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Energy of a Lattice of Quantized Flux Lines*
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Analytic expressions are given for the magnetic Qux density B and the Gibbs free energy G of a bulk
type-II superconductor in an intermediate magnetic Geld Ho (H, I((Hp&&H g). Both square and triangular
lattices are considered; the triangular lattice is confirmed as the more stable structure.

I. INTRODUCTION
' 'N the mixed state of bulk type-II superconductors,
~ - the magnetic field penetrates the sample in the form
of quantized Qux lines. ' Each line consists of a core
surrounded by circulating supercurrent. The radius
of the core is given approximately by the coherence
length $. Outside of the core, the magnitude of the
circulating supercurrent decreases inversely with the
radius r out to the penetration depth X, beyond which
the supercurrent vanishes exponentially. The present
work is restricted to extreme type-II behavior, which
is characterized by a large value of the ratio «=X/$;
in this limit, the core of the Aux line may be treated as
a singularity in the current distribution, and the
structure of the line is similar to that of a classical
vortex filament.

The theory of the mixed state takes a diferent form
in each of three distinct regions of magnetic field
strength Ho, ' corresponding to de'erent values of the
density of fiux lines. In the low-density region (Hp& Hgl,
where H, i is the lower critical field), the distance d
between the lines is much greater than the penetration
depth X, so that the lines may be considered inde-
pendently. In the intermediate-density region (H, i«Hp
«H, p, where H, p is the upper critical field), the separa-
tion lies in the interval Q&d«X, and the lines interact
appreciably. Finally for Ho&H, 2, the separation of the
lines is comparable with the core radius P, and the
precise structure of the core becomes important.

It is generally assumed' —' that the stable configura-
tion in the intermediate-density regime is a regular
two-dimensional lattice. The properties of the bulk
sample are thus expressed in terms of well-defined
lattice sums, which have previously been obtained only
through computer calculations. ' A mathematical tech-
nique for the evaluation of such sums has been de-
veloped' in a form that converges rapidly for $«d«X.
Here, these analytic summation formulas are applied to
the calculation of the magnetic Aux density 8 and the
Gibbs free energy G of square and triangular lattices as

a function of the applied magnetic field in the region of
intermediate density.

In Sec. II, we review briefly the properties of bulk
type-II superconductors, introducing the necessary
lattice sums for both square and triangular lattices.
The physically interesting quantities 8 and G are
evaluated in Sec. III.

Vip= (pp /Sx9 )Ep(rip/X), (2)

where rip=
~
ri —rp~, and Kp is the Bessel function that

vanishes exponentially for large values of its argu-
ment. ' The total interaction energy V per unit length
of the lattice is

V=p Z'i' Vv,

where the summation is over i and j separately, omit-
ting the terms i= j. Since V;; depends only on the
distance between r; and r, , Eq. (3) can be rewritten as

V=-', X Q Vp;, (4)

where E is the number of Qux lines in the sample. The
total free energy per unit volume P is

F=npi+(nq p'/16z 9,') Q, '
ICp(rp;/X) .

II. BULK TYPE-II SUPERCONDUCTORS

In a type-II superconductor, the singular behavior
of the circulating supercurrent near each Qux line re-
quires a modification of I.ondon's phenomenological
theory of superconductivity. 4 The extended London
equation is'

7 x j+(c/4zA')H= (p pc/4n. X')z Q; 8(r—r;), (1)

where the summation runs over all the Aux lines in the
sample. The magnetic field H is parallel to z (a unit
vector along the z axis) and happ

——(2n.hc/2e) is the
quantum of magnetic Aux. The vector r lies in the xy
plane, so that 8(r) is a two-dimensional delta function.

From Eq. (1) and Maxwell's equation 7 x H = (4z /c) j
it is not difficult to derive the interaction energy V»
of two vortices at r~ and r2' '.
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Here e~ is the energy per unit length of a single Qux

line, and n is the number of lines per unit area.
The equilibrium magnetic Aux density B=neo

is obtained by minimizing the Gibbs free energy
(thermodynamic potential) G per unit volume with
respect to B,' ' where 6 is related to F by a I.egendre
transformation'

G=Ii (4s.) —'BHp.

Equation (6) depends on B both explicitly and in-

directly since r» is proportional to B 'I'. The condition
dG/dB=O yields the following implicit equation for
the magnetic Aux density 8 as a function of the applied
feld a, :

Hp ——H, g+ (pp/Sp. ks)Q {2Ep(rp;/X)

+2(«/~)'[&s(»8/") &o(»o /~)]) (7)

Z = (4pr/43p')+-' in'' ——,'[ln(Sp/v3)+1 —y]
+ pals+0(v'),

Zis ——(16sr/v3q')+0(1), (14)

Zss ——(32s./v3p') —(2/g')+0(ps) .

Here y(=0.5772 ) is Euler's constant, and the
constants A4 and A6 are given by

& {g~ [~(12+m 2)]+~—1()2+m 2)—1

Xexp[—7r(P+m')])=0. 10087, (15a)

2 s =P&„'{E,[(2pr/v3) (l'+lm+m'))+[(2s/V3)
X (is+1m+ms)) —' exp[—(2&/v3)(p+lm+ms)])

=0.07968. (15b)

The exponential integral in Eq. (15) is defined as'

where H, &=4m.s&/pp. The Gibbs free energy, which is a
function of Ho, is then obtained from Eqs. (6) and (7),

Ex(x)= d«-'e-'. (16)

G= (Bqo—/64 9')P,' ro,'[E (ro,/X) —1|,(ro,/X)]. (8)

The following theorem' has been used in the derivation
of both Eqs. (7) and (8):

The series converges very rapidly, so that the third-
nearest neighbors are sufBcient to obtain an accuracy
of five significant figures.

The Gibbs free energy has been expressed [Eq. (12))
in terms of the lattice sums. Substitution of Eqs. (13)
and (14) yields for the square and triangular lattices,
respectively,

Equations (7) and (8) express the magnetic flux

density and Gibbs free energy in terms of certain sums
over all lattice sites (excluding the origin). It is con-
venient to introduce a simplified notation.

(17a)
(10a)

Gs ———(Bspo/647»9. ') [(81»/Jt4') —2+0(p')),
Zo= Q, '

&p(ro, /X),

Zs ——d—' P/ rorsICo(»„!X), .

Z, =d-' Q, '
ro,'K, (r„/X) .

(10b) G, = —(Bsppo/64sr'gs)[(16pr/V3p') —2+0(p')) (17b)

The density of lines n is given by n= d ' for the square
lattice and n= (2/A)d ' for the triangular lattice; the
magnetic Aux density 8 is equal to neo in both lattices.
Equations (17a) and (17b) become identical when

expressed in terms of the magnetic Aux density,

(10c)

When the distinction between square and triangular
lattices becomes important, Eq. (10) will be written
with an additional subscript 4 or 6 (for the four fold or
six fold rotational symmetry). In terms of these sums,
Eqs. (7) and (8) may be rewritten as G4= —B4'/Ssr+Bspo/32p»9. '+0(1), (18a)

Gs= —Bss/87»+Boffo/32or93+0(1). (18b)HO= Hgl+((pp/87»X )[2Zo+-,'p'(Zs —Zy)), (11)

G= —(Bppo/647»9. ')p'(Zs —Zy), (12) The difference between the Gibbs free energy of the two
lattices is due entirely to the difference in the magnetic
Aux density for the same applied magnetic field. The
relation between B and Hp has been given in Eq. (11).
For the square and triangular lattices,

where Is= d/X.
The sum Zo may be easily obtained from the results

of Ref. 3, where Z~ and Z2 have been evaluated ex-
plicitly. We find, for the square and triangular lattices,
respectively, Hp —H, g

——(q p/Sprhs) [(Ssr/p')+1nps —ln(4s)

(19a)
—2+y+A 4]+0(ps)

=B4+(sop/Ss X )[ln(lpp/B4X )—ln(4pr)
—2+v+~ s)+0(Bs '),

Zos ——(2s./ps)+ p' Inp' —p' [ln(4n. )+1—y)
+pals+0( ')

(13)Zrs ——(Ss./y4)+0(1),
Zss ——(16pr/p') —(2/y')+0 (p');

9 We follow the notation of Handbook of Mathematical Functions
upwith Formulas, Graphs, and Mathematical Tables, edited by
M. Abramowitz and I. A. Stegun (U. S. Government Printing
Office, Washington, D. C., 1964), Natl. Bur. Std. Appl. Math.
Ser. 55, p. 228.

7 Reference 4, p. 18.
H. B.Dwight, Tables of Integrals and Other Mathematical Data

(The Macmillan Company, New York, 1957), 3rd ed. , p. 177.
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Hp —H.g
= ((pp/Spry') L(16gr/%3@')+ in p' —in(Ss./v3)

(19b)
—2+y+A p]+0(p')

=Bp+ (pp/Sp Xp) [ln(pp/Bph') —in(4s )
—2+v+Ap)+0(Bp ').

These equations may be inverted to first order

B4=H p H, q+—(rpp/Sm XP) (inPP(Hp —H, q)/happ j
+ln (47r) +2 —y —A 4), (20a)

Bp=Hp —H.g+ (pp/87rX')

(in@�'(Hp

—H, g)/ pppj

+in(4s-)+2 —y —Ap}, (20b)

neglecting terms of order

(ppp/X') '(Hp —H.r) ' inLlh. '(Hp —H.r)/pp].

For a given magnetic field, the magnetic flux density
in the two lattices divers only by the constant 3 that
depends on the detailed lattice structure.

The Gibbs free energy can now be computed from
Eqs. (18) and (20):

G4 ———(Sp)-'(Hp —H, g)' —(32m 9')-'(Hp —H„)ppp

X {In@.'(Hp —H, |)/q p$

+in(4s)+1 —y —A4), (21a)

Gp= —(87r) (Hp H y)
—(321r9 ) (Hp H y) pp

X f in)X'(Hp —Hca)/pppj

+In(47r)+1 —y —A p) . (21b)

The diAerence in the Gibbs free energy is

G4—Gp= (327r9, ') '(Hp —H r) ppp(A4 —Ap)
= (32p X ) (Hp —H~r) ppp(0. 02119). (22)

The triangular lattice has a lower Gibbs free energy
and represents the more stable configuration. ' ' Small
corrections to Eq. (22) arise from the terms neglected
in Eq. (19) and are independent of Hp H, &-.

The present approach cannot preclude a metastable

square lattice structure; a detailed calculation' ' shows,
however, that the square lattice is dynamically un-
stable with respect to small perturbations of the flux
1ines from their equilibrium position, while the tri-
angular lattice is dynamically stab1e. The triangular
lattice has also been shown to have the lower Gibbs
free energy in both the low-density region' (H,&(Hp)
and the high-density region" (Hp&. H, &), so that this
structure is expected to occur for all values of applied
magnetic field.

The same sums may be used to calculate the con-
tribution to the specific heat of a type-II supercon-
ductor due to the lattice of flux lines. " Similar tech-
niques may also prove useful in the study of thin
superconducting films in perpendicular magnetic fields,
where a related lattice structure occurs. "
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