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The proton-hydrogen scattering problem has been treated numerically under the following approxima-
tions: (1}The protons describe straight-line classical trajectories; {2)the (spinless} electronic wave function
is expanded in terms of a 6nite subset of traveling hydrogenic functions centered about either proton. The
resulting set of coupled diBerential equations is solved without further approximation, except for numerical
techniques. Most of the results reported include 1S, 2S, 2PO, and 2P+I states. A limited number of calcula-
tions include the 3S, 3P0, and 3P 1 states. The 2P direct excitation and transfer excitation cross sections
follow the trend of the experimental data of Stebbings et al. , but are low by a factor of roughly 2. The calcu-
lations also agree qualitatively with the experiments of Everhart et al. on 3' total transfer probability, but
are somewhat out of phase in respect to the oscillation of this quantity with energy. Large polarizations of
the Gnal 2P states are predicted. Limitations of the model are discussed; possible modi6cations and im-
provements are suggested.

I. INTRODUCTION

'HE scattering of protons by atomic hydrogen is
one of the most elementary collision processes

available. The complete quantum-mechanical system
presents a three-body problem, but in the approxima-
tion that the protons can be represented by a straight-
line trajectory, the problem reduces to the solution of
the one-electron time-dependent Schrodinger equation.
The validity of the linear trajectory approximation
has been studied by Mittleman, ' who 6nds that the
approximation is good above a hundred electron volts
or so.

The present investigation assumes the linear tra-
jectory approximation, and is directed toward the
solution of the time-dependent, nonrelativistic, spinless
Schrodiner equation. In this, we extend the method of
Bates and McCarrol' by expanding the electronic wave
function in "traveling" atomic orbitals centered about
each proton. The only approximations involved (out-
side of numerical techniques) are contained in the
truncation of the expansion. Most results reported
here include the atomic states (centered about both
protons) 15, 25, 280, and 2P+r, however limited cal-
culations are also presented which include the 35,
3PO, and 3P+1 states. A few calculations also included
3D states.

Other recent calculations based on the traveling
atomic orbital expansion, or variations thereof, have
been reported by the following:

Lowell and McElroy. ' They include a maximum of three
states, centered about one or the other proton. They
do not utilize the symmetries of the system (see Sec.
III), so that, for example, what we call a two-state
approximation would correspond to a four-state ap-

*Supported in part by the U. S. Atomic Energy Commission.' M. Mittleman, Phys. Rev. 122, 499 (1961).
~ D. R. Bates and R. McCarroll, Proc. Roy. Soc. (London)

A245, 175 (1958); D. R. Bates, ibid. A245, 299 (1958). See also
Bates and GrifBng, Proc. Phys. Soc. (London) A66, 961 (1953)
and A67, 663 (1954).

3 S. E. Lovell and M. B. McElroy, Proc. Roy. Soc. (London)
A2S3, 100 (1965).

proximation in their notation. They also neglect
Coriolis terms which appear even when only m =0 states
are included Lsee Eq. (26) below).

PNltoe and Mitt leman. 4 They consider 1S states,
and further include "anti-traveling" orbitals as well
as traveling orbitals. That is, the sign in the phase
factor exp(&ivs/2) multiplying the hydrogenic function
is chosen with opposite, as well as normal, sign to that
corresponding to the translation of the proton. This
gives four linearly independent states for each set of
hydrogenic quantum numbers.

There have been various calculations' using expan-
sions about one center only (the "target"). The ex-
pansion about both centers includes wave function com-
ponents corresponding to high excitation of a single-
center basis.

The ultimate criterion of the utility of a basis set
which must be truncated is the rate of convergence.
This question is approached heuristically by consider-
ing the eGect of adding more terms in the expansion.
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FIG. 1. Representation of the coordinate systems. Unprimed
coordinates are measured in the center-of-mass inertial system.
The primed coordinate system rotates with the internuclear axis.

4 M. J. Fulton and M. H. Mittleman, Ann. Phys. {N.Y.) 33,
65 (1965).

~ For a general review of all such methods, see B.H. Bransden,
Advances in Atomic and Molecular Physics, Vol. 1, p. 85 (Academic
Press Inc., New York, 1965).
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II. THE BASIS FUNCTIONS

Let the distance from proton A to proton 8 be
given by (see Fig. 1)

R= b+vf.
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In the center-of-mass system of the protons, let the
electron position vector be r. Relative to proton posi-
tions, the electron position is given by

rz,a= r~~R. (2)

The electronic wave function is expanded in terms
of traveling hydrogen waves about either proton. Ke
choose the hydrogenic functions to be quantized about
the inter-proton axis, and use primes to denote the
coordinate system which rotates so that the s' axis
passes through the protons. Then the basis functions
are given by

Thus we choose the following combinations for our
bases:

U/~(r, i) =2 "'{u~(A)+v.(—)'u~(B)) .

With the definition

y.=P„a„.(t) U,"(r,i),
we can write

+(r,t)=2 '/ {p+(r,t)+p (r,f))
=2 Pa {(a/,++a/, )ua(A)

+(a+—a -)(—1)'u (~)). (8)

Our initial condition is

with

(r ') e+& v»/2e —
& &e»+» /8) &

8

&t.(r,') =~./(r;)'g&-(0, 'A''). (4)

a1 ( ~) ~1 k

which attaches the electron to proton A in the 1S
(%= 1) state. The amplitudes for direct and exchange
reactions are

Here k stands for the set of quantum numbers (n&n).
Atomic units are used throughout, so that e„=—1/2N'.
This set is nonorthogonal and redundant. The re-

dundancy follows from the observation that expansion
about either proton is complete. However, for any
finite subset of these basis states, the functions are
linearly independent. The nonorthogonality is only an
added complication, but will be seen below to yield an
important numerical control on the solution.

III. UTILIZATIOÃ OF MOLECULAR
SYMMETRIES

The time-dependent field experienced by the electron
preserves some of the same symmetries in the collision
problem as in the molecular structure problem. Two
constants of the motion are generated by the invariance
under reQection through the collision plane and reQec-

tion through the center-of-mass of the protons.
In the problems of interest here, the wave function

initially has positive symmetry with respect to reQec-

tion through the collision plane, and so it will for all
time. This gives a relationship between positive and
negative m values. We use this to choose

'jj/ (~'4') = I'&0, m=o

[I,„+(—)"y~„), m& 0, (5)

and we consider only non-negative m.
Invariance under reQection through the origin

assures conservation of parity, but the initial condition

(say electron on proton A) is not a state of definite
parity. Nevertheless, it is expedient to utilize parity
to reduce the Hamiltonian. The number of coupled
equations is thereby cut in half. The reduced equations
are solved twice, once for each parity, and the results
are combined to satisfy the initial conditions. Parity
inversion (II) acts as follows on our basis set:

aa'=-', [ax+(~)+ax (~)),
—~k

IV. THE COUPLED EQUATIONS

The Hamiltonian is

&(i)= —2~' —(r~) '—(rs) ', (10)

where the term +R ', representing the Coulomb in-
teraction between the protons, can be included or not
without aRecting the final probabilities. (We decided
not to include it.) We want to solve the time-dependent
Schrodinger equation

8%'
i =II% .

Bt

For the right-hand side we need, for example,

Hu/, (A) = [e.—(rs) '+v'/8)u/, (A)
—(iv/2)(8&f//, (A)/Bs)e"*"e *&'"+"'"&' (12)

A corresponding result holds for u/, (8).
For the left-hand side of Eq. (11), we must partially

differentiate with respect to time, keeping the labora-
tory coordinates r fixed. Thus r& and r& depend upon
time through R [Eqs. (1) and (2)], but r~' and rs'
further depend upon time through the rotation of
inter-proton coordinate system:

s~,gg
=s cosO" +8 sine

pa, a =p,
sg,g'= s cosO~ —x sinO+& —,'E..

We find, therefore, that

Bug(A) I de
i =[e„+v'/8)u/, (A)+i (—xsinOjs cosO)

at dt

B&f/, (A) ( d 0 dO
+

~

—s(sinO) —x(cosO) +~8
~a» )
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B&t),(A)
eivz/2e —i«~1 v2/8) t

We use the following relations to rewrite (14):

8= —v coso~)

dO/dt= v s&nO/E,

(14)
Unlike the usual condition (H Hermitian, N= l), this
is nontrivial from the computational point of view, and
it has provided us with an invaluable check ou our pro

grumbling and a continuing check on our numerical

cccur cd.

V. NUMERICAL METHODS

A. The Matrix Elements

The most time-consuming part of the calculation in-
volves the evaluation of the matrix elements. Three
types of matrix elements are to be distinguished:

where we will understand l~ and 1» to operate ou/y or&

P&,(A,B) and not on the exponential factors. Then we

find

i(&tu&, (A)/Bt) = $e„+v'/8 (d—O/dt)lg)u), (A)
—(iv/2)(8&i», (A)/Bz)e'""e ""+"'"' (16)

Ke can combine these results to write

y~*(rg') (re)-'y, .(r„')dr,

&&4*(re')(e'"/re)q4 (rg') dr,

&t)&,*(re')e'"&t». (rg')dr

(22)

d'(~3

i P &4. U»&. »P a&, —(r~ ») '+ 1& e U), , (17) In the inter-proton coordinate system, we can write
Its r

exp(ivz) = exp(ivz' cosO') exp(ivp' cos&t)' sinO' ),
where the first or second index on r and l is understood
according to whether one is operating on u&, (A) or
u), (8). If we operate on the left by U&; *, we find, after
dropping the common time factors,

i Q S&& a&,. =Q H&) a&

where

X„.-=N„.-e'«= - ) = U, -*V,.-dr

=
I&p&, + 7r( —)&(kgb

I
e"*Ik'A)e'&' '"'&' (l 9)

Hkk. =8&&,. e'&'" "'&'= U&, *(H iB/Bt)U&, dr—

=(—(kAI( ) 'Ik'A) —(—)'(kBI *-/ Ik'A)

+(do/dt)((kA
I
lg Ik'A)

+&r(—)&(kfl
I
e&»1„

I
k'A)]) e««—«'» (20)

in the notation
I kA) ~y, (r, ').

Note that HI, I,.~ is not the matrix element of the
Hamiltonian operator (10), but rather includes all of
the terms from —iUg as well. The matrix H is, in
general, non-Hermitian. Furthermore, N is non-
diagonal. For these reasons, the normalization of the
wave function is not manifestly conserved. Neverthe-
less, it can be shown that normalization (unitarity) is
not destroyed by the use of a 6nite, nonorthogonal,
time-varying basis set. In terms of the matrices defined
above, the unitarity condition is'

where
p'= (*"+y")'"

The @' integration can be
we decompose the p&; into
The first integral has a 8

but the other two contain

1 2

executed immediately, if
their e' &' components.
from the p' integration,

s(m' —m)P' ivp' cosP' sinege ' 'e

=i&" "'&J&„„&(vp'sinO) . (23)

In those cases involving S states only —and perhaps for
all cases, although we did not investigate the matter-
it is possible to evaluate analytically the integrals over
another dimension. The algebra became oppressive,
however, and the machine time consumption is probably
at most comparable with a complete analytical treat-
ment. If some integrals are treated numerically, it is
little more effort (in our ease) to treat them all in this
manner. The two-dimensional (p' —z') integrals were
performed by introducing an elliptical coordinate
system and using Gaussian quadrature. From the basic
integrals

V(k, k') =—(kA
I (re) &

I
k'A) t)

I= (hfdf
I

(e&»z' cose/r )i&wa«na'[

Xz& ~„,&(vp's&no) Ik'A),
i

Ã k,k', = kB e'"" "'eiI' '2

XJ& ~ &(vp'sino) Ik'A), (24)
H —H'+i(d N/dt) =0

6 C.f., T. A. Green, Proc. Phys. 3oc. (London} 86, 1017 (1965}.

(21) where here

IkA) ~ R„&(rs)O»& (t&~')X '»z '
(25)

1, m=0,
2-'~', ~&O
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all matrix elements can be constructed.
In summary, we set

= baa~+ pr( —) $(1+o~o~)$'(k,k, 1)
+(o.„+o )E(k,k', 2)],

Haa = —V(k, k') —pr( —)t(1+a„om)C(k, k')1)

+(o„+o )C(k,k', 2)]—i(dO/dt)Spa

X f o~~P a, a'+x g~~x—&a.a~ —x ),
where

0 =0, m=0,
=1, m&0,

and (k&1) means (n, t, m&1). The term in curly
brackets in Kq. (26) is displayed only for 8 and P states.

B. Time Integration

Particularly for slow collisions, it may be expected
that the wave function will oscillate more rapidly than
the matrices. For analogy, we might consider the simple
diGerential equation

according to the approximation.

f(At ~ 0)~(8/7) f(At) (—1/7) f(2At), (31)

which is valid for sufficiently small At. Thus we always
made two runs and extrapolated.

Although we programmed for a generally constant
mesh size (both for the coarse and fine), the trajectory
was broken to allow two sizes for the mesh, namely a
more refined mesh near close approach.

C. Trajectory Extrapolation

Significant couplings of the amplitudes occur even
at large interproton separations, owing to the r '
dependence of the Coulomb interaction. The longest
range part of the coupling can be treated analytically.

We consider proton separations large compared with
the relevant Bohr orbit. In practice, we found that when
n=2 states are considered, this implies E.&20. Then
N~l, G~H, and the dominant matrix elements of G
are of the dipole form

i+po'(t) pp= 0 G„„,= (g„,,/R')o*&'a-'a'&' (32)

In general, the numerical integration of this equation
requires time steps At such that coht&i, even though
co(t) may be sensibly constant. Since evaluation of the
matrices are the most time consuming part of the cal-
culation, they were evaluated over a coarse time mesh,
and the time integration was performed over a fine
time mesh. For this purpose, the matrix

G= N—'H (27)

was stored along the coarse mesh, and was available,
along with its time derivatives, from three-point
interpolation. (The parity index is suppressed here and
in what follows. )

The amplitudes satisfy the diGerential equation

where
Zi= Ga,

Gkk =Gkk~"" '""
(28)

(29)

The differential equation (28) was integrated using
the scheme

(At)' i i d'G
a(t+At)= 1

—iA« — G+(At) -G—
2 6 24 F2

1- dG-
+—G, a(t) . (30)

12 dt, g+q/

Here LG,dG/dt] is the matrix commutator. (One can
construct other schemes centered at other time points. )
G, dG/dt, and dpG/dtp are available by three point
interpolation, as previously noted.

The integration scheme is accurate to order (At)4,
so that the entire integration is accurate to order (At) p.

This was used to extrapolate final quantities (say f)

where the gaa. are constants, and R= p
~

t
~

. We dis-
tinguish between degenerate and nondegenerate cou-
pI.ing. The latter case, which turns out to be the less im-
portant, contributes to the amplitudes from time to

to infinity an amount

iAaa P aa (tp)
k'

aa (tp) gaa
Gaa dt= i P'

Rp' (pa —pa)

2S 2Po
G= 0 g/R'

.g/R' 0
(g= —3 R=rt) (34)

for the coupling between the (t=0) and (1=1, np=0)
states. If we introduce

then
a+ ——a~&a~,

ia~ ——&(g/(ot) ')a~,

(35)

which is solved by

ap(t) = ap(tp) expL&i(g/o')(tp '—V')],

1
X tat(ei'p ek ) & 1+6 (33)

(pa- pa )tp—

where the prime on the summation indicates over
nondegenerate states.

The expresion in terms of powers of $(pa pa)tp] '—
clearly breaks down for ok= ek. , and we shall see that
such coupling goes as Ro ' instead of Eo '. For each
major quantum number, one can diagonalize the
matrix G. We illustrate this for n=2. Ignoring terms
which decrease faster than Eo ' and the common
diagonal term Eo ', we can write
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Fr G. 2. Probability of
excitation (P) times impact
parameter (b) versus im-
pact parameter of the var-
ious final states. These
calculations were performed
coupling 15, 2S, and 2P
states.
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Ga, p( ~ )= a.q, ~ (tp) cos(g/v'tp)

i ap a(tp) si—n (g/v'-tp) . (38)

Here the parameter is g/vip, which not only falls off
more slowly than for the nondegenerate case, but is
also velocity-dependent. It is important not to expand
the cosine a,nd sine in Eq. (38), since g/vip need not
be small; unitarity is preserved for all values of g/v&p.
(Note that diagonal elements of G of order R ' and
oG-diagonal elements of order R 4 have been neglected;
so also have exponentially decreasing terms. )

section drops monotinically. The maximum is approxi-
mately 18(a.app), corresponding to resonant transfer at
impact parameters of 4 to 5a0.

In Fig. 4 are displayed the cross sections for direct
and exchange (transfer) excitation of the 25 state. The
exchange curve exhibits a rnaximurn near 25 keV. This
is the energy where the relative proton velocity equals
the electron velocity in the 15 state. No such dramatic
peak is seen in the direct excitation curve, although
structure is seen at low energy. Shown also in the 6gure
are the experimental data of Colli et al. ' for the charge
transfer reactions of protons on hydrogen gas (Hp).
The experimental points were normalized to agree at
high energy with the Born calculations of Bates and

Calculations were performed in the laboratory energy
range of 1 to 100 keV. Most of the runs v ere made cou-
pling 15, 25, 2Pp, and 2P+q states (centered about both
nuclei). This allowed calculation of quantities related
to excitation and/or exchange to each of these states.

Probability (E) times impact parameter (b) versus

impact parameter for each 6nal state at a variety of
energies is shown in Fig. 2. For 1S exchange, the region
of major contribution moves toward smaller b as the
energy is increased. No simple monotonic trend is seen
for the other states in the energy range. It is of interest
to note that the maxima for excitation of the n =2 states
occur for b considerably less frequently than the cor-
responding Bohr radius of 4.

The cross section for excitation of a state is given by

!80-

l50-

120-

O
90-

b

60-

H++H(ts) - (is) +H+

I

20
E As(KEV}

50
l

40

o.= 2x Pb db. (39) FIG. 3. Ground-state resonant transfer
{charge exchange) cross section.

Ground-state (resonant) charge transfer is disPlayed $1 C II F Chrlptptprl G F prtgprlp anQ p G Spna phys
in Fig. 3. After reaching a peak near 2 keV, the cross I.etters 3, 62 (1962).
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O

b

Fj:G. 4. Cross section for excitation
and transfer to the 2S state. The
experimental data is that of Colli
eI al. (Ref. 7) for the charge transfer
reaction of protons on hydrogen gas
(H2). The normalization of the experi-
mental points has been adjusted to
fit the high-energy Born calculations
of Bates and Dalgarno (Ref. 8.)

20 40

ELAS(KEV)

IOO

Dalgarno' for H++H. No quantitative statement can
be made for this comparison.

Figures 5 and 6 give the 2P direct and exchange ex-
citation cross sections. Also displayed are the polariza-
tions, defined by

Pol= (op—p.~,)/((rp+0~&), (40)

where 0- is the cross section for excitation of the 2P
magnetic substate m. The angular distribution of
photons is given by

W(8) o- 1—Pol cos'8. (41)

In addition to its intrinsic interest, the polarization

is particularly important to the analysis of experi-
ments which detect photons in a preferred direction
usually 90' to the beam. ) The ratio of actual to ap-
parent cross section —if the measurement is taken ex-
actly at 90'—would be

= 1—-' Pol.3
o (apparent) W(90')

(42)

Since we compute polarization as large as nearly 90'P~,
this could yield a correction of —30% to the experi-
mental cross section. There are finite angle considera-
tions, however, which tend to reduce the correction.

The curves also exhibit the experimental data of

IO-
H++H{iS) H++H(ZI )

—I.p

~O 6
0
b

t

0 I

I

I I

I
I I

20 40

E (KEY)

80

BINGS ET AL.

5P STATES

—.75

g).50
O

25 N
IX

O
CL

- -.25

Fxo. 5. Cross section and polari-
zation, Kq. (40},for 2I' excitation.
Experimental points are from
Stebbings et al. (Ref. 9).

-.50

' D. R. Bates and A. Dalgarno, Proc. Phys. Soc. (London) 66, 972 (1953).
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10-

H++ H {is)—H(2P)+H

—I.O

FrG. 6. Cross section and
polarization, Eq. (40), for
2P exchange. Experimental
points are from Stebbings
et A. (Ref. 9).
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Stebbings et al. ' Our results are consistently below the
experimental data by roughly a factor of 2. Except
possibly at very low energy, the shapes of the experi-
mental and theoretical curves are satisfactory.

In I'ig. 7 we show a comparison of our calculations
with the beautiful experiments of Everhart et al."
which measure the 3' total exchange probability. Al-
though we Qnd the same qualitative behavior, we are
not in phase with the experimental oscillations (as a
function of energy) This i.s consistent with the results
reported for most other calculations, " although the
proper phase has been obtained by loth" and Bates
and Williams. "

i.o

I-
0.8-

CQ

CD
O
CL
Tx 06
OJ
cn

ct
o ' Ir04 I

4J

I- 0.2-
O
I

—EXPERIIIIIENT

THIS WORK

I I I I I I0 30 40 50 602 S 4 S 67 io 20

E~~(KEV)

Fj:G. 7. Total charge transfer probability at 3'. Calculations are
compared with the experiments of Everhart et eit (Ref. 10).

9 R. F. Stebbings, R. A. Young, C. L. Qxley, and H. Ehrhardt,
Phys. Rev. 138, A1312 (1965).

'0 G. J.Lockwood and E.Everhart, Phys. Rev. 125, 567 (1962);
G. J. Lockwood, H. F. Helbig, and E. Everhart, ibid. 132, 2078
{1963);E. Everhart, ibid. 132, 2083 (1963).

"An extensive bibliography is given in the paper of H. F.
Helbig and E. Everhart, Phys. Rev. 140, A715 (1965).

'~ B. Roth, Phys. Rev. 133, A1257 {1964)."D.R. Bates and D. A. Williams, Proc. Phys. Soc. (London)
83. 425 (1964).

Although the scattering angle is very small from the
instrumental point of view, the collisions involved cor-
respond to impact parameters of only 0.026 to 0.40 of a
Bohr radius. It is not surprising that our basis set is not
adequate to describe such close collisions, as is discussed
further in Sec. VII.

VII. DISCUSSION: LIMITATIONS AND
SUGGESTED MODIFICATIONS

Although the trends of the cross-section calculations
are in general agreement with the 2I' experimental
data, the experiments are consistently higher by a
factor of roughly 2. We will not attempt to evaluate
the possibility of systematic experimental error, but
rather will restrict our discussion to possible failures in
the model.

As stated previously, the ultimate utility of the model
is based on the rate of convergence of the series, since
our set is more than complete. Have we included enough
terms? Is even an infinite number of discrete (as op-
posed to continuum) terms adequate? These are, of
course, not independent questions.

In order to obtain an heuristic test of the rate of
convergence of the series, we added further terms to the
set, namely 3S and 3I'." Such calculations couple a
total of seven states, including the magnetic substates
and utilizing symmetries. Because the machine time
increased more rapidly than the square of the number of
states coupled, these runs were expensive. Limited runs

'4 A limited number of calculations were also made including
3D states. At 25 keV, the inclusion of the 3D states had negligible
efFect on the m=2 cross sections. At 9 keV, (where the cross sec-
tions are small), the effect on the 2P direct and exchange cross
sections was signiicant, tending to reduce the magnitudes; the
efFect upon the 25 cross sections was not marked.
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were made at only two energies and the results are in-
dicated by X's in Figs. 4—6. The 15 and 2I' cross sec-
tions are very little changed by the additional terms.
The 25 cross sections are affected, particularly at the
9-keV point. The (2P) polarizations are hardly changed.

Let us concentrate our attention on the 2I' cross
sections. The fact that they are little changed could
indicate (1) that the previous truncation was adequate,
(2) that the convergence is very slow, possibly requiring
continuum states, and/or (3) that the neglected 3D
state" is important. We will consider (2).

Real ionization or high excitation processes are un-
important at the energies considered. In order to
describe a wave function which includes real n=2
excitations, we need functions which contain suQicient
"appropriate" structure. How much structure? The
adiabatic limit gives us a guide:

The cusps in the wave function at each nucleus are
probably well treated by the device of double-centering.
(This is not the case for expansions about a single
center. ) A measure of the curvature of the wave func-
tion is the local kinetic energy (KE). For the hydrogen
atom,

flexibility in the basis functions are possible. We
list a few of many examples:

(1) Following a suggestion of Russek, " the effective
charge Z in the hydrogenic functions could be taken
to be a function of time. This could be done either of the
following ways.

(a) Z(R(t)) could be predetermined from, say, var-
iational molecular calculations. One could allow Z
to be state-dependent.

(b) Z(t) could be chosen to be a dynamical variable,
treated on the same footing as the aq(t).

(2) The basis functions could be chosen to be
Sturmian eigenfunctions, as considered in various
contexts by Rotenberg. ' These functions satisfy the
eigenvalue equation, as an example,

(——,'V' —Za/r)sg(r) =Ease(r) . (45)

This differs from the Schrodinger equation in that
Ep is a 6xed, prescribed number and Z~ is the eigenvalue.
For Eo(0, the Sq(r) form a complete, discrete set of
functions. They are orthogonal and can be normalized
so that

KE=r '—(2e') '. (43)

The total energy increases slowly with e and (for
bound states) never exceeds zero. In fact, the location
of nodes in the radial wave functions for a given l is
nearly independent of n."The eBect of n on the wave
functions is in the amplitude of the oscillations and
extent (number of nodes) of the function. The functions
extend to radii ~c„=n'ap.

For the H2+ system,

KE=rg '+rg '+~, (44)

"See, for example, E. U. Condon and G. H. Shortley, Theory
of Atomic Spectre (Cambridge University Press, Neer York,
1951), Fig. 1', p. 116.

and, at a given point, can easily exceed either hydro-
genic value (all n) for moderate values of r and e.

An interesting limiting case is that of the united
atom (R=0, r~ =rs). The true wave function is attained
by taking Z=2. If we expand the @=1,Z=2 function
in terms of Z=1 functions, we Gnd that the overlap
probability with the r1,=1, Z=1 function is 0.70. The
sum over all discrete states is 0.76. This leaves 0.24
for the continuum (compared with 0.06 for all n&1
discrete states).

There is probably little value in extending the cal-
culations beyond m=3. Further terms will be eBective
in modifying the wave function only for distances
&10ap.

Further modi6cations of the model to allow more

The S&(r) may be obtained from the hydrogenic
functions by a scale change. Ep may be chosen on
physical grounds.

(3) Other, quite arbitrary, basis functions can be
chosen. Since the calculation is essentially variational,
we need not attach any physical or other signincance
to the basis set. Computational convenience and
Qexibility can be used as a criterion of selection. A
particularly convenient set for the radial functions
could be

R~„~r'e ~"'"

with the e„& chosen by either of the methods described
in (1a) and (1b) above.

In methods (2) and (3) above, the basis functions
would not coincide with all of the asymptotic, physical
states of the system, although one function can be
trivially chosen to coincide with the initial 1S state.
The final function must then be resolved into its
hydrogenic components.

We have not yet investigated these various possibilities
in any detail.
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