u, will
take place between the values j. and 2 given by the
points of intersection of the curve y& with y2. In Fig. 1„
there are four real zeros and the motion is such that
u, +vo has a constant sign with electrons oscillating

9 C. S. Roberts and S. J. Buchsbaum, Phys. Rev. 135, A381
(1964), have shown that the particle energy in the laboratory
frame also obeys this type of equation.

df/dt =pkcu, +pQp pQ—&(u,/u~) cosf, (3c)

where Qp eBp——/prtc and Q& eB——q/pic Th.e system of

Kqs. (3) is closed in the three variables (u~,u„f) and

there exists two constants of the motion
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"l = 2VI &ql vo )

a Galilean transformation of Eq. (5) with Z=z+cvpt,
V= s,+cup yields

2 dV V dV
= 2— = a[F(V/c —vp) j'",

kc' dt c' dkZ
(9)

2 vo l

FIG. 1. The curves yi=2vr(pi —a,p)up aud yr=
~
(u, +vp)p —ri„(

plOtted fOr (p1 —v0)')g2 & 2v1 (gl —v0 )

about one of the two velocities u, = —vs&jr)s. By
sketching curves similar to those in Fig. 1, one can see
that a number of modes of oscillation are possible de-
pending upon the values of g~, g2, vo, and v~. The in-
vestigation of these nonlinear modes is of general in-
terest, and a discussion of these oscillations with their
limiting behavior as v~ tends to zero is given in
Appendix A.

From Eq. (5), the period of oscillation in the wave
frame is

kPc
(F(u,)) '~'du„ (7)

and, in the lab (primed) frame

T'= T/(1 —v') '". (8)

kz

Throughout the remainder of this section we concern
ourselves with obtaining approximate expressions for
some quantities of interest and neglect relativistic sects
to simplify the calculations (v, vp, vr«1; P v 1;u.—v v,/c).
We consider the special case r)&)vr and r)Q)(vp+gr)s),
and note from Fig. 1 that the oscillations are then
approximately symmetric about u, = —vo. Choosing to
observe the motion from the cyclotron-resonance frame,

where with the indicated approximation

F(V/c -")= (2")'r) —(V'/"- r).)'

F(V/c —vp) is then approximately an even function
of V with the two real roots &(r)s+2vr+r)r)'". The
trajectory in the (V,Z) plane is found from Eq. (9) to be

V = r)s+2vrr)rr~ cos(kZ+Hp), (10)

where 00 depends trivially on the initial conditions and
we set it equal to zero. A curve of Eq. (10) is given in

Fig. 2. Physically our approximations imply that in the
wave frame, the particle energy is very large, but that,
over one oscillation, u, does not vary greatly from the
value —vo. The particles considered thus have a large
transverse energy. For r)s) 2vr+r)r, the electron velocity
oscillates about one of the two values V= &Qr)s. When

~
r)s

~
(2vrgr)r, in our approximation the phase plane

trajectory is a pure libration indicating zero average
velocity in the cyclotron-resonance frame. We will refer
to these electrons as being "trapped" in this frame. A
precise definition of particle trapping is given in Ap-
pendix A.

As v& ~ 0, we observe that the amplitude of velocity
oscillation approaches zero as vr(r)r/r)s)'~s, and for the
trapped electrons tends to zero as Qvr. In the limit, only
those electrons with p2

——0 stay trapped, and the tra-
jectories of the remaining particles (r)s) 0) approach the
straight-line paths of linear theory.

The amplitude of oscillation in the Z direction may
also be calculated from Eq. (9),

AZ= sX(1+(2/pr) sin '(r)s/2vrgr)r))
& (11)

where X is the wavelength. The total distance covered
in the Z direction by a trapped electron (as viewed
from the cyclotron-resonance frame) is less than one
wavelength.

The period of oscillation is given by

-I 3

k6z
T= [F(V/c vp)7'"dV= —E(p), (12)

kc' ck(vr~ r)r) '~'

l 1
= (2vl ~pl + l2)

l2- tq2- »i ~gl )

l3 (q2+2v2 ~pl )

FIG. 2. The phase-plane trajectory Vm =g212v& (p p1) cos (kZ) for
(a)

~ ps~ &2v&& p&, (b) pr)2v|1/Y/l.

where the limits of integration are 0 and (r)a+2vrgr)r) '~',

E(p) is the complete elliptic integral of the 6rst kind"
and p=-,'(1+v)s/2vrgr)r). We note that for the trapped
particles, p varies between 0 and 1, and for p not too near
1, E(p) is a slowly varying function of p. LE(0)= 1.57,
E(0.7) = 1.80, E(0.98)=3.10, Ic(1)= pp] " Then for

P. F. Byrd and M. D. Friedman, Hundbook of El/iptic Inte-
grals for Engineers and Physi ci sts (Springer-Verlag, Berlin, 1954),
Eq. (259.00), p. 133."Reference 10, p. 322.
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~ g2~ (2viggi, we have within a factor of 2

T/To= o/( v'n)"',
where To is the cyclotron period. Ke observe that here,
as in the electrostatic case, the frequency of oscillation
varies as the square root of the wave 6eld.

In Figs. 3, 4, and 5, we show the exact phase-plane
trajectories in the cyclotron-resonance frame as ob-
tained from numerical integration of Eq. (9). The
normalized distance D shown in Figs. 3 and 4 displays
the effect of the odd terms in V appearing in F(V/c vo)—
which we have neglected in our approximations. The
quantity D/k divided by the period T in Eq. (7) is the
drift or average velocity which the trapped particles
possess in this frame. By Taylor expansion of the ellipse

y~ in Fig. i about u, = —vo, one can show that this
average velocity of the trapped particles tends to zero
to higher order than the erst power of v~. Two tra-
jectories for untrapped particles are displayed in Fig. 5.

-0.4

4 0--

-40--

—= 0.05Vl

Vp

—= 2.09I

Vp
2

0

4 06

yC
Z

CVp

FrG. 3. Phase-
plane plot of the
solution of Eq. (9)
obtained by numeri-
cal integration for
qg/vp'= 0.01, v1/vp=0.05, g1/vp' ——2.0.

-0.4

kz

3.0--

2.0--

-2.0.-

—~ 0.05Vl

Vp

9I—~ 2.0
Vp

2

FIG. 4. Phase-plane plot of the solution of Eq. (9) for
gg/vp =0 08' v&/vp 0 05' g&/vp 2 0.

From Eq. (14),f(u„u~, kzp) = f(u„u~, t ), where t'= kz+Q.
In terms of these new variables the Vlasov equation
becomes

0.0 I

The characteristic equations are easily integrated to give
the general solution of Eq. (15):

f= &of(n~ ns)

J 0
i

u +vo —vl cosf
i

—+vy sing ug —u i=0. (15)
u, )aP BQ, Bu~l

III. SELF-CONSISTENT DISTRIBUTION
FUNCTIONS

For the assumptions given in the beginning of Sec. II,
we And exact self-consistent stationary solutions to the
Vlasov and Maxwell equations. In the relativistic case
the distribution function is regarded as a function of
(z,u;, t), and an invariant form of the Vlasov equation"
in cylindrical coordinates in u space for the magneto-
static field of Eq. (1) is

Bf u. Bf
kcu. + Qp —Qg—cos(kz+g)—

Bks ui 8$

3.0—

2.0—

l.p-

-l 0-

-2.0—

Vl—~ 0.05
Vp

9l—= 2.0
Vp

2

I

0.2 0.4
]

0.6 0.8 t l.p

~C

CV0

~f ~f&
+D~ sin(kz+p) u& —u.

~

=0. (14)
au, au, i

-3.0-
'92—*0. 'l2—2~ l.0

ivo

"P. C. Clemmow and A. J. %'illson, Proc. Cambridge Phil.
Soc. 53, 222 (1957), Part l.

FIG. 5. Phase-plane plot of the solution of Eq. (9) for p2/vp'=0. 4,
v1/vp=0. 05, g1/vp'=2. 0, and V)0. Similar curves appear for
V&0.
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been justi6ed for the electrostatic problem' by observing
it is necessary and sufhcient that fu reproduce the
average value of any function f of physical interest
correct to 6rst order in v~. For the electromagnetic case
the functions of interest are periodic functions of 1, and
it suffices to consider a single Fourier component of P,
which implies P=—f(nq, u„no/2v~). Then, from the de-

velopment of Eqs. (19), this average is given by

f(n~, np) .Pdnp. (21)
o L&' (n --o)'j"'

To justify the separation of the distribution function for
the electromagnetic problem, our approach is to first
identify the zero-order distribution function of linear
theory fp by considering the particle trajectories in

phase space and determining those values of g~ and g2

for which f(n~, no) possesses a limit as v~ tends to zero.
The distribution function and the particle trajectories
are studied and the electromagnetically trapped parti-
cles are defined in Appendix A, where it is demonstrated
that the (n&, np) plane may be divided into two regions.
Particles in region I defined by

we de6ne
f=f+(n, ,n,) for u, +vp&0,
=f (n~, np) for u,+vp&0,

(23)

and hence, in region I, f= f++f Fo.r the trapped elec-

trons in this region Lsee Appendix A, ng& vop, 0&no &nvq,

a=—2(nq —vp')'~'j, the distribution is f+= f = ',f T-he.

zero-order distribution function of linear theory is then

identi6ed with'4

fo(n, *)=f'Ln, ( *+")'j, .+ o»,
)=f Lng, (u.+vo)'), u, +vp&0.

One usually assumes that fo(n&,u.) is an analytic func-

tion of gi and e, for all real values of these variables. "
The continuity of fp at u, =—vp implies that

fo(n~, —vo)=f'( n~, 0)=f (n~,0)=of(e,p)

We also assume that 8fo/Bu, /0 near u, = —vp. Then

l9 p

fo(nz, u*) = fo(na, —vo)+(u*+vo) + ' ' ' .
~+8 Qz vp

This latter assumption imples that f+ and f have
expansions in half-integral powers of g2 near q2

——0, i.e.,

(i) na&vo, and (vp —Qnq) &no&(vp+Qnt), '
(22a)

(ii) nq) vo', and 0&no& (vo+gnq)',
8 p

f~=fo(ni, —vo)+(V'no) +. (25)

have well-de6ned trajectories as v~ —+ 0. No trajectories
exist at v&=0 for particles in region II defined by

(i) n, &vo', and no& (vo—gni)'
or np) (vp+Qny), (22b)

(ii) nq& vp', and no&0 or no) (vo+gni)'.
It is further shown that, for certain n~, np, f(ni, np) may
have two distinct values, depending upon whether u.+vo

is less or greater than zero. Then, for (n&, np) in region I,

and f+ are not analytic functions of no near no=0,
however f++f will have a normal Taylor series ex-

pansion about g2=0.
In Appendix 3, the total region of integration in

Eq. (21) is divided into sums of integrals over appropri-
ate subregions (by considering the allowed values of no

and u, for fixed n&), where f may be identified with fp in
the limit v&=0. Any integral which tends to zero faster
than the first power of vq is neglected, and we obtain

1' s„ du (fo,lf/)+vy dna
0

—vp—{2av1)I/2

ds
—vp+ (2avI)

u, (8fo/Bu. ) u.(8fo/». )— —vp+ (2avI) I/~

X (cosp, P)+ dna du* (f fo 4') (26—)
vp vp—(2a v1}Il

where we have defined

(fA)=
a+b f(n~, np)k

pp (n a)pjl/p

f(ni, a+5 cosf)/de

Therefore as v~ —&0 the prescription for treating the
singularity at I,= —vp in the I, integration in the second
integral is to take the Cauchy principal value. Then for

the first two integrals in Eq. (26), we transform back
to the more familiar variables (u~, u. ,f'),and write these

' In the course of writing this paper, our attention has been
drawn to the work of C. Brossier, Nucl. Fusion 4, 137 (1964).
Brossier has considered the limits of the zeroth and three first
velocity moments of the distribution function as the wave ampli-
tude is reduced to zero in a nonrelativistic analysis. However, his
identification of the zero-order distribution function is not correct,
and he does not obtain a Dirac delta function in the first-order
distribution."I.B.Bernstein, in Radiation and W'resin Plasmas, edited by
M. Mitchner I'.Stanford University Press, Stanford, California,
1961),p. 36.



R. LUTOM I RSKI AN D R. SU DAN

terms as

Nr Ni due
p —CCI

bution was well behaved, the irst-order solutions are
singular rejecting the fact that these waves do not
damp.
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cosf d )
Sz+Vp

(27)

APPENDIX A

We introduce a coordinate system in phase space with

polar axis u„cylindrical radius N~, and azimuthal angle

f, where we consider the spherical surface g~=N~'+u, ',
and the right parabolic cylinder &2= (e.+vo)'+2m&uj cosf
for given g~ and q2. The circle and parabola shown in
Fig. 6 are the intersections of the respective surfaces
with the plane u~ sint =0. The parabolic surface is sym-
metric about I,= —vo and has its vertex at P= qg/2vq.

The intersection of these surfaces determines the
curve(s) along which fhas a particular value. This curve
has the general appearance of the seam of a tennis ball
if P lies between Q and Q'.

Then, for any "radius" gp&, if p&&0, as v& ~ 0 the
point I' will move to the left until there is no inter-
section. When g2)0, as v~ —+0 the point I' moves
in6nitely to the right in such a manner that the para-
bolic surface approaches the two planes N. = —vo+ggm
in the vicinity of the sphere. When q2& (vo —gq~)', the
axis of the parabola is sufliciently below the sphere that
there again exists no intersection as v~~ 0. The same
holds true for g2)(vo+ggr)' because the upper and
lower limiting planes will then be above and below the
sphere, respectively. Thus, for the above values of g~
and p2, motion is possible only in the strictly nonlinear
regime. In the limit as the wave amplitude tends to
zero, these modes of oscillation cease to exist.

To further discuss the particle trajectories, for pj.)vp',

we define the quantity n—=2(gq —vo')"' (see Fig. 6).
Then, for gy) vp, lf —O.vy+$2(0, the point I' lies be-
tween —a/2 and 0 (i.e., n/2&u& cosf'&—0). The s
component of velocity oscillates about I,= —vp, and the

N, (r7 fo/Bu. ) N, (Bfp/Bg—g)
fg; = fo(gg, N )+vy(P cos(kz+@)

+vg JS(u,+vp) (28)

will reproduce the average value of any function f of
physical interest correct to irst order in v~. J denotes the
expression in the curly brackets in (C4), which can be
evaluated if both fo, and the coeKcients in the expansion
of f(g~, s2) about g~ ——0 are specified, and b(N, +vo) is the
Dirac delta function. From Eq. (C2b), this integral will
vanish when f does not depend upon f, i.e., for any
function of the form p(gr, N, )—=f(g~,u,).A Lorentz trans-
formation of the first two terms of Eq. (28) to the
laboratory frame yields

N, (8fo/Bu, ) (pu, v—) (8f,/Bu—,)
fo(u, ,u, )+vg(P

I,—(v—pro)

Xcos(kz+y —sr/), (29)

where 5' denotes the Cauchy principal value.
In Appendix C, it is shown that, to lowest order in

v&, the last integral in Eq. (26) can be written as Eq.
(C1), an integration over the distribution of trapped
electrons de6ned in Appendix A. Then, utilizing Max-
well's equations $Eqs. (19a)—(19c)j, with f=p(g2 a), —
and &=1, it is shown that the tra, pped electron distri-
bution possesses an expansion in half-integral powers of
sq about F2=0. Substituting this expansion in Eq. (C1),
we find that the integration of P over the distribution
of trapped electrons yields a term proportional to v~.

Combining this expression with Eq. (27), we find that
the distribution function

which are just those terms which enter into the usual
linear theory of electromagnetic oscillations. All
quantities in (29) are now measured in the lab frame.
The delta function has been introduced previously by
Pradhan, ' who applied the normal mode analysis of
Van Kampen" to the electromagnetic problem. As in
the electrostatic case, the nonlinear method yields the
physical nature of the singularity, namely, the need to
account for the resonant or trapped electrons within the
structure of the linear theory. '~ While the true distri-

' N. G. Van Kampen, Physica 21, 949 (1955)."It is noteworthy that the delta function at u, = —vp arises
"physically" because the drift velocity of the trapped particles in
the cyclotron-resonance frame tends to zero faster than the 6rst
power of v1.

UZ

2V~

U~ COS

2 I/2-Vp)

FIG. 6. The inter-
sections of the sphere
g1=ug'+u, m and the
right parabolic cylin-
der gg= (u, +vp)'
+2vlu~ COSg With the
plane uq sing =0.
The uq sing axis
points into the
paper. The curves
are drawn for q1&vp'
and 0 &.q2 (nv1.
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allowed values of the angle f lie between pr —cos '(2/2/av1)

and 2r+cos '(2/2/cpv1). Thus, at any point s, the mean
value of p is @=2r—kz. With Eq. (1), we observe that
this mean value of P implies that the electrons are so
organized that their mean transverse velocity is anti-
parallel to the magnetic 6eld of the wave. ' Essentially
the same trajectories exist for 0(q2(nv~, except that
the amplitudes of oscillation of g about g =x are greater,
i.e., between pr/2 and pr. The basic diiference between
these modes is that the mode governed by —O.vi(gg(0
disappears completely as v& ~ 0, while the 0(p2(nv&
splits into two modes when V1(2/2/a. Thus it is precisely
those electrons having q~& vo' and —Ov~(q~(nv~ which
oscillate about I,= —vo and feel the wave Doppler-
shifted to their own cyclotron frequency. The distribu-
tion for these electrons is equally divided in e, about
I,= —vo, and in analogy with the electrostatic case, we
de6ne these resonant electrons as being "trapped. "

Considering the remaining modes with g2&0, for
(vp g2/2) & 2/1&vp, the motion is such that u.+vp) 0,
and as v1~ 0, u, approaches the limit —vo+g2/2. For
vp2( 1/1( (vp+g2/2)2, the lowest point on the sphere is
below the axis of the parabola and above the plane

u, = —vp —Q2/2. When 2/2(cpv1 we have the trapped
particle motion discussed previously, and when p2)av&
the motion is such that u, +vo has a constant sign. As

v~ ~ 0 the upper parabolic surface Qattens out to yield
the limiting velocity u, = —vp+g2/2. The bottom sur-

face might intersect the sphere depending upon the
relative values of q~, g~, and o., but not in the limit at
v1 ——0. Finally, with 2/1) (vp+g'g2) u, +vp again has a
constant sign when g2&nv~. In the limit these electrons
have one of the two limiting velocities u, = —vp&+2/2.

From the preceding discussion we can divide the set
of (2/1, r/2) into two regions, summarized by (22a) and

(22b), according to whether or not the spherical and

parabolic surfaces yield an intersection at v~=0. For all

q2/0 in region I, as v~ —+ 0, the intersections approach
one or two circles each of which is entirely above or
below the plane u. = —vp. All values of f( or&a—&pr)

are assumed by the electrons following their phase-space
trajectories with angular velocity df/dt v Pck(u, +vp),
the Doppler-shifted cyclotron frequency. For &2=0 in

region I, the intersection approaches the semicircle

S~ = r/1 vp W—ith pr/2&1 &32r/2 in the plane u, = —vp,

and df/dt-+ 0.

APPENDIX B

(i) 0(r/1(vp2. Noting the conditions in (22a) and (22b) we plot the parabola y1(u,)=—a=(u, +vp)', and the
ellipses y2=(vo Q2/1)—'+b and yp

——(vp+Q2/1)'&b, where b= 2V(12/—1 u, 2)1/2, in Fig. 7. The two points of inter-
section of y1 and y2 occur at u, = Q2/1, P1—, and y1 and yp intersect at u, = P2, Q1/1, as indicated on the diagram.
Then, for —g2/1(u. &P1'. a b&(vo —Q2/1)'(—a+b; for P1&u.&P2 (vp —

Q. 2/1)'(a —b(2/2&a+b&(vp+gr/1)'
(i.e., region I); and for P2(u. &+2/1.. a (b( —vp+Q r)/1& a+b Hence t.he portion of the integration in Eq. (21)
from 0(p&(vo' may be written as

V02 PI (vo—&gl)2

d&2+[b'- (v2-a)')"'

a+b

„}~ [b2 (2/2 a) 2)1/2

dQz d&2+.-o [b'-(~2-a)')'"

+$1 (v0+~211)2

dlz
P2

dg2+[b'-(n2-a)')'"

a+b

In the limit at v1=0, (B1) becomes

v02

d'g g dQz
[b2 (r/ a)2)1/2

(B2)

The integrals in (81) differ from the integral in (B2) by integrations over the shaded areas in Fig. 7. These latter
integrals tend to zero as v1"2 because P1 —+ —Q2/1 and P2 ~Qr/1 as v1 and Jp"1 z '/ dx —+ 0 as v1"'.

(ii) 2/1) vp2. In order to bring out the effects of the trapped electrons, we consider the parabola y1= a= (u,+vp)2
and the ellipses y2 cpv1&b and ——y, = (vo+Q») 2Kb plotted in Fig. 8. One can show that for any 2/1) vo', if we pick
v1&v1*, where 2v1 ——[(Q2/1) —vp) /[(Q2/1)+vp)"', then the point on the bottom ellipse u, = —Q2/1 is to the left
of the parabola, and there will be two arcs of intersection of y1 and y2. (Pp, P4) and (—vp, Pp). This value of V1

depends only upon 1/1 and as v1 —+ 0, this is the only case to consider. We observe that for —Q2/1&u, (P2 and
Pp(u, &Pp.'/2V1(a —b& /( 2+2b(a( +Qvp/); 2P1p(u, (Pp.' a—b&cpv1, Pp&u, &+2/'1.'a —b& (vp+Q2/1) (a+b.

"A qualitative discussion of such phase organization has been given by N. Brice, J. Geophys. Res. 68, 4626 (1961).
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But from Eq .(25) we have f+(vxx,a»x) f—o —&—(ax xx)(8fo/8u, ) ~ „,+ . Substituting these expressions for f
and f+ into the first and second integrals in (C1), respectively, and expanding vs in a Taylor series in u, about

u, = —x 0, we find that to first order in vx these two integrals exactly cancel. The last integral in (C1) is an integration
of vs over the distribution of trapped electrons de6ned in Appendix A. To determine the nature of the expansion

of this distribution for small gx we consider Maxwell's equations (19) with Q=P(qx —xx) and /=1. With these

substitutions we obtain

dpi a' ' d* (*Ex(*)—R(*)jL/(gx, o~xx) —f(yx,0)]=~i"'E(fo),

respectively, where

kc 2

R(fo)—:—2 ——2vr dux ux
0)g) a

ux(8fo/8u ) u*(8fo/8ui)
P dQg )

Nz+~o

and E& and E2 are complete elliptic integrals which we de6ne by

(i+»1/2

Ex(X)= L1—(w' —x)'] '"dw and Ex(x) = L1—(w' —x)'j xv'w'dw.

[It may be noted that taking P=u. also yields Eq. (C2b).]Hence, assuming only that f is continuous at vxx=0

we have

f(vxx, vxv)
—f(gx,0)=Agx(vxx) i vxx i

"'+, for vvx) 0,
=Bgx(vlx) f vpx (

'"+, for vga(0,

(C3.)

(C3b)

where A and 8 are constants and gi and gx are functions of vn alone. Substituting Eqs. (C3) into Eq. (C2) yields
two linear equations which can in principle be solved for A and 8 provided fo, and the expansion coefficients of f
about vox

——0, gi and gx, are known. Therefore while we have assumed that f(gi, gx) is continuous about vxv
——0,

8f/8&& is not necessarily continuous
Substituting Eqs. (C3) into the last integral in Eq. (C1) and expanding f in a Taylor series about u = po,

we 6nd the contribution to 6rst order in v~ to be

x x dvxx dx ( ~ x ~ '"Zx(x)L&gx(vxx)&(*)+&gx(vxx)a( —x)])P(vxi, x, —vo),
vQ

2

(C4)

where H(x) is the Heaviside function


