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Landau's superQuid hydrodynamics is applied to the vibration spectrum of a lattice of rectilinear vortices
in both charged and neutral superQuid systems. The resulting vortex dynamics is identical with that of
classical hydrodynamics: each vortex moves with the local superQuid velocity at its core. The only mode
considered is one in which the vortices move without bending. This mode is unstable for all lattice structures
in a neutral system (liquid helium II); in a charged system (type-II superconductors) the mode is unstable
for a square lattice but stable for a triangular lattice. The corresponding long-wavelength dispersion relation
is co= (eB/mc)q'Xd(V3/32~)&', where B is the magnetic induction, ) is the London penetration depth, q is
the wave number, and d is the lattice spacing. An elasticity theory of the lattice vibrations in the charged
system is shown to predict identical results. These calculations agree qualitatively with those of de Gennes
and Matricon but disagree with those of Abrikosov, Kemoklidze, and Khalatnikov; the discrepancies are
discussed in detail.

I. INTRODUCTION

HE vibrational modes of an array of classical
vortices have been studied for nearly a century

as a criterion for hydrodynamic stability. "In recent
years, similar vortex structures have been found in
superBuid He II ' and in type-II superconductors. 4 In
his original paper, 4 Abrikosov compared the free energy
of square and triangular vortex lattices. His numerical
calculations were repeated and partially corrected by
Matricon' and by Kleiner, Rath, and Autler, ' who
found that the triangular array always had lower free
energy than the square one. The calculations were valid
either very near H, 2 for arbitrary values of the Ginz-
burg-Landau parameter" x or for intermediate 6elds'
and very low fields' (H&H, t) in the limit shoo. In
order to test whether either structure was microscopic-
ally stable against small deviations from equilibrium,
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de Gennes and Matricon7' presented a dynamical
theory of vibrations of the lattice. This theory relied
on the hydrodynamic concept of the Magnus force'
and predicted several modes, which have not been ob-
served. They verified that the triangular array was
in fact microscopically stable, whereas the square was
not. Additional con6rmation of the stability of the tri-
angular array was provided by the beautiful neutron-
diffraction experiments of Cribier et ul. , who were able
to distinguish between the two lattice structures. The
hydrodynamic approach has been criticized for neglect-
ing the positive background of the ionic lattice, ' for
predicting too large a Hall angle "' and for omitting
current oscillations. " In particular, Abrikosov, Kemo-
klidze, and Khalatnikov" 6nd imaginary frequencies
for the vibration modes of both lattices, which implies
an instability in the absence of dissipative forces.

The hydrodynamic theory has also been applied to a
lattice of quantized vortices in superQuid helium II.'4
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Due to a numerical error, Pincus and Shapiro con-
cluded that a lattice would be stable. A more correct
calculation in this case shows that the vibration fre-
quencies are imaginary for any in6nite lattice, and in

fact there is no experimental evidence for any regular
lattice. The concept of the Magnus force was not used
explicitly by Pincus and Shapiro, "who formulated the
problem directly in terms of the velocity 6eld. This
approach, which is also used here, starts from the obser-
vation that the vorticity is a convective quantity that
follows the motion of the fluid particles. " Thus the
vortex core, which contains the concentrated vorticity,
moves with the local Quid velocity at its position. If a
lattice of vortices is disturbed from its equilibrium con-
figuration, the translational velocity of each vortex is
merely the net velocity induced at its core by all the
other vortices.

In this paper, we develop the above approach for a
simple model of quantized vortices in superfluids
that can be analyzed in complete mathematical detail.
In this model the structure of the vortex cores is
neglected so that it is permissible to apply Landau's
dynamical equation for the superfluid velocity, "
generalized to include electromagnetic forces. We make
the plausible assumption that the vortices move without
distortion LEq. (7)j and then prove that for our model
each vortex moves with the local velocity at its core
LEq. (13)]. In the limit of zero electric charge the
model applies to helium II at very low temperatures.
For 6nite charge it describes a hypothetical type-II
superconductor of truly infinite e parameter (or in-
finite P,&), namely, a system in which the core diameter

$ is vanishingly small. As shown below, our dynamical
theory predicts instability in liquid helium II for all
lattice structures. The question of stability in type-II
superconductors can be answered only by evaluating
lattice sums, which is here done in analytic form. The
square lattice is found to be unstable while the tri-
angular lattice is stable, in agreement with earlier
work. ~' The markedly different behavior in helium
and in superconductors is due to the form of the inter-
action between vortices: the neutral system has a
long-range interaction, while the charged system has a
short-range interaction because the London penetra-
tion depth X acts as a natural cutoff. In the present
simpli6ed model, the lattice arrangement can be stable
only if the size of the sample is large compared with the
range of interaction between vortices.

In the work of Matricon' the stability criterion for the
lattice of Qux lines is based on classical elasticity theory.
For comparison, we have developed an elasticity theory
from 6rst principles. The elastic energy contains terms
linear in the strains, as well as the usual quadratic ones,

'~ A. Sommerfeld, 3Eechanics of Deformable Bodies (Academic
Press Inc. , New York, 1952), Chap. IV.

'6 L. Landau, J. Phys. (USSR) 5, 72 (1941);reprinted in I. M.
Khalatnikov, Ietrodectioe to the Theory of Seperjluidity (%. A.
Benj~~~~, Inc., New York, 1965), p. 185.

which indicates that the lattice cannot be an equilib-
rium configuration without an external applied (mag-
netic) pressure. In addition, certain symmetry condi-
tions in the elastic theory of crystals are not satisfied
for the vortex lattice. The generalized elasticity theory
given here precisely reproduces the long-wavelength
limit of the theory based on lattice dynamics.

The main conclusion of the present work is that the
triangular lattice in our simple model of a type-II
superconductor is stable, in agreement with experi-
mentso and with the free-energy calculations based on
the Ginzburg-Landau theory. ~' In contrast, Abrikosov,
Kemoklidze, and Khalatnikov" treat the same model
(g~~, 1 =0) and use the same dynamical equation,
but 6nd imaginary frequencies for both lattices in the
absence of viscous damping forces. They employ an
averaging procedure over areas containing many
vortices, whereas we treat each vortex separately
throughout the calculation. The process of averaging
introduces additional assumptions, which appear to be
the source of the discrepancy.

In Sec. II, the basic hydrodynamic equation govern-
ing the motion of vortices is derived from Landau's
superfluid dynamics. The resulting stability criterion
is used in Sec. III to explain the qualitatively different
behavior of vortices in liquid helium II (neutral) and in
type-II superconductors (charged). Section IV contains
the detailed theory of the square and triangular lattices
in superconductors, where the lattice sums are evaluated
explicitly. The elasticity theory of the lattice of
quantized flux lines in type-II superconductors is
developed in Sec. V. The validity of our model is con-
sidered in Sec. VI, along with a discussion of the
averaging procedure of Ref. 13. Mathematical details
are given in the Appendices.

II. THE STABILITY CRITERION

As a fundamental assumption, we describe the
motion of the superfluid by Landau's dynamical equa-
tion, generalized to include electromagnetic forces

clv/Bt+(v ~)v+~p=(e/m)(Eo+c 'v xH), (1)

which is just Eq. (3) of Ref. 13."Here H is the magnetic
field, y, is the chemical potential, Ep is the applied
electric field (assumed small), and v is the superfiuid
velocity. All normal-fiuid effects and frictional forces"
are omitted; the validity of this important restriction
is discussed in Sec. VI. In the presence of vorticity, the
usual London equation must be generalized to'

(}—=curl v+(eH/mc) =e P v 8(r—r„),

'7 For superconductors, the linearized version of Eq. (1) is just
the London acceleration equation, which can also be derived from
the microscopic theory under certain assumptions. This is pre-
cisely the approach used in the treatment of the Josephson eGect,
as in B.D. Josephson, Rev. Mod. Phys. 36, 216 (1964) and P. W.
Anderson and A. H. Dayem, Phys. Rev. Letters 13, 195 (1964).» Our quantity Q differs from that of Ref. 13 by a factor ee.
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eE/m = eEO/m —v (ti+-,'v'), (4)

in agreement with the definition of Abrikosov et cI."
The curl of Eq. (3) may be combined with MaxwelVs

equation curl E= c'BH—/Bt to yield

BQ/Bt —curl(v x Q) =0. (5)

This equation is valid both for superconductors and
helium, since it does not contain the charge e explicitly,
but only implicity in the definition of Q [Eq. (2)j. It
can be shown" from Eq. (5) that Q is convective if
div Q=o.

The stability of a lattice of vortices may be discussed
directly in terms of Eq. (5). The equilibrium configura-
tion is assumed to be a periodic array with positions
given by {rl.') and with axes parallel to the z axis
(vi, ——z). The precise two-dimensional lattice structure
need not be specified at this point, except that each
lattice site must be an inversion center to ensure that
the equilibrium configuration is stationary. The stability
of the lattice depends on the behavior when each
vortex is displaced a small distance uL from its equilib-
rium position

rr, =ri, +ui, (t),
u&(t) =s exp[i(q rl, '—cot)].

(6)

Only a special perturbation is considered here, in
which vi, is unchanged (the vortices do not bend) and

q lies in the xy plane. The crucial assumption is that
the velocity pattern moves rigidly with the vortex core,
so that the total velocity at any point r is given by

v(r, t) =P vo[r —rl.'—ul. (t)j, (7)

where vo(r) is the velocity field of a single vortex situated
at the origin. Since for an individual vortex at rest we
must have div vo ——0, Eq. (7) implies that div v(r, t) =0.
Furthermore, the vector v lies in the xy plane and is
independent of z, so that Q is parallel to the z axis, as
is the applied magnetic field H, and div Q=o. Thus

where the summation runs over all vortices in the sam-

ple. As stated earlier, the present treatment is limited
to systems in which the Ginzburg-Landau parameter f{:

is very large, 4 so that the core of each vortex (pointing
along a unit vector v ) may be replaced by a two-
dimensional delta function placed at the point r„.
The quantity x (which should be distinguished from the
Ginzburg-Landau parameter x) is the circulation about
the vortex: R =h/mH, for liquid helium II, and R= tt/2m
for superconductors. Throughout this section, the equa-
tions will be written in such a way that the correct re-
sult for He is obtained formally as the limit of vanishing
electric charge (e=o).

Equation (1) may be rewritten as

Bv/Bt vx —curl v = (e/m) [E+c-'v x Hj, (3)

where K is the total electric field

Eq. (5) may be rewritten as

BQ/Bt+ (v v) .Q =0,
or

—Q (ur. V)h[r rc'—uc—(t)]

+[v(r) vj Z ~[r—r '—u (t)3=0 (9)

Equation (9) is of the form

P [f(r,rc).V7b(r —rc) =0,

f(r, ri, )= —ul, +v(r),
(10)

which is an equation for a distribution centered at the
points {rc).This equation may be solved by multiply-
ing by an arbitrary differentiable function and integrat-
ing over all space. We assume that uL is much less than
the lattice spacing d, so that the points rL are well
separated. The arbitrary function may be chosen to
vanish except near a single rr, , each term in the sum (10)
must vanish identically, which implies

ul, =V(rc), (13)

which is just the classical hydrodynamic result'4"
that each vortex moves with the local superQuid velocity
at the position of its core. An alternative derivation of
Eq. (13) starts from the observation that the vortices
have negligible inertial mass, ' so that the total force
on each vortex must vanish. In the absence of external
forces or frictional damping, the only force is the
Magnus force

Flr pievl. x [uI. V(——rl,)5—=0, (14)

which immediately leads to the same result. Equation
(14) may also be written as

pkvt, x ill, =pxvl, x v(rl, ) . (15)

It can be shown (Sec. V) that the right side of Eq. (15)
represents the negative of the force due to the inter-
action with all the other vortices; this last point of view
is that used by de Gennes and Matricon. '~

It is important to prove that the equilibrium configu-
ration is in fact stationary, which means that

m(rl, ') =Q vo(rl. '—rl, ')
L'

L'
(16)

=0.
"G.K. Rayaeld and F. Reif, Phys. Rev. I36, Ai&94 (&964).

(12)

The second condition (12) is obtained by a partial
integration and is here satisfied identically. Equation
(11) yields the relation
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The primed sum (which means omit the single term
1.'= I.) vanishes because of the inversion symmetry of
the lattice, while vp(0) is zero by definition. This last
requirement follows from the equilibrium equation

~&/~&l.-..=(vo(r) &)&I.-..
=(vp(0) v)Q=O.

The right side of Eq. (13) may thus be expanded as

v(rr) =P vp(rr. —rr..)

=p vp(rrp —rz'+ur. —uc )

=p vp(rrp —rc')+p' (bur, V)vp(rcp rc'),—

where rz= lrr. l
and the superscript 0 on rz has been

dropped. Equation (24) may be simplified by introduc-

ing the explicit form of the small disturbance l Eq. (6)):
BOSg =tX$2;+PSP

1—z~s„=qs.—~s„,
where

a= (x/27r) Q' (1 e' —p'') [ (x—cyr/rz) f'(rr. )j,

(25)

P= (r/2x) P' (1—e'P'c)
(26)

X$ f(rr)—(yr'/—rr) f'(«) j,
y = (R/2x) g' (1—e'p '~) Lf(rc)+ (xrp/rz) f'(rz) j .

where 8u~. , is deGned as Sul, .=ul.—ul.. The Grst term
vanishes according to Eq. (16) and the sum in the
second term excludes the term I.'=I.. Equation (13)
then reduces to a set of coupled linear equations,

uc ——P' (bur, V)vp(rrp —rc '), (19)

where
vp(r) = (k/2x) (z x r)f(r), (»)

f(r) = (~r)-'A, (r/Z) . (22)

If the lattice point L is taken as the origin of co-
ordinates, the stability criterion (19) reduces to

up ——p' (bur. V)vp( rzp), —(23)

where the prime has been omitted on the dummy
index L and Su~ = up —Ul. . A combination of Kqs.
(21)—(23) yields

up= (u/2x)z x P' (~«f(r&)
L

+(rc/rc)(Sue. rr )f'(rc) ), (24)

We follow the notation of G. N. Watson, A Treatise on the
Theory of Bessel, Functions (Cambrigde University Press, Cam-
bridge, 1962), 2nd ed. , Chap. III.

which forms the basis of our stability criterion. ' ' "
III. DISTINCTION BET%'EEN NEUTRAL

AND CHARGED SUPERFLUIDS

In the present model, the distinction between charged
and neutral superQuids arises only in the form of
vp(r). The velocity field of a single rectilinear vortex
lying along the s axis is given by'

vo(r) = (R/2')(z x r)K (r/X), (20)

where E& is the Bessel function of imaginary argument
that vanishes exponentially for large values of its
argument. "Here X is the London penetration depth
X=(mc'/4xme')"'. For a neutral system, X becomes
infinite, and Eq. (20) reduces to the usual hydrodynamic
result" that vp(r)=(k/2xr)(i xr), since K&(x)=x ' for
x((1. Equation (20) may be written as

The eigenvalue equation for the vibration frequency is
easily found to be

where

~2— ~2 py —~2 ~2 (2

p= 5+v,
v=5—

n

(2&)

It is not diKcult to see that any lattice structure of
vortices in a neutral superfiuid (where X is infinite) is
unstable. " Since f(r) ~r ' and f'(r)= —2r 'f(r), the
quantities P and p are identical, and co' is an essentially
negative quantity. Thus an arbitrary small disturbance
of the equilibrium lattice structure grows exponentially
with time. We interpret this instability to mean that
the vortices in rotating liquid helium II are randomly
distributed in the xy plane with essentially uniform
density, like the molecules in a liquid.

This result is rigorous only for an inGnite, inversion-
symmetric lattice where each vortex is at rest in the
equilibrium configuration, as in Eq. (16). Actual ex-
periments on rotating He II are of course limited to
Gnite systems, for instance a cylinder of radius E. In
this case, the approximation of uniform vorticity im-
plies' " that the velocity Geld is just that of a solid
body, rotating with angular velocity 0=km/2 (n is the
density of vortices). This velocity pattern is due to the
circular geometry; the Quid is stationary only at the

"The lattice must be one that leads to convergent lattice sums.
If the sums diverge, then the frequency is in6nite, which also
implies instability. Our calculation relies on the harmonic approxi-
mation, made in Eq. (23). It has been pointed out (L.H. Nosanow,
(private communication) j that the harmonic approximation may
lead to apparent instability when the lattice is, in fact, stable.
This situation occurs in the treatment of solid helium (L. H.
Nosanow and W. J. Mullin, Phys. Rev. Letters 14, 133 (1965);
14, 339(E) (1965)j, where the effect arises from the zero-point
motion. Experiments on rotating helium II are limited to low
angular velocities, however, where the lattice constant is very
large, so that zero-point motion could not affect our results. It is
of course possible that the interaction potential might be affected
when the vortices come close together, and the lattice might
"freeze." Such an effect could occur only at prohibitively high
angular velocities of the order of Q=)nh/m=~h/md'=$)&1Q"
rad jsec, since d would need to be =1 A.

~' A. L. Fetter, Phys. Rev. 138, A429 (1965).
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origin, which is the single point having inversion sym-
metry. The problem of stability in this geometry is

very much more complicated than in the in6nite sys-

tem, since plane waves cannot be used to decouple the
equations of motion of the diferent vortices; the normal
modes must incorporate the symmetry of the particular
system whose stability is being tested. Moreover, since
the force has in6nite range, the image vortices due to
the boundary have to be included in a proper calcula-
tion. We conjecture, however, that our calculation,
which is valid only for an in6nite lattice, may apply to a
region near the axis of a large cylinder, since this region
would be rotating very slowly. An analogous situation
occurs in classical hydrodynamics in the discussion of
the stability of a one-dimensional lattice. "

In the next section, detailed analysis of the stability
in type-II superconductors (X finite) shows that the
square lattice is unstable for waves in certain direc-
tions, while the triangular lattice is stable. Before dis-

cussing the evaluation of the lattice sums, it is instruc-
tive to illustrate the distinction between 6nite and
in6nite penetration depth with the mathematical ap-
proximation of a continuum, in which the lattice sums
are replaced by integrals. It must be emphasized that
this has only pedagogic value; no rigorous conclusions
can be drawn from the continuum model, which predicts
stability for 6nite penetration depth, independent of
lattice structure. Nevertheless, the continuum model
demonstrates that stability depends on the size of the
dimensionless parameter E/X, where R is the size of
the container. In Appendix A, it is shown that for
R/X((1 (helium), the vibration frequency is given by

~~= —(21@44)1[1—2 (qg) &@1(qg)]&+0(g4/y&) (29)

where J~ is the usual Bessel function, ' while for
R/X)) 1 (superconductors)

~2 (1~44)21q4$2d2(1+q1) 1)—1+0($2/g2) (30)

Here w is the number of vortices per unit area, which,
for superconductors, is equal to the ratio of the mag-
netic induction 8 to the quantum of magnetic Aux

yo
——i4c/2e. Equation (30) may thus be written as

&4=-4'(eB/444c)qhd(1+q'X') —'~', (31)

which agrees qualitatively in the long-wavelength limit
with the calculations of de Gennes and Matricon. "

It is interesting to calculate the path of the vortex
core, which may be done most conveniently by evaluat-
ing the components s~ and s~~ transverse and parallel
to q, respectively. We find

gz
——(Q+P) cosX cos(q r—4&t)

+(Q' —P')"' sinX sin(q r—a)t),

$~
~

= (Q—P) sinX cos(41.r—cat)

—(Q' —P') "' cosX sin(q r—40t),

»H. LaInb, Hydrodyrlamics (Dover Publications, Inc., New
Vork, 1945), p. 226.

where Q and P are related to the quantities given in
Eq. (A4) and X is an arbitrary angle. Each vortex
follows an elliptical orbit in which the ratio of the semi-
minor to semimajor axes is d/4X in the long-wavelength
limit, and the semiminor axis is along q. Qualitatively
similar results are obtained for the triangular lattice in
the long-wavelength limit.

41= (K/24l X ) p (1 844 4')(xLyz/rL )K2(1'z/X),

(= (g/44ry') Q' (1—c*4'&)(yz'—xz')rz-'Ks(rz/X), (32)

1t= (14/47'') p' (1—e'4'1)KO(rz/lI, ) .

The present discussion will be restricted to the long-
wavelength limit, where 1—e'4'=iq. r+-', (q.r)'+
The linear contribution to the sums vanishes by sym-
metry, and the leading terms are proportional to q'.

The diBerence between the square and triangular
lattice may be seen by considering the quantity $+ia-
Since the sums converge absolutely, the terms may be
rearranged, summing 6rst over concentric circles of
fixed radius containing pth neighbors, and then over p.
If rz and q have polar coordinates (rz, 8z) and (q,X),
respectively, we have

&+ic4= (14/ger—l1')q' P' rz'

Xcos'(8z —X)e'+zK1(rz/X) . (33)

The cosine may be rewritten as —,'L1+cos2(8z —X)],
and Eq. (33) is equivalent to

&+in=—(Fc/16m%')q' Q' rz'K1(rz/X)
L

X $8281+ 1c &4xc444L+ 1c14g] —
(34)

For the square lattice, the angular coordinate is of the
form 8z——80+ ~1r44 (44=0, 1, 2, 3), where 80 is a constant.
The sums over a 6xed set of neighbors yield

3 3
c43 a —0 P c2s 4++0

n~P n~p

For the triangular lattice, the corresponding sums are

5 5

Q exp(i-,'n4r) =0, Q e (xipx4)44=s0
n~p

IV. LATTICE STRUCTURE IN TYPE-II
SUPERCONDUCTORS

The stability of a given lattice structure depends
on the precise values of the quantities n, $, and 1t in
Eqs. (26) and (28). Appendix A shows that the recur-
sion relation for the Bessel functions may be used to
write



STABILITY OF LATTICE OF SUPERFLUI D VORTICES

It is easy to see that the quantity @+a', which enters
directly in the expression for the lattice-vibration fre-
quencies, is of the following form:

(/+a')4=A'+B'+2AB cos4X,
(35)

()2+~9) —DR

where A, J3, and D are independent of X. Here and sub-
sequently, the subscript 4 and 6 is used to distinguish
between the square and triangular lattice (for the four-
fold or sixfold rotation axis of symmetry). Similar
arguments show that q is independent of X. The evalua-
tion of the coeKcients is discussed in Appendix 8,
where analytic expressions are derived with the Poisson
sum formula. The numerical values of the vibration
frequencies for the square and triangular lat tice,
respectively, are given by

ra'= (eB/mc) 'q4X'd'(0. 01989—0.03176 cos4&j, (36)
co'= (eB/me) 'q4X'd'(V3/32m) .

'

(37)

Equation (36) shows that the square lattice is unstable
for waves propagating in directions such that co'&0,
while the triangular lattice is stable with a vibration
frequency

(o =0.1314(eB/rue) q9,d . (38)

This result di6ers qualitatively from that of Abriko-
sov et ul. ,"and also quantitatively from that of Matri-
con' who finds a frequency approximately 10 times
larger.

V. ELASTICITY THEORY OF
LATTICE VXBRATION 8

Microscopic calculations of elastic constants are
generally based on the long-wavelength limit of lattice
dynamics. "It is therefore not surprising that the predic-
tions of our theory are similar to those of Matricon, '
who computed the elastic constants for the vortex
lattice in type-II superconductors. Since there is a
numerical discrepancy between his result and our
Eq. (38), the application of elasticity theory to the
vortex lattice will be derived from first principles. In
contrast to the usual discussions of crystals in equilib-
rium, the elastic energy here contains terms linear in
the strains because of the repulsive magnetic pressure
between the vortex lines.

It is therefore necessary to perform a Legendre
transformation to a new free energy which incorporates
the external magnetic field; the magnetic Qux density 8
is determined by the condition that this free energy be
quadratic in the strains. A further complication arises
because the elastic constants do not satisfy the standard
symmetry relations. " An additional elastic constant

~4 See, for example, M. Born and K. Huang, Dyeamica/ Theory
of Crystal latter'es {Oxford University Press, London, 1954},Secs.
11 and 24-29.

~~ L. D. Landau and E. M. Lifshitz, Theory of Elasticity {Addi-
son-Wesley Publishing Company, Inc. , Reading, Massachusetts,
1959), Sec. 10.

It is sufBcient in calculating elastic moduli to treat
only homogeneous deformation, '4 defined by

u;(L) =Q u;, r, (L), (40)

where the subscripts refer to Cartesian components in
the xy plane, and u;; = Bu;/Br;. The separation between
vortices may be rewritten in terms of the strain tensor as

~
r(LL')+u(L) —u(L')

~

'=
(
r(LL')

~

'+2 P r,(LL')

Xu'p'q'(LL')+P u,zu, ar, (LL')rl, (LL') . (4l)

The elastic energy density of the vortex lattice is
obtained by expanding Eq. (39) to second order in the
strains:

V/A = Vo/A+A ' g f Lu;,+2 P uq,ml,;j
XL Q Prr 'r;(LL')r;(LL')5)+A Q uvula&LI'

XL P fr, r, "r,(LL')r;(LL')rq(LL')r~(LL') j, (42)

where A is the area of the lattice in the xy plane. Here
QI.r,.' and fr, l.

" are the erst and second derivatives
of f, evaluated for the lattice separation corresponding
to equilibrium in an applied magnetic field. The lattice

must be introduced, which is just that necessary to
reproduce the result derived in the theory of lattice
dynamics LEqs. (36) and (37)j. It must be noted that
the approach of lattice dynamics is more general than
that of elasticity, because it is not always permissible
to expand the exponential in Eq. (26) under the summa-
tion sign. In a neutral system, such an expansion leads
to divergent sums because of the long-range interaction
This failure of elasticity theory when applied to a
vortex lattice in liquid helium II is wholly distinct
from the question of stability, which can be investigated
only in terms of Eq. (26).

The following treatment will thus be limited to a
lattice of Aux lines in type-II superconductors, where the
interaction has a finite range X. Consider two vortices at
the positions r(L)+u(L) and r(L')+u(L'), where u(L)
is the small displacement from the equilibrium position.
In contrast to Sec. II, the lattice index is here written
as an argument. It is convenient to consider the inter-
action energy per unit length of two vortices as a func-
tion of the square of the separation, '4 written as
f(~ r(LL')+u(L) —u(L')

~
'), where r(LL') =r(L) r(L'). —

By definition, P and its derivatives are taken to vanish
for zero value of their argument; this is done to allow
sums over L and L' to be unrestricted. The total in-
teraction energy per unit length of lattice is

V=l Z 4(lr(LL')+u(L) —u(L') I'). (39)
LL'
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sums may be computed with negligible error by sum-

ming over I-—I.', since the correction terms are ex-
ponentially small. The remaining sum over I.' is just the
total number of vortices E in the lattice. We shall
introduce the abbreviation'4

{ij}=n Q Pr, 'r, (L)r, (L),
(43)

{ijkl) = n P Pr, "r,(L)r;(L)r&(L)ri(L),

where n is the density of vortex lines and the extra
index I.'=0 has been omitted. It is clear that these
quantities are symmetric under interchange of any pair
of arguments. The elastic energy density 8 may now
be written as

h=g u;, {ij)+, g -ui, uij{ij )+P ujuki{ijkl), (44)

neglecting terms cubic in the strain.
The stress in the lattice is found by calculating the

change in 8 when the strain is increased from e;, to
I;,+dl;, . The increment in the energy density is

dh=Q S,,du;,+ Q S,, gidu, ;uki, (45)
Cj 'jkE

where the following definitions have been introduced:

Sv= {V)
Sg, i,i= b, i,{jl}+2{ijkl} .

(46)

The stress a.;; is defined as the coefficient of du;; in
Eq. (45),

(47)&ij Sij+Q Sij,klukl ~

kl

Equation (47) is a generalization of Hooke's law, since
the stresses do not vanish with the strains; the constant
term S;;, which is shown to be diagonal in Appendix C,
corresponds to an additional magnetic pressure. The
vanishing of 5;; is the condition for equilibrium in the
absence of external pressure, '4 and the vortex lattice
is an equilibrium configuration only in the presence of
an applied magnetic Geld. In the usual theory, " the
elastic constants are symmetric under the interchange
(i~ j) or (k~ 1). This relation is not valid for S,, ~i

precisely because S;; is not zero. This peculiar aspect
of the elastic theory of a vortex lattice may be traced
to the lack of equilibrium in zero field, and does not
seem to have been taken into account correctly by
Matricon. '

The force F on a unit volume of the medium is given
by the divergence of the stress tensor"

E;=Q 80;,ji7rj

=Q S;, i, i(B'ui:/Br, Br,), (48)

~6This equation is correct even for the lattice of fiux lines,
since I;; is not symmetrized. A discussion of this point may be
found in Ref. 25, pp. 117—118.

where Eqs. (40) and (47) have been used. This force
must balance the Magnus force per unit volume'';
the resulting equation of motion is

npii(i x u),+F,=O. (49)

A detailed calculation shows that the elastic force F;
may be written as —npa)9xv(r)$;, so that Eq. (49) is
the same as Eq. (14). If the displacements correspond
to a propagating wave LEq. (6)j, the equation of motion
yields an eigenvalue condition for co'. The calculation
is discussed in Appendix C; the final results are identical
with Eqs. (36) and (37) for the square and triangular
lattice, respectively. Thus a correctly formulated
elasticity theory is completely equivalent to a theory
based on lattice dynamics.

aQ,j'af+(v, V)Q,+(v, V)Q, =O, (50)

where the subscripts 0 and 1 mean the zeroth- and
first-order terms. The last term vanishes at every
lattice site, so that the equation of vortex dynamics
LEq. (13)g comes entirely from the 6rst two terms of
Eq. (50). The middle term of Eq. (50) appears to be
neglected in the treatment of Ref. 13, since the averaged
Qo is a constant. We have not found a rigorous deriva-
tion of an equation for the smooth averaged quantities,
but such an equation would presumably lead to Eq.

VI. DISCUSSION AND CONCLUSIONS

Section V has compared our work with Matricon's'
elastic theory of a lattice of Qux lines; both calculations
predict an unstable square lattice and a stable triangular
lattice, although the numerical values differ. A more
serious discrepancy arises in comparison with the work
of Abrikosov et a/. ," who find imaginary frequencies
for both lattices. We interpret this as an instability,
since the growing exponential (ice(0) will be present
for certain directions in the absence of dissipation.
When friction forces are present (a/0) their calculated
frequency remains imaginary [see ca& in Eq. (6) of
Ref. 13, which is the only mode considered here]
but always must lead to a decaying exponential for
suKciently large 0.. It is dBBcult to see how randomly
distributed friction forces could stabilize the vortices
into a well-defined regular array, which would be un-
stable in the absence of these forces. Both our calcula-
tion and that of Abrikosov ef, a/. " neglect the core
structure and other normal Quid sects, and both use
the same dynamical equation LEq. (3)j. The different
results arise from the following point: we make a
definite assumption about the velocity field as a func-
tion of r and t, LEq. (7)j, which ensures that div v=0;
Abrikosov ef, al. ," average the vorticity and velocity
field over regions containing many vortex lines and then
impose the condition div v=0. Such a procedure seems
to us to be mathematically dangerous; in particular our
Eq. (8) may be expanded to erst order in the displace-
ments from the equilibrium lattice sites as
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(13),which is just the result of classical hydrodynamics.
In the long-wavelength limit, some suitable averaging
procedure must exist, but the corresponding derivation
of the forces from the microscopic viewpoint is probably
very diScult. It is not clear that these problems were
considered in previous treatments of vortex dynamics in

liquid helium II, which were also based on an averaged
vorticity. '7

A more serious question arises with regard to the
validity of our model in describing real type-II super-
conductors. The obvious corrections due to finite tem-
peratures or crystal imperfections do not appear too
serious, since these effects may be made arbitrarily
small, at least in principle. The assumption (made also
in Ref. 13) that the core diameter is negligibly small

may in fact be more questionable. Indeed all known

type-II superconductors have finite ~ parameter and
therefore finite core diameters (usually )50 A). Thus
there is a sizeable core region containing a large number
of electronic states, in which the excitation spectrum is
not of the BCS type, but more like the spectrum of the
corresponding normal metal. " Even for pure super-
conductors, the superQuid electron density is not
constant in space for stationary vortices and not con-
stant in time for moving vortices. As emphasized by
Stephen and Bardeen" the finite core size necessarily
leads to normal current flow near the core of a moving
vortex, in order to ensure that the total electronic
density should not vary. For impure superconductors
the finite core size also leads to an interaction of the
vortex core with the ionic background, which may be
strong enough to control the motion of the vortices. "
Our model neglects these important effects and predicts
a perfect Hall effect (81r=-,'s.),29 so that it certainly
cannot describe impure superconductors, which are
known to have very small Hall angles~ (of the same
order as in the normal state). Whether our model is
qualitatively correct for pure superconductors, and
how pure the materials have to be for the model to
apply, are still open questions. " No dynamical dis-
cussion of lattice stability has been given for a model
which includes the core structure, so that it is impossible
to tell whether the modes predicted here are in fact
observable in real materials. The free-energy cal-
culation of Ref. 6, which holds for finite ~ near H, 2, does
show that the triangular lattice is more stable than the

~~ H. K. Hall and W, F. Vinen, Proc. Roy. Soc. (London) A238,
215 (1956).' C. Caroli, P. G. de Gennes, and J. Matricon, Phys. Letters 9,
307 (1964); K. Maki, Phys. Rev. 139, A702 (1965).

~9 Consider a single vortex moving with velocity vL, in a uniform
velocity field vz, and set v= vp+vp(F —vQ). From Eqs. (5) or (8},
we find -(; ~)O+(v, V)0=0,
so that VL, =vz. This leads to a voltage perpendicular to the trans-
port current vp and a Hall angle 8~=@.I See, B. D. Josephson,
Phys. Letters 16, 242 {1965)j.

"Proceedings of Sussex Symposium on Quantum Fluids (to
be published); P. G. de Gennes, P. Nozieres, and K. F. Vinen
(to be published).

square. It therefore seems plausible that the mode
does exist in pure materials; the core forces will surely
damp but perhaps not obliterate the mode. We have
not been able to estimate the amount of this damping,
nor can we suggest precisely how to excite this mode, if
it exists. In order to answer these important questions
the present model must be extended to include the core
forces which occur for finite ~.

Our discussion of lattice stability has been limited
to a single mode, and the lattice may exhibit unstable
behavior for other modes. Indeed, Abrikosov et al."
find imaginary frequencies for a second transverse
mode La&2 in their Eq. (6)] and real frequencies for the
"helicon" mode Ltheir Eq. (5)j, which is independent
of the existence of a stable lattice. As indicated above,
their averaging procedure is open to question, and its
predictions may not be reliable.

It is worth noticing the difference between a type-II
superconductor and an ordinary electron gas in a
magnetic field, which can sustain a low-frequency
helicon mode (q~~H) for suKciently pure systems
(&a,r))1).The electron gas with only one type of carrier
has no transverse modes (qJ 8) at low frequencies,
independent of the value of r. In a type-II supercon-
ductor, on the other hand, the magnetic field renders
the order parameter doubly periodic in the xy plane;
the corresponding loss of translational invariance
Lbroken symmetry"), leads to an additional low-

frequency transverse mode that is absent in the normal
electron gas, even in the limit of infinite conductivity
(r —moo).
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APPENDIX A

In this Appendix, we calculate the vibration modes
of a vortex continuum, replacing the sums in Eq. (26)
by integrals. This approximation smooths out the
lattice and precludes comparison of the stability of one
structure with another. Nevertheless, the simplicity
of the method, which qualitatively reproduces the
energy spectrum of the excitations in the type-II
superconductor, is of pedagogic interest. In addition,
the continuum theory shows that the stability of a
vortex lattice depends on the range of the velocity
distribution of an isolated vortex-instability in rotating
helium II and stability in the mixed state of type-II
superconductors.

"J.Goldstone, Nuovo Cimento 19, 154 (1961);P. W. Anderson,
Phys. Rev. 112, 1900 (1958);R. V. Lange, Phys. Rev. Letters 14,
3 (1965), and Phys. Rev. 146, 301 (1966).
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We begin with the coefficients a, I8, and y defined
in Eq. (26), which determine the spectrum of excitations
with wave vector q (q J 9):

a= —(e/2x) p' (1 e—'p'p)(xlyI/rr) f'(rr),
L

p= —(e/2x) p' (1 e'p'—r)[f(rr, )+(yr, p/rr, )f'(rr, )5,

When qd is small, Kq. (A3) becomes

(=——,'~nL1 —2(qR)-'J, (qR)5,

which is equivalent to Eq. (29). In contrast, the mixed
state of a type-II superconductor usually satisfies the
following inequalities: R/X))1 and d/)I, &(1.In this case,
the upper limit in Eq. (A3) may be replaced by infinity
with negligible error, and we ind

y=+(R/2x) Q' (1 e'p'I—)pf(rr)+(xl p/ri) f'(rl)5, ~=-!-n((ql)'D+(q~)'7'-x(qd)'},
g =—,'ten(qX) 'L1+ (qX)'7',

(A4)

where f(r)=(Xr) 'Eq(r/X). The derivative of f(r) is
easily obtained as

f'(r) = (Z'r)-'LKg'(r/X) —(X/r)Kg(r/X)5
= —(X'r) 'Ep(r/X), (A1)

where the recursion formula for Bessel functions, "
Eg'(s) =s-'Eg(s) —Kp(s),

has been used. A combination of Kqs. (A1), (26), and
(2g) with the recursion relation (2/s)Eq(z) =Ep(s)—Ep(s) yields Eq. (32).

The quantities 0., &, and g will now be evaluated in
the continuum approximation. Since the lattice is
isotropic in this limit, the polar axis may be taken
along q; only $ and g need to be computed because a
then vanishes by symmetry. When the sums are re-
placed by integrals, the resulting equations may be
written as

g= —(Fcn/47rkp) rdr d8(1 e'p' pp+)—
Xcos28Ep(r/X), (A2)

to lowest order in (qd)'«1 but for arbitrary qX. Equa-
tions (A4) and (27) lead directly to Eq. (31). Thus a
inite-range velocity pattern produces a stable lattice
in the continuum model, while an inanite-range velocity
pattern produces an instability.

APPENDIX 8
The calculation of the spectrum of lattice vibrations in

type-II superconductors has been reduced to the evalu-
ation of certain lattice sums given in Kq. (32). It is con-
venient to introduce a general notation

Z~=d ' 2' rs. 'Ep(rr, /l ),

Zp ——d-' Q' rr, 'Ep(rr/X),

Z,=d—' P' (xr,%1.')Kp(rl/lj, ),

Z„=d-' P' (yr, '/rr, ')K (rl, /X)

Z „=d ' Q' (xr, 'yz, '/rz, ')Ep(rl/X),

g = (Kn/4'') rd
d

d8(1—e'p" "")Ep(r/X),

where n is the density of vortices. The upper cutoQ on
the radial integral R is to be interpreted as the macro-
scopic size of the sample, while the lower cutoG d is
the lattice constant. The angular integrations give Z,+2Z,„+Z„=Zp, (B2)

where d is the lattice spacing. When the distinction be-
tween square and triangular lattices becomes important,
Eq. (B1) will be written with a subscript 4 or 6 (for
the fourfold or sixfold rotation axis.). The last four
sums are related by the obvious condition

$= —(kn/2XP) rdr Jp(qr)Kp(r/X),

g= (zen/2X') rdrf1 Jp(qr)5Kp(—r/X)

(A3)

which can provide a check on the accuracy of the
separate calculations.

The sums defined in Kq. (B1)obey certain additional
symmetry relations in the special case of a square or a
triangular lattice. If 8r, is the angle between rr, and the
x axis, we have

Consider erst the case of rotating liquid helium II,
where X-+~. Then g vanishes and $ remains finite,
because Ep(x)=2x ' and Kp(x)= —lnx for small x.
Thus Eq. (27) yields co'= —P which shows the in-
stability of a lattice structure in the limit R/X&(1.

Z =
p Q rr, (3+4 cos28r, +cos48r)Ep(rr/X),

L

Z„= -', P' rr, '(3 4c o2s8+r—c so4 8)rE&(r IP/, ), (B3)

Zg„——-', P' rr, '(1—cos48r)Kp(rr/X) .
L'~ See, for example, H. B. Dwight, Tables of Ietegrals and Other

3fathematical FurIctioes (The Macmillan Company, New York,
1957), 3rd ed., p. 177. The sums converge absolutely, and it is permissible to
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perform the sums in concentric circles containing
equivalent neighbors. The square lattice is invariant
under fourfold rotations, while the triangular lattice is
invariant under sixfold rotations. It follows that the
term in Eqs. (83) containing cos2ez, vanishes for both
lattices; the term containing cos401, vanishes for the
triangular lattice, but is finite for the square lattice /see
the discussion following Eq. (34)j. This distinction is
crucial in the theory of stability of di8erent lattice
structures. The conclusions drawn from these symmetry
arguments are that

Z*4=Zw4' Z.6=Zen= sZ26 Z*v6=kZ2~. (84)

For the triangular lattice, it is therefore sufhcient to
calculate Z&6 and 126, for the square lattice, it is neces-
sary to calculate Z,4 and Z „4 in addition to 2~4 and 224.

The vibration frequency of the vortex lattice may
be written as LEqs. (27) and (35))

~'= n' —~'—2= n' —
I k+—~I ', (85)

an arbitrary lattice vector r& may be written as

rl.——lag+ma2, (810)

where l and m are positive or negative integers. Let
(u,u') be defined as

=(u u')= —Z'&oL(I' '+~' ")"') (811)

Z.4=4"(~/~") =-(u.)
Z.4=4u'L(~/»')'="(u, u') jI;-.,

Z.,4=4u'L(~/~u') (~/~u")="(u, u') jI; .,

(812)

so that Eq. (811) contains all the relevant lattice sums
except 2~4, which requires a separate treatment.

Equation (811) may be rewritten with a standard
integral representation of the Bessel function"

~here u=d/X and u'=d'/X. Here the summation is
over all values of l and m, omitting the single term
i= m=0. It is not di6icult to show that"

where, according to Eqs. (32), (33), (81), and (84)

g = (r(/16m. X')q'd'Zg

00

Eo(s) =— dr r 'e 'exp( s'/4r)—,
2 0

(813)

—$+ jo= (g/32~) 2)q&d2[e»&Zg+e 'x(Zg —gZgy) j. (86)
which yields

00

(u,u')= — dr r 'e
2 0

lpga

Here X is the angle between q and the x axis. Compar-
ison with Eqs. (34) and (35) shows that the constants
A, B, and D may be expressed as

A = (r(/32m. ) ')q'd'Z24,

8= (K/32m)P) q'd'(Z24 SZ,y4) y

D= (K/32&F2) q2d2Z 26 ~

The corresponding vibration frequencies are

co'= g' —A' —B'—2AB cos4X,

0) =g —D

(8&)

for the square and triangular lattices, respectively .
The lattice sums (81) converge absolutely, but the

terms become small only at distances large compared
to the penetration depth (rr))X). In the intermediate-
density range (d/X&1), a direct calculation is impracti-
cal, since a great many terms must be included. Further-
more, the evaluation of physically interesting quantities
often leads to a cancellation between the leading terms
of the series, so that the precise form of the 6rst cor-
rection term is of great importance. The analytic ex-
pressions derived below avoid both of these difhculties:
Our series converge rapidly for d/X&1, and the low-
order corrections may be found with little eGort.

Square Lattice

Consider erst the square lattice. For the calculation of
Z 4 and Z,„4, it is necessary to treat a general rectan-
gular lattice, with basis vectors

ay=&, am=dg;

XexpL —(l'u'+ra'u")/4rg. (814)
If the sum over l and m were unrestricted, Eq. (814)
could be transformed with the Poisson sum formula. '4 "
Unfortunately, the integral diverges logarithmically
at the origin when the term i=as=0 is included, and a
limiting procedure must be used:

=(u,u') = lim -(u,u', e),
~0

00

=-(u,u', e) =- dr r 'e-
2

X (Q expL —(&'u'+m'u")/4r j—1) . (815)

Here the summation is over all l and m.
The Poisson sum formula can be written as"

Q exp) (Pu'+ m'u")—/4r5

=(4~r/uu') Z exp' —4~mr(1 u-'+mmu'-') j (816)

"See, for example, Ref. 20, p. 183, 6.22 (f5).' See, for example, M. J. Lighthill, Introduction to Fogrier
Series and Generalized Iienctions (Cambridge University Press,
Cambridge, England, 1960), p. 70.

"This is related to the Ewald method, which can be found inJ. M. Ziman, PrinciPles of the Theory of Solids (Cambridge
University Press, Cambridge, 1964), pp. 37-42.

"The summation of the left-hand side can be considered as the
product of two sums, over l and m separately. The standard
formula (Ref. 34) can be applied to each factor, which yields
the right-hand side. A more general derivation, applicable to an
arbitrary two-dimensional lattice, may be found in Ref. 35. The
latter approach must be used in treating a triangular lattice.
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When Eq. (816) is substituted into Eq. (815), the re- «p, where «p is an arbitrary constant:

suiting integrals are straightforward, and we find
S«p —S« = 22 gj4' «p «——pin«p «

2'
="(4,t ', «) =

pp lm
—2Z' rl ««

' exp[ —(Pt42+m't4")/4«]

e
—' exp[ 4v—r2«(P14 +2mt' 4')]

X —-', Eg(«), (817)
1+4x2(pt4 2+mpt4' ')

where the exponential integral Ej is dehned as"

= (22r/t4t4') («p —«) ——,
' 1n(«p/«)

—-' ~' &E2[(Pt '+m'4 ")/4«p)

E2[—(l t4 +m t4'2)/4«)) . (823)

Eg(x) = dl] le '. The limiting behavior of the exponential integral is
given by'

Equation (317) is finite as «vanishes, since the log-

arithmic divergence of the sum exactly cancels the
divergence of E~(«). Hence the essential problem is the
extraction of the 6nite limiting value.

The divergent part of Eq. (317) may be isolated by
adding and subtracting a quantity S(«), defined by

22. exp[ —42r2«(P44 2+m't4' '))
S(.) = —P'; (»9)

14'' i 42r2(pt4 2+mph' ')

E2(x)= —lnx —y (x ~ 0),
E2(x) x 'e—* (x —+~),

where y is Euler's constant, y=0.5772
The logarithmic divergence of S(«) is made explicit

in Eq. (823), and the finite contribution to Eq. (821) is

lim [S(«)—2E&(«))= 2 ln«p (22r«p/44t4')

+-'pp+ -2' P' E~[(Pt 2+m't ")/4«p)+S(«p). (325)

Eq. (817) then becomes Equation (825) is valid for arbitrary values of «p, but
a careful choice can simplify the subsequent calcula-

"(t4t4', «)=e '(22r/I4I4')+e 'S(«) 2Ei(«) —(22r/44t4—)e '2 tions. With

y (ezp[ —42r2«(Pt4
—2+mpt4' ')) Eq. (825) reduces to

«p = t4j4 /4%r, (826)

y [1+42-2(pt4 2+mpt4' 2)]

The last term converges as e —+ 0, so that

»m LS(«)—2E~(«)]= 2»(l t '/4x) —2+2~
a~0

&([41r2(12p, 2+mph, ' 2)) ') . (820) +2 2' (E2[x(pt /4 '+m't '/4 )]

27r
- (44,44') = + lim [S(«)——2'E4(«)]

e~0

(821)

=(2~/t t ')—(2«) '—(2«) '2'

' " [1+4 '(l' '+ ' ' ')][4 '(l' '+m' ' ')]
Equation (819) may be simplified by differentiating

with respect to e:

i7S(«)/«7«= —(22r/t4t4') Q' exp[ 42r2«(Pt4 +—2tm'p)4)

+ [2r(Pt4'/t4+mpI4/t4')]

&&exp[—4r(12t4'/t4+m'44/t4'))) . (827)

Substitution of Eq. (827) into Eq. (821) yields an
exact expression for (t4,t4').

The evaluation of the various lattice sums is now
straightforward:

&24= 162r/t44 —2/t42+0(F2)

Z 4= &„4=64r/t44 —1/t42+22rC/t4'+0(1), (828)
Z,„4——22r/t44 —22rC/t42+0(1),

where the constant C is denned as

1 27r(P —m')'
yexp[ —(p&2+m &'2)/4«), (822) C=—p' exp[—2r(p+m2)]

4~ tm l'+m'
where the Poisson sum formula [Eq. (816)] has been
used in the last step. Integrate Eq. (822) from « to

'7 We follow the notation of Handbook of Mathematical Functions
arith Formulas, GraPhs, and Mathematical Tables, edited by M.
Abramowitz and I. A. Stegun (U. S. Government Printing Once,
Washington, 1964), Natl. Bur. Std. Appl. Math. Ser. 55, p. 228.

(l' 10l'm'+m') (l' 6Pm'+—m4)-—
+ + (829)

(P+m2) 2 2r(p+ m2) 2

=0.10331.

This series converges rapidly, so that third-nearest
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neighbors are sufhcient to obtain an accuracy of 6ve
significant figures. Equation (82) can be verified im-
mediately with Eqs. (82S).

The only remaining sum for the square lattice is 3~4,
which has no divergence; its evaluation is therefore
described only brieQy:

—Q& (P+~2)K [p(P+pg2)1/2]
lm

= —2(8/Bp') dre P-' exp[ —p'(P+m')/4r]
lm

= —Sn(8/Bpm)p 2 P [1+4m 2p 2(P+mm)] 2 (830)

Triangular Lattice

The triangular lattice is simpler than the square
lattice because the sixfold symmetry implies certain
additional relations between the lattice sums [Eq.
(84)]. fn contrast to the square lattice, we need only
consider a lattice of equilateral triangles, with basis
vectors

aq= di, a2 ,'dx+ ',&3d——j—-(8.31)

An arbitrary lattice vector may therefore be written as

rl, ——lai+ma2,

exactly as in Eq. (810). With the definition

(832)

Z(p) =Q' Ko[p(l'+1m+ m') '"] (833)

the lattice sum 226 is expressible as

& =4p'(~/~p')'Z(p) (834)

The calculation of Z(p) is almost identical with that of
(p,p'); the necessary Poisson sum formula for the

triangular lattice is"

Q exp[ —p'(P+lm+m')/4r]= (87rr/~3p') Q

)& exp[ —167r r(l +lm+m2)/3p ] (835)

where the sum is over all l and m. We And

226 ——32m/VSp' —2/p'+0(p') (836)

's The derivation of Eq. (B35) is straightforward using the
method described in Ref. 35.

=Sn/p4+S~ P-' [p'—4n'(P+m')]

X[p'+4s'(1'+~')] '

= Sn./p4+0(1) .

Here Eqs. (813) and (816) have been used in the
derivation of the second and third lines, respectively.
Equations (82S) and (830) suffice for the calculation
of the properties of a square lattice of Aux lines in the
intermediate-density regime (p& 1).

Evaluation of Vibration Frequencies

Equations (BS)may be evaluated exactly in the limit
of small d/X. A combination of Eqs. (86)—(BS) with the
explicit lattice sums yields

cv'= (ten) 'q9. 'd'((167r) ' co—s 4&[-,'C (1—6x) '])
(83S)

co'= (rrn)'q9'd'(v3/32').

for the square and triangular lattice, respectively. The
following relation between the lattice spacing and the
vortex density has been used in the above derivation:
e=d ' (square), n=(2/%3)d ' (triangular). The square
lattice is unstable for directions in which ~' is negative.

The next order terms in the expansion in d2/X2 may
be obtained with little difFiculty. Such results are of
interest only for the stable triangular lattice. A detailed
calculation shows that the square frequency may be
written as

co'= (eB/mc) q9 d'(K3/327r) [1—(3%3/16~')Gp ]) (839)

where the constant G is given by

G= Q' (P+lm+m') '. (840)

The correction term is approximately 0.1 for p, '=1, so
that the expansion appears to converge reasonably well,
even for d= X. Thus our evaluation is valid for inter-
mediate values of the magnetic 6eld strength H„&B
&(H„and fails only in a narrow range near II„,where
a different approximation method must be used. 4 In
this low-density region the interaction between vortices
is so weak that crystal imperfections will be dominant.

APPENDIX C

In Sec. V, the elasticity theory of a two-dimensional
lattice has been developed for an arbitrary central-
force potential f. Here the method will be applied to
the special form of the potential appropriate for Aux
lines in type-II superconductors,

P(r') = (2x) 'pa'Ko(r/X)
(C1)= (po'/Sm 9.')Ko(r/X) .

The derivatives of P are easily computed, and the elastic
constants of the lattice may be evaluated in terms of
three constants

K= (ttp' d' /16~X') Z[z—Z2],
L= (pr&'d'/S7rl ')Z (C2)

3E= (prod'/Smk') Z

The other sum Z&6 may be evaluated as in Eq. (830);
the Poisson sum formula (835) is used to obtain the
result

Z, 6
——16m/v3'p'+0(1) . (837)

The triangular lattice of Aux lines in the intermediate-
density regime can now be completely described with

Eqs. (836) and (837).
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Only the quadratic terms aGect the equations of motion,
and it is these terms which must be compared with
Matricon's' expansion of the energy. A straightforward
comparison shows that his elastic constants K, E„,
and I may be written in terms of our elastic moduli as

Kg Kg Sll, ll S22,22 ~(K+2L) y

(CS)
L=Sgg, ps= n(K+23II) .

These relations can also be veri6ed by direct calculation
based on the formulas given in Ref. 5. Numerical evalua-
tion of the shear modulus L using Eqs. (828)—(830),
(836), and (837) yields

L= —8yo(4s.X) '(0.14910), (C6a)

where the notation of Appendix 8 has been used for the
lattice sums. The symmetry properties discussed in
Appendix 8 show that {ij}Ldefined in Eq. (43)]
vanishes unless i=j, while {ijkl} )also defined in
Eq. (43)] vanishes unless its indices are equal in pairs.
The only nonvanishing elements are

{11}= {22}=eK,
{1111}= {2222}=nL,

{1122}=nM,

and those obtained by interchanging indices.
The energy density g may be written LEqs. (45)

and (46)] as

h=+S,,u;, +Q S;,, g)N;, Np(. (C4)

for the square and triangular lattice, respectively.

Equation (C6a) agrees precisely with Matric on's

result, which provides a check on the accuracy of our

summation method; Eq. (C6b) is smaller than Matri-
con's' by a factor =6. The additional elastic constant

S~~,~g, which would be identical with S~~,~~ in the usual

theory, is given by S»,»=2n3I.
The equation of motion of an element of the lattice

is determined by the vanishing of the elastic force plus

the Magnus force

npk(s xu),+P Se q~(8 NI/~r;~rr) =0.
jkl

(C7)

If the displacement u is a propagating wave LEq. (6)],
the equation of motion leads to an eigenvalue condition

for the vibration frequencies

~2p2K2 —q4@2+2K(L+M)+4']
+4q 'q„'(L+M) (L 3M) . —(CS)

The second term vanishes identically for a triangular

lattice, since Z,6
——3Z,„t},which reproduces the standard

result that a lattice with a sixfold symmetry axis
behaves like an isotropic medium for propagation per-
pendicular to the axis."Detailed evaluation of Eq. (CS)
gives identical vibration frequencies with those derived
from the theory of lattice dynamics [Eqs. (36) and (37)
or Eqs. (838)].

L= ,'Bqp(4s. X)-', (C6b) "See, for example, Ref. 25, p. 40.


