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We solve exactly the nonlinear, relativistic equations of motion for an electron moving in a right circularly
polarized wave which propagates along a static uniform magnetic field Boe.. In the wave frame where the
induction electric field disappears, we find two constants of the motion. With their aid, we examine the
particle trajectories and obtain the periods and amplitudes of oscillation in the z direction. In the absence of
collisions, the exact solution of the relativistic Vlasov equation in the wave frame is an arbitrary function
of these constants. The requirement of self-consistency imposed by Maxwell’s equations is examined and,
in particular, we show that sufficient arbitrariness remains that no dispersion relation exists for these waves.
However, for less general distribution functions, one may still have a dispersion relation independent of
wave amplitude. When we require that the moments of the distribution be correct to first order in the
amplitude of the wave, in analogy with the electrostatic case, we recapture the linearized distribution func-
tion together with a principal-value prescription for treating the usual singularity, and we also obtain the

transverse Van Kampen modes.

I. INTRODUCTION

N most conventional treatments of the problem of
electromagnetic waves propagating in a fully ionized
plasma,? the wave amplitudes are taken to be small
quantities to permit linearization of the relevant equa-
tions. For the special case of propagation in the whistler
mode parallel to an external magnetic field Boe,, Stix
has investigated the linearized equations of motion for
electrons with no perpendicular energy, but with a
zero-order velocity in the z direction.? The solutions
have the following properties:

(a) The component of electron velocity parallel to
the zero-order (external) magnetic field is constant
through first order in the wave amplitude.

(b) The perpendicular velocity is oscillatory except
at cyclotron resonance, where it increases linearly with
time.

These solutions are restricted to small times over which
the phase-space trajectories of the particles do not differ
appreciably from the zero-order trajectories.

In this paper,* we begin by transforming to the wave
frame and finding the two single-particle constants of
the motion. In terms of these constants we solve the
nonlinear relativistic equations of motion for an electron
moving in the prescribed whistler field. In the nonlinear

* Present address: The RAND Corporation, Santa Monica,
California.

1 T. Pradhan, Phys. Rev. 107, 1222 (1957).

2]. B. Bernstein, Phys. Rev. 109, 10 (1958).

3T. H. Stix, The Theory of Plasma Waves (McGraw-Hill Book
Company, Inc., New York, 1962), p. 160.

* The main results of this analysis have been announced in the
form of an abstract; R. F. Lutomirski and R. N. Sudan, Bull. Am.
Phys. Soc. 10, 205 (1965).

147

regime we find, as predicted by Stix,® an oscillatory
nature to the motion in the z direction analogous to the
motion in a longitudinal wave,®7 although the situation
is considerably more complicated. We find that a num-
ber of oscillatory modes are possible depending upon the
values of the constants of the motion. For one set of
values, the nonlinear particle trajectories reduce to the
usual helices of zero-order theory as the wave amplitude
tends to zero. However, for other values of these con-
stants we find trajectories that have no linear counter-
parts, and, in the limit of zero-wave amplitude, motion
prescribed by such constants is not possible. Special
attention is given to those electrons which have a z
component of velocity near that particular velocity
which makes the electrons feel the wave frequency
Doppler-shifted to their own cyclotron frequency, i.e.,
the cyclotron-resonance velocity. These particles are
analogous to the electrons trapped in an electrostatic
wave. However, unlike the trapping of electrons in the
potential troughs of an electrostatic wave, where the
average velocity of all of the trapped electrons is the
wave velocity, the average z velocity of the resonant
electrons is not equal to the cyclotron-resonance
velocity. Hence, if the motion is viewed from the cyclo-
tron-resonance frame, the resonant electrons will be
observed to have a slow drift in the z direction. This
drift velocity tends to zero faster than the first power of
the wave amplitude. A precise definition of particle
trapping in the context of an electromagnetic wave is
given in Appendix A, where the phase-space trajectories
of the particles are examined in detail. The periods and

5 Reference 3, p. 163.

6 D. Bohm ﬂ.n(fE. P. Gross, Phys. Rev. 75, 1851 (1949).

71. B. Bernstein, J. M. Green, and M. D. Kruskal, Phys. Rev.
108, 507 (1957).
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amplitudes of velocity oscillation are obtained in Sec. II,
and in the limit of small wave amplitude the motion is
compared with that predicted by linear theory (see
Secs. II and IV).

Stix® has also hinted at the possible existence of solu-
tions to the Vlasov and Maxwell equations for electro-
magnetic waves of arbitrary amplitude in analogy with
the electrostatic waves considered by Bernstein ef al.”
For the case of parallel propagation we treat these
equations relativistically in Sec. IIT and show that non-
linear solutions do indeed exist. The exact distribution
function is not completely determined by the above
equations, and we find these waves can propagate with-
out satisfying any dispersion relation (neglecting colli-
sions and questions pertaining to the stability of these
solutions). However, it is possible to choose a distribu-
tion function such that these waves still satisfy a dis-
persion relation even in this nonlinear regime.

The electrostatic analogy is completed when we pass
to the limit of vanishing wave amplitude in Sec. IV and
find that, for the trapped electrons, the distribution has
an expansion in half-integral powers of this amplitude.
Requiring only that the moments of the distribution
function be correct to first order in the wave amplitude,
the usual linear results are obtained with a Dirac delta
function appearing in the “first-order” distribution to
account for the effects of the resonant or trapped
particles. A Cauchy principal value prescription for
treating the analytic portion of the first-order distri-
bution function is also obtained explicitly.

II. EXACT PARTICLE TRAJECTORIES

We consider an infinite, collisionless plasma placed in
a uniform magnetostatic field Boe.. The ions are im-
mobile and constitute a uniform background of positive
charge. A right-circularly-polarized wave of arbitrary
amplitude, frequency o, and wave vector k, is assumed
to propagate parallel to Bo. We restrict ourselves to
whistler waves having phase velocity w/k=cv less than
¢, the speed of light, and transform to the wave frame
where most of our calculations will be performed. In
this frame the induction electric field vanishes and,
because we only consider transverse waves with no
density perturbations, the only fields encountered are
the external and wave magnetic fields

B=Bye.+ Bi(e, coskz—e, sinkz). (1)

All quantities are measured in the wave frame unless
otherwise indicated. The equation of motion can be
written in the wave frame as

du/dt=—(e/mc)(ux B), @)

where e and m are the electronic charge and rest mass,
u=uv/cB is the reduced velocity, and B=(1—1v?/c?)1/2
= (14u2)~12 with w?=u,2+u,2+u,2

8 Reference 3, p. 166.
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We introduce a cylindrical coordinate system in u
space with u, = (u.+u,%)"/?, tang=u,/u, and define
¢ =Fkz+¢, the angle between the wave magnetic field and
the transverse velocity of the electron. Then, with
dz/dt=Bcu,, the components of Eq. (2) yield

du,/dt=BQu, sing, (3a)
du, /dt= —BQu, sin{ (3b)
dt/dt=Bkcu,+pBQ0— B (u./u,) cost, 3¢)

where Qo=eBo/mc and Q=eBy/mc. The system of
Egs. (3) is closed in the three variables (%) and
there exists two constants of the motion

(4a)
(4b)

m= uL2+u22 )
2= (u,+vo) 2+ 2v1u, cos{,

where vo=Qo/kc is the cyclotron-resonance reduced
velocity as measured in the wave frame, and v1=Q1/kc.
Noting that 8= (14n1)~Y/2 is constant (in the wave
frame), we substitute the expressions (4a) and (4b) into
Eq. (3a) and obtain

2 du,
kBc dt

Uz

2 =(F(u.))'/?, (5)
d(kz)

=2u

where
F(u.)= (2v1)*(n1—u.?) — ((u.4v0) *—n2)*. (6)

We observe that Eq. (5) is mathematically just the
differential equation describing one-dimensional motion
in a “potential well” F(%,).? Because F(x,) > —® as
#,— =, u, must oscillate in this pseudo-potential
well between two of the real zeros of F(«.), which we
denote by (1,2). By calculating the zeros of the fourth-
order polynomial F(%,), we can formally express ¢ as a
function of %, in terms of elliptic integrals. The solution
is formidable and cannot be inverted in terms of ele-
mentary functions to find #, as a function of time, and
for numerical computations, it is simpler to deal with
Eq. (5) directly. However, much information can be
obtained by considering the first and second terms of
Eq. (6) separately and plotting the curves

yi(w.) =21 (m—u )% and  ya(u.)= | (u.+vo)>—n2|

(the positive square roots of the respective terms),
and considering the regions where y;>7y.. As an ex-
ample, in Fig. 1 we sketch the two curves for the case
(m1—v0)2> 12> 201 (m—w?)12. Oscillations of #, will
take place between the values 1 and 2 given by the
points of intersection of the curve y; with y,. In Fig. 1,
there are four real zeros and the motion is such that
u.+vo has a constant sign with electrons oscillating

9 C. S. Roberts and S. J. Buchsbaum, Phys. Rev. 135, A381
(1964), have shown that the particle energy in the laboratory
frame also obeys this type of equation.



158 R. LUTOMIRSKI

hy =20 (g -v@ 2

|
!
1
1
1
|
|

N be———
N e————=
4

A

¥16. 1. The curves yy=2v1(m—u.2)V2 and yo= | (2, 4vo)2—n2|
plotted for (m2—v0)2>n2>2v1(m— v
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about one of the two velocities #,= —voz=+/712. By
sketching curves similar to those in Fig. 1, one can see
that a number of modes of oscillation are possible de-
pending upon the values of 71, 72, vo, and »;. The in-
vestigation of these nonlinear modes is of general in-
terest, and a discussion of these oscillations with their
limiting behavior as »; tends to zero is given in
Appendix A.

From Eq. (5), the period of oscillation in the wave
frame is

4 2
T=————/ (F(u.))V2du,, ©)
kﬁc 1
and, in the lab (primed) frame
T'=T/(1—»%)l2, (8)

Throughout the remainder of this section we concern
ourselves with obtaining approximate expressions for
some quantities of interest and neglect relativistic effects
to simplify the calculations (v, v, »1<K1;8— 1; 4, —v,/c).
We consider the special case 7°>v:% and 9> (vo+1/72)2,
and note from Fig. 1 that the oscillations are then
approximately symmetric about #,= —w,. Choosing to
observe the motion from the cyclotron-resonance frame,

N
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I2= (nz-2vy v )2
13= (na+2v, vy )72

F16. 2. The phase-plane trajectory VZ=n,+2v1(v ) cos(kZ) for
(@) [n2] <2vivm, (b) n2>2w1v 71
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a Galilean transformation of Eq. (5) with Z=z4cwet,
V=19,+cv, yields

2dV V4V
— =2 —— =4 [F(V/c—vo) V2,
ket dt  c2dkZ

9)

where with the indicated approximation
F(V/c—vo))= (2v1)*m— (V?/c*—n2)*.

F(V/c—wo) is then approximately an even function
of V with the two real roots ==(n2+2vin/71)V/% The
trajectory in the (V,Z) plane is found from Eq. (9) to be

V2= 172+2V11711/2 COS(kZ+ 90) , (10)

where 6, depends trivially on the initial conditions and
we set it equal to zero. A curve of Eq. (10) is given in
Fig. 2. Physically our approximations imply that in the
wave frame, the particle energy is very large, but that,
over one oscillation, #, does not vary greatly from the
value —vo. The particles considered thus have a large
transverse energy. For 7:> 2v1n/n1, the electron velocity
oscillates about one of the two values V= 2+/75. When
[ 72| <2viW/m1, in our approximation the phase plane
trajectory is a pure libration indicating zero average
velocity in the cyclotron-resonance frame. We will refer
to these electrons as being “trapped” in this frame. A
precise definition of particle trapping is given in Ap-
pendix A.

As v; — 0, we observe that the amplitude of velocity
oscillation approaches zero as vi(n1/72)!/2, and for the
trapped electrons tends to zero as 4/71. In the limit, only
those electrons with 7,=0 stay trapped, and the tra-
jectories of the remaining particles (72> 0) approach the
straight-line paths of linear theory.

The amplitude of oscillation in the Z direction may
also be calculated from Eq. (9),

AZ=3N1+(2/7) sin(n2/2vr/m)) 11)

where X is the wavelength. The total distance covered
in the Z direction by a trapped electron (as viewed
from the cyclotron-resonance frame) is less than one
wavelength.

The period of oscillation is given by

K(p), (12)

8
T=— / [E(V /c—vo) 124V =
ke? ck(vry m)'?

where the limits of integration are 0 and (n3+2v17/71) /2,
K(p) is the complete elliptic integral of the first kind!
and p=3(147s/2v1n/n1). We note that for the trapped
particles, p varies between 0 and 1, and for p not too near
1, K(p) is a slowly varying function of p. [K(0)=1.57,
K(0.7)=1.80, K(0.98)=3.10, K(1)= ].1! Then for

P. F. Byrd and M. D. Friedman, Handbook of Elliptic Inte-
grals for Engineers and Physicists (Springer-Verlag, Berlin, 1954),
Eq. (259.00), p. 133.

1 Reference 10, p. 322.
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[ 2] <2vin/m, we have within a factor of 2
T/To=vo/(viv/m)'2,

where T is the cyclotron period. We observe that here,
as in the electrostatic case, the frequency of oscillation
varies as the square root of the wave field.

In Figs. 3, 4, and 5, we show the exact phase-plane
trajectories in the cyclotron-resonance frame as ob-
tained from numerical integration of Eq. (9). The
normalized distance D shown in Figs. 3 and 4 displays
the effect of the odd terms in V appearing in F(V/c—wo)
which we have neglected in our approximations. The
quantity D/k divided by the period T in Eq. (7) is the
drift or average velocity which the trapped particles
possess in this frame. By Taylor expansion of the ellipse
y1 in Fig. 1 about #,=—wo, one can show that this
average velocity of the trapped particles tends to zero
to higher order than the first power of »;. Two tra-
jectories for untrapped particles are displayed in Fig. 5.

(13)

kzw
s04 {lo =0.05
m
—=2.0
20+ ,02
Fic. 3. Phase-
plane plot of the 1ot
solution of Eq. (9) v§
obtained by numeri- D (57
cal integration for + + + + i
112/!1()2 =0.01, v;/vo -04 . C 0.2 0.4
=0.05, n1/ve?=2.0.
";23 =001
3 (]
-3.0--

ITI. SELF-CONSISTENT DISTRIBUTION
FUNCTIONS

For the assumptions given in the beginning of Sec. II,
we find exact self-consistent stationary solutions to the
Vlasov and Maxwell equations. In the relativistic case
the distribution function is regarded as a function of
(2,u;,t), and an invariant form of the Vlasov equation!?
in cylindrical coordinates in u space for the magneto-
static field of Eq. (1) is

af U, af
keu— l: Qo— O— cos(kz+¢):|—
ks I

UL

. of of
+Q; sin(kz+¢) (u;—— uz——) =0. (14)
au, auj_

2P. C. Clemmow and A. J. Willson, Proc. Cambridge Phil.
Soc. 53, 222 (1957), Part 1.
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-40+

F16. 4. Phase-plane plot of the solution of Eq. (9) for
1]2/1/02=0.08, Vl/l'o =0.05, 111/Vo = 20

From Eq' (14)) f(“hul)kz)¢) = f(uz,ui.)g-); Where §-= kz+¢
In terms of these new variables the Vlasov equation
becomes

U, 0 [¢] i)
(uz—{-vo— vi— cosg')—{—% " sing'(ul—f— uz——f—) =0. (15)
U, ag‘ auz aul_

The characteristic equations are easily integrated to give
the general solution of Eq. (15):

f= ”Of(ﬂlmz) ) (16)
kz
Y
E7 =0.05
30}
[ Mg
Yo
20}
1.0
Vi
o 1 1 ! \ ., Sv¥o
02 04 (06 o8 1.0
-1.0F
-20f
L . 7
—2:04 |-Z.10
-3.0f "o Yo

F1G. 5. Phase-plane plot of the solution of Eq. (9) for nz/ve*=0.4,
x{}/ m()) =0.05, m/l:o’=2.0, and V>O0. Similar curves appear for
<0.
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where 71 and 72 are the constants of the motion given by

Egs. 4(a) and 4(b), ng is the electron (and ion) density

in the wave frame, and f(n1,72) is normalized to unity.

(Note that 7, is different in the lab and wave frames.)
Maxwell’s equation in the wave frame is

V X B= Bik(coskze,—sinkze,)

41rnoe

- [cue,+ [ ﬂcuf(mm)dsu] (a7

[4

Noticing that the curl of our assumed magnetic field
has no component in the z direction, the total current
along By must be zero. If the ions are stationary in
the lab system, then the electron current in this frame
must be zero. However, in the linearized theory,
one obtains a zero-order distribution function of the
form fo= fo(u,,u.), which allows an arbitrary zero-order
electron drift along the magnetic field. In other words,
one usually assumes that the magnetic field from the
electron current can be neglected in comparison to the
wave magnetic field. This assumption cannot be made
in an exact self-consistent analysis, and we restrict
ourselves to distributions yielding zero net current along
the magnetic field in the lab system. (A similar state-
ment holds if the ions are not considered immobile.)
Then in cylindrical coordinates, the components of
Eq. (17) are

/ du, u,? / du.B|  f(n,m2) cosgds
[ —0 -

=—u(kc/wp)?, (18a)

/ du, 'Il;/ du, Bu. f(ﬂl,ﬂz)d§’= —V, (]-Sb)
0 —w -

/ du, ”1/ dus | flnyme)d¢=1,
0 —0 —r

where w,= (4wnee?/m)!/2. Equation (18a) follows from
either the x or y component of Eq. (17), (18b) from the
z component, and (18c) is the normalization integral.
We wish to rewrite Eqs. (18) with 71, #., and %, as
variables of integration for reasons which will become
apparent in the next section. The transformation is
straightforward if we first consider a spherical coordi-
nate system in u space. Then n,=#%? is the square of the
radius vector, and one need only change the ¢ integra-
tion to one over 72 which yields

(18¢)

v at+b 99— 02
/ i ﬂ/ (n2—a) f(n1,m2) (m—alflmm)
—vm —b [02—(n2—a)?]V/?

=—2n*(kc/wy)*, (19a)
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v
/ dﬂlﬁf duzuz
24 )
a+d 71, )
X/ __Igl_m._dﬂf_,,, (19b)
b [bz__ (na—a)?]1/2
vm (n1,m2)
/dm/ d“/ g, a0
—vm —b [0°—(ne—a)*]'?

where 8= (14m1)""2, a= (u.+o)?, and b= 2w, (m—u.?)'/2.
The specification of the zeroth and three first velocity
moments (Maxwell’s equations) of the distribution
function f(n1,72) imply the above integrals over f must
be satisfied. f is not uniquely determined from the above
equations, and the degree of arbitrariness may be illus-
trated by expanding f in a Fourier cosine series

f(n, a+b cosf) =3Co+C1 cosg+Cy cos2f+- -+,

where C,=(1/m)/," f cos(nt)d¢. Substituting in Egs.
(18) yields

. / diuy .2 / a1ty BC(ssy1) = —wa(kc/op)?,  (20)
0 —o0

1r/ du, ulf du, Bu.Colus,u.)=—v, (20b)
0 —o0

7r/ duluL/ du, Co(uy,u,)=1.
0 —

Co and C: may be picked independently to satisfy
Egs. (20) for any values of £ and ». Therefore, there is
no dispersion relation for these waves in the sense of a
usual correspondence between frequency and wave
velocity. This feature arises from our postulating a
steady-state phenomena without regard to the manner
in which the wave was established.!®

(20c)

IV. SMALL-AMPLITUDE WAVES

In linear theory it is assumed that one can separate
the distribution into the sum of two terms in the form
fin= fo+ f1, where fo is the zero-order distribution for a
plasma immersed in a uniform magnetic field By, and
f1, the first-order term, is assumed to be proportional to
the amplitude of the wave, or »;. This separation has

BIf one considers a distribution of the form f(n1,72)
= (1/8)F(An1+Bnz), where F is an arbitrary function of any
linear combination of 5 and #, with 4 and B0, then it is
interesting to note that sufficient arbitrariness on f is 'removed to
yield a dispersion relation for these waves. In the nonrelativistic
limit (¥<<1), this relation reduces to that for whistlers in a cold
plasma [see, for example, J. A. Ratcliffe, The Magnetoionic Theory
and its Applications to the Ionosphere (Cambridge University
Press, Cambridge, England, 1959), p. 19]

(kc/w)?=14w/w(Qi—w).
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been justified for the electrostatic problem? by observing
it is necessary and sufficient that fi, reproduce the
average value of any function ¥ of physical interest
correct to first order in »;. For the electromagnetic case
the functions of interest are periodic functions of {, and
it suffices to consider a single Fourier component of ¢,
which implies ¥=y(n1,%.,m2/2v1). Then, from the de-
velopment of Egs. (19), this average is given by

I v o+t f(n,m2)
¢=/ dm/ duzf Ydns.
0 —vm ab [02—(n2—a)?]"/?

To justify the separation of the distribution function for
the electromagnetic problem, our approach is to first
identify the zero-order distribution function of linear
theory fo by considering the particle trajectories in
phase space and determining those values of 51 and 752
for which f(51,72) possesses a limit as »; tends to zero.
The distribution function and the particle trajectories
are studied and the electromagnetically trapped parti-
cles are defined in Appendix A, where it is demonstrated
that the (71,72) plane may be divided into two regions.
Particles in region I defined by

i) m<we?, and (ro—A/71)2<L < Wot+/m)?,
() m>we?, and 0<ne<(vot4/m)?,

have well-defined trajectories as »; — 0. No trajectories
exist at »1=0 for particles in region II defined by

(l) 171<l/02, and 772<(Vo—‘\/171)2

or 72> (vot+a/m1)?,
(i) 7m>ve?, and %72.<0 or 72> ota/m).
It is further shown that, for certain 71, 72, f(n1,72) may

have two distinct values, depending upon whether #.+vo
is less or greater than zero. Then, for (y1,72) in region I,

o v © —vo—(2ar1)1/2
f d"h[ du, (fo,¢)+V1/ dm I:/ du.+
0 —vn 0

=7

(21)

(22a)

(22b)
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we define
f=rt(nme) for u,4v>0,

=f(mme) for u,+1<0,

and hence, in region I, f= f++ f~. For the trapped elec-
trons in this region [see Appendix A, 712>¢% 0< 72 <aw,
a=2(n—ro?)V/?], the distribution is ft=f~=3%f. The
zero-order distribution function of linear theory is then
identified with

fO(")l;uz)=f+[771;(uz+”0)2]y uz+”0>0,
= f L, (A420)%], #.490<0.

One usually assumes that fo(n1,%.) is an analytic func-
tion of 71 and #, for all real values of these variables.!®
The continuity of fo at #,= —vo implies that

Joln, —vo)= fH(m,0)= f~(11,0)=%£(n,0).
We also assume that 9 fo/du%,70 near %,= —vo. Then
afo

(23)

(24)

fo(nlyuz)=f0(‘l11, _l'o)—f-(uz-l—vo) +-. ..

uz=—v0

Ue

This latter assumption imples that f* and f~ have
expansions in half-integral powers of 7, near 7.=0, i.e.,

afo

U,

fE= foln, —vo)==(v/n2)

+...’

—0

(25)

and f* are not analytic functions of 7, near 5.=0,
however ft+ f~ will have a normal Taylor series ex-
pansion about 7;=0.

In Appendix B, the total region of integration in
Eq. (21) is divided into sums of integrals over appropri-
ate subregions (by considering the allowed values of 7,
and %, for fixed #1), where f may be identified with f,in
the limit »1=0. Any integral which tends to zero faster
than the first power of »; is neglected, and we obtain

vn

du,:I
—vot (2ar)V/?

%18 fo/ du.)— (3 fo/ du,)
X

uz+ Vo

where we have defined

atd f(nma)y
W)= N C—; '
W7 o

1 T
=5 / Sf(m, a4 cos¢)YdE.

Therefore as »v;— 0 the prescription for treating the
singularity at #,= —voin the %, integration in the second
integral is to take the Cauchy principal value. Then for

o —vot+ (2ar1)1/2
(cost )+ / dns / dus (f—fo¥), (26)

—po— (2av)1/?

the first two integrals in Eq. (26), we transform back
to the more familiar variables (u,,%.,{) ,and write these

#In the course of writing this paper, our attention has been
drawn to the work of C. Brossier, Nucl. Fusion 4, 137 (1964).
Brossier has considered the limits of the zeroth and three first
velocity moments of the distribution function as the wave ampli-
tude is reduced to zero in a nonrelativistic analysis. However, his
identification of the zero-order distribution function is not correct,
and he does not obtain a Dirac delta function in the first-order
distribution.

18 1. B. Bernstein, in Radiation and Waves in Plasmas, edited by
M. Mitchner (Stanford University Press, Stanford, California,
1961), p. 36.
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terms as

/ dul uL/ du;
0 —e0

X / ’ l:fo+m(P(ul(af°/au2):‘Z(Gﬁ/am coss“)]M? )
—x U T Vo

@
where @ denotes the Cauchy principal value.

In Appendix C, it is shown that, to lowest order in
v1, the last integral in Eq. (26) can be written as Eq.
(C1), an integration over the distribution of trapped
electrons defined in Appendix A. Then, utilizing Max-
well’s equations [Eqgs. (19a)-(19c)], with ¢ =g(n.—a),
and ¥=1, it is shown that the trapped electron distri-
bution possesses an expansion in half-integral powers of
72 about n2=0. Substituting this expansion in Eq. (C1),
we find that the integration of ¢ over the distribution
of trapped electrons yields a term proportional to »:.
Combining this expression with Eq. (27), we find that
the distribution function

(8 fo/ Ou.) —1,(3 fo/ duuy)
Srin= fo(tus,u.) 4116 st-o

+v1J8(u+vy) (28)

will reproduce the average value of any function ¢ of
physical interest correct to first order in »;. J denotes the
expression in the curly brackets in (C4), which can be
evaluated if both f,, and the coefficients in the expansion
of f(m1,m2) about na=0 are specified, and §(u.+»o) is the
Dirac delta function. From Eq. (C2b), this integral will
vanish when ¢ does not depend upon ¢, i.e., for any
function of the form y(n1,%.)=v(u,,u,). A Lorentz trans-
formation of the first two terms of Eq. (28) to the
laboratory frame yields

Frlaenn)+ G)M.L(afo/auz)_(6uz—y)(af0/aul)
ol U, %, 1 #,— (v—PBro)

X cos(kz+op—wt),

which are just those terms which enter into the usual
linear theory of electromagnetic oscillations. All
quantities in (29) are now measured in the lab frame.
The delta function has been introduced previously by
Pradhan,! who applied the normal mode analysis of
Van Kampen'® to the electromagnetic problem. As in
the electrostatic case, the nonlinear method yields the
physical nature of the singularity, namely, the need to
account for the resonant or trapped electrons within the
structure of the linear theory.” While the true distri-

16 N. G. Van Kampen, Physica 21, 949 (1955).

7]t is noteworthy that the delta function at u,= —y, arises

“physically” because the drift velocity of the trapped particles in

the cyclotron-resonance frame tends to zero faster than the first
power of »;.

cos(kz+o)

(29)
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bution was well behaved, the first-order solutions are
singular reflecting the fact that these waves do not

damp.
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APPENDIX A

We introduce a coordinate system in phase space with
polar axis #,, cylindrical radius %,, and azimuthal angle
¢, where we consider the spherical surface =1, 4.2,
and the right parabolic cylinder o= (#,+v0) >+ 2v12, cos¢
for given n1 and 7s. The circle and parabola shown in
Fig. 6 are the intersections of the respective surfaces
with the plane %, sin{=0. The parabolic surface is sym-
metric about #,= —v and has its vertex at P=17s/2;.
The intersection of these surfaces determines the
curve(s) along which f has a particular value. This curve
has the general appearance of the seam of a tennis ball
if P lies between Q and Q'.

Then, for any “radius” 4/n1, if 9:<0, as v1 — 0 the
point P will move to the left until there is no inter-
section. When 7:>0, as »1— 0 the point P moves
infinitely to the right in such a manner that the para-
bolic surface approaches the two planes #,= —vo1/72
in the vicinity of the sphere. When 7,< (vo—+/11)? the
axis of the parabola is sufficiently below the sphere that
there again exists no intersection as »; — 0. The same
holds true for 72> (vo++/71)? because the upper and
lower limiting planes will then be above and below the
sphere, respectively. Thus, for the above values of 7
and 7, motion is possible only in the strictly nonlinear
regime. In the limit as the wave amplitude tends to
zero, these modes of oscillation cease to exist.

To further discuss the particle trajectories, for 71> v¢?,
we define the quantity a=2(m—w»?)'/? (see Fig. 6).
Then, for n1>»¢% if —ar1<%:<0, the point P lies be-
tween —a/2 and 0 (i.e., —a/2<wu; cosf<0). The 3
component of velocity oscillates about #,= —»o, and the

t
/i
F16. 6. The inter-
sections of the sphere
m =u17+u,2 and the
right parabolic cylin-
uycost der 2= (1, +ro)?
N +2»1%; cos¢ with the
plane uy sing =0,
Q Q The u,siny axis
S AT points  into  the
\ | paper. The curves
/7y o 2 12 are drawn for 71> »¢?
> =(n-v0) and 0 <7z <aw;.
/ P = n2
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allowed values of the angle { lie between 7 — cos™!(n,/av1)
and m+cos~!(nz/avy). Thus, at any point z, the mean
value of ¢ is ¢==r—*kz. With Eq. (1), we observe that
this mean value of ¢ implies that the electrons are so
organized that their mean transverse velocity is anti-
parallel to the magnetic field of the wave.!® Essentially
the same trajectories exist for 0<n.<avi, except that
the amplitudes of oscillation of { about { = are greater,
i.e., between m/2 and 7. The basic difference between
these modes is that the mode governed by —av1<7:<0
disappears completely as »; — 0, while the 0<ns<av;
splits into two modes when »;<#2/c.. Thus it is precisely
those electrons having 71> v¢? and —avi1<ne<aw; which
oscillate about #,=—wv, and feel the wave Doppler-
shifted to their own cyclotron frequency. The distribu-
tion for these electrons is equally divided in %, about
u,= —vo, and in analogy with the electrostatic case, we
define these resonant electrons as being “trapped.”
Considering the remaining modes with 7.>0, for
(vo—A/12)2< 11 <re?, the motion is such that #,+vo>0,
and as »; — 0, %, approaches the limit —vo+4/72. For
ve2< m< (vo+1/72)%, the lowest point on the sphere is
below the axis of the parabola and above the plane
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= —vo—A/1. When n,<aw; we have the trapped
particle motion discussed previously, and when 7s>an
the motion is such that #,+vo has a constant sign. As
v1— 0 the upper parabolic surface flattens out to yield
the limiting velocity #,= —wvo++/72. The bottom sur-
face might intersect the sphere depending upon the
relative values of 71, 72, and @, but not in the limit at
v1=0. Finally, with 71> (vo+1/72)%, #.7+vo again has a
constant sign when ns>av;. In the limit these electrons
have one of the two limiting velocities %,= —vo=4/72.

From the preceding discussion we can divide the set
of (n1,72) into two regions, summarized by (22a) and
(22b), according to whether or not the spherical and
parabolic surfaces yield an intersection at »1=0. For all
7270 in region I, as »; — 0, the intersections approach
one or two circles each of which is entirely above or
below the plane %,=—v,. All values of {(—7<{<m)
are assumed by the electrons following their phase-space
trajectories with angular velocity di/dt— Bck(u.+vo),
the Doppler-shifted cyclotron frequency. For 7.=0 in
region I, the intersection approaches the semicircle
u, 2=mn1—vo? with 7/2<{<37/2 in the plane #,= —vpy,
and d¢/dt— 0.

APPENDIX B

(i) 0<n1<w® Noting the conditions in (22a) and (22b) we plot the parabola yi(%.)=a= (#,+v0)? and the
ellipses ya= (vo—4/n1)?bd and ys= (vo++/n1)2£b, where b=2v;(n1—u.2)1/?, in Fig. 7. The two points of inter-
section of y; and y, occur at #,=—+/n1, Py, and y; and y; intersect at #,= P, 4/71, as indicated on the diagram.
Then, for —o/m<u.<P1: a—b< (vo—+/m)2<a+b; for P1<u,<Ps: (vo—/m1)2<a—b<ne<a+b< vo++/m)?
(i.e., region I); and for Pa<u,<+/n1: a—b< (vo++/m)?<a-+b. Hence the portion of the integration in Eq. (21)
from 0<91<v¢? may be written as

vo? Py (vo—v'm)? f¢ at+b f+¢
[l [ af [T [ Y]
0 —vm ab [6%— (n2—a)?]"/? Goya? [0%— (n2—a)? ]/

P2 atb f+l// vm (vo+vn1)2 +¢/ atb
+/ duz/ _*——‘dnrf-/ duz[/ —'*—f—-dﬂz‘f-f _ﬁp—‘—dnz]}-
Py a—b [b2_(772‘a)2]”2 Py a—b [b2_(772—a)2]”2 Gotvm? [0%— (n2— 0)2]”2

(B1)
In the limit at v;=0, (B1) becomes

vo? vn1 at+bd f+¢
/ dns / du. f — Y
0 —vm a—b [b2—(772~d)2]”2

The integrals in (B1) differ from the integral in (B2) by integrations over the shaded areas in Fig. 7. These latter
integrals tend to zero as »,3/2 because Py — —+/71 and P2 — 4/ as »1 and 5" = V2dx — 0 as v, 1/2.

(i) m=>wo® In order to bring out the effects of the trapped electrons, we consider the parabola y;=a= (#,+ ro)?
and the ellipses y:=ar14=b and y;= (vo++/71)?+b plotted in Fig. 8. One can show that for any 7> re?, if we pick
vi<vr*, where 2v1*=[(v/11)—»0]*'*/[(»/n1)+»o]"?, then the point on the bottom ellipse #,= —+ /7, is to the left
of the parabola, and there will be two arcs of intersection of y; and y;: (P3,Ps) and (—ve, Ps). This value of »,
depends only upon 71 and as »1— 0, this is the only case to consider. We observe that for —1/71<#,<Pj; and
P5<’uz<PsZ OlV1<a—b< 7]2<(1+b< (Vo+\/171)2; P3<u,<P5: a—b<av1; P6<uz<‘\/7]1: d—b< (Vo+\/171)2< d+b

(B2)

18 A qualitative discussion of such phase organization has been given by N. Brice, J. Geophys. Res. 68, 4626 (1961).
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y P
\Yh\
1
2 ]
- + A
[ 1
VmP3s Py 0—"Fg W
Fic. 7. Th = (u, 2 a = (yo— )2 F16. 8. The curves y1= (#:+v0)?, y2=avi£d, and y;= (vo+vm)?
© y3=e(f:’_ivjfhy)%i§f‘$’é‘}l’byiz,,f’@“.f/u’:z‘;lﬁf b, and +b. For —Py<u,<—wo, the parabola y, is below the ellipse

Ya.

Then the integral from »¢? to © can be written as

/, : dm { /”’ du, (f~)+ /P jﬁ du, (f )+ /P }: dus (f* )

—v/11

v (vo+vVm)2 +¢ a+b f‘l’
T iy . e Y
Ps atb (62— (n2—a)?]"? votem)? (02— (12— a)? ]2

As vy — 0, the points in Fig. 8 V3, ¥5— 2av1, P3 — —vo— (20v1)*/%, Ps — —vo+ (2av1)/% Then following the same
argument used in establishing (B2) from (B1) we have for » small

w —v0—(2av1)1/2 v —rot (2ar1)1/2
[ dm[ [ du (f)+ dus (F)+ f s f du, w)]- (B4)

—vm —vot (2ar)V/? vo— (2ar))1/?

Expanding the integrands of (B2), and the first two integrals in (B4), in a Taylor series about »1=0, and using
the relations
of aft of*
— =2, (o) —v1ut, cos{ ]
ou, ou, 9

Uy

and 89s/dv1=2u, cos{ results in (26).

APPENDIX C

To lowest order in »; over the range of integration indicated by the limits in the last inetgral in Eq. (26),
b=2v1(m1—u,%)V/2 may be replaced by av:. The (9s,%,) integration is then over the area in the (»2,%.) plane between
the parabolas y1= (#.+vo)>—av: and y2= (%,+vo)?+av: and bounded by the lines #.= —vod-av1. Inverting the
order of integration, f can be identified with either f+ or f~ in two of the three resulting integrals. Changing vari-

ables from 7%, to x=17;/av; and recalling that ¥ depends on 7, only as 7s/2v1, these integrals may be written to
lowest order in »; as

—vo— [av1 (z—1)]1/2 [ "(‘r] ;o x)— ¢(77 7x?u’)
/ dma/ dx/ du (001 o (m

z
vo— (2ar1)/? {(ayl)z—[(ut—l_yo)z—aylx]z}l/z

—rot ot/ [f+(171,a1/1x) - fO]‘p(ﬂl,x,uz)
/ dma / dx /

—m+[an<z—1)1"2 { (a1)?—[(us+0)2—arix ]2} 1/2

o 1 —vo+ [av1(1+2)]1/2 1 (17 Nai4 x)_ (n ’0)]¢
+V1/ dn a/ dx/ du 3Lf(m,ev1x)— f(m (C1)
902 -1

2z .
—vo— a1 (L+2) 112 {(av1)?—[(%s+vo)2—avix ]?} /2
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But from Eq. (25) we have f+(ni,anx)— fo==(av1x)(dfo/du.)| -+ - - . Substituting these expressions for f~
and f* into the first and second integrals in (C1), respectively, and expanding ¢ in a Taylor series in %, about
#,= — o, we find that to first order in »; these two integrals exactly cancel. The last integral in (C1) is an integration
of ¥ over the distribution of trapped electrons defined in Appendix A. To determine the nature of the expansion
of this distribution for small 7, we consider Maxwell’s equations (19) with y=p(1.—a) and ¢=1. With these
substitutions we obtain

[ dng i f dx [2Ex(x)— Ea() TLflmaosz) — (0 J= il PR (fo), (C2a)

-1

/ dny all® / dx Ey(@)[fnewss) — f(m,0)1=0, (C2b)

-1
respectively, where

key? ® ®  u,(0fo/OU.)—u.(0 fo/Ou,s
R(f0)5—2<—6) -—27r/ du, uﬁ(P/ Bu (9fo/ du)—u:(8 fo/ Ou )duz,
o ~w

Wp u.+vo
and E; and E; are complete elliptic integrals which we define by

(1+z)1/2

(1+2)172
Ei(x) =/ [1—(2?—2)*]"V2%dw and Es(x) =/ [1— (w2—x)? V2w,
0 0

[It may be noted that taking y =4, also yields Eq. (C2b).] Hence, assuming only that f is continuous at 7s=0
we have

fnma)— f(n1,0)= Aga(m) [ o] Y24+ -+, for 2:>0, (C3a)
=Bga(m)|ne[ V24 -+, for 7:<0, (C3b)

where A and B are constants and g; and g. are functions of 5, alone. Substituting Egs. (C3) into Eq. (C2) yields
two linear equations which can in principle be solved for A and B provided f,, and the expansion coefficients of f
about 72=0, g1 and g, are known. Therefore while we have assumed that f(n1,72) is continuous about 7,=0,
df/dn2 is not necessarily continuous.

Substituting Eqgs. (C3) into the last integral in Eq. (C1) and expanding ¢ in a Taylor series about #,= —y,
we find the contribution to first order in »; to be

Vl/ dm/ dx { | x| 2Er(x)[Aga(m) H(x)+Bga(m) H(—x) ¥ (m, x, —vo), (C4)
vo? -1

where H(x) is the Heaviside function
H(x)=1, x>0
=0, x<0.



