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Weak interactions are studied in SU(6}and U(12}.The weak currents are assigned to the 35-dimensional

representation of SU(6} Lor the 143 in U(12)j, and the predictions of a Cabibbo-type theory are derived.
For nonleptonic decay, the 35 has been shown to be inconsistent with experiment, and so we assign the effec-
tive Hamiltonian to an admixture of 35 and 405. This assignment is now consistent with experiment, and,
when one extra assumption is made, it leads to the Lee-Sugawara triangle and the vanishing of (Z+ ~as+l

for parity-violating amplitudes. In U(12}, the assignment 143+5940 yields the same results. Amplitudes
for 0 decay modes are related to amplitudes of known decays, and the corresponding rates are calculated.

I. INTRODUCTIOH

'HE group SU(6) has been proposed' as a possible
symmetry of strongly interacting particles. In

analogy with signer's supermultiplet scheme for
nuclei, ' the theory is developed from the identification
of an SU(2),XSU(3) subgroup with the direct product
of intrinsic spin and unitary spin. It has had some
success in explaining the static properties, ' both strong
and electromagnetic, of hadrons, and so we propose to
examine the consequences of SU(6) for weak
interactions.

Some of these consequences have already been dis-
cussed in an earlier paper. " It was shown that the
assignment of the weak Hamiltonian to the 35-dimen-
sional representation of SU(6) is consistent with the
data on leptonic hyperon decay, but not with the data
on nonleptonic decay. On the basis of this result, it was
argued that the nonleptonic part of the weak Hamil-
tonian must be an admixture of the 35 and 405 repre-
sentations. Here we shall show that the inclusion of the
405 terms removes the inconsistency with experiment
and enables us to apply CI' invariance and T-1. in-
variance' to the Hamiltonian. Among the interesting
results vrhich follow from these weak symmetries are:
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(i) the Lee-Sugawara triangle' for S waves, and (ii) the
vanishing of the S-wave amplitude for Z+ ~ n+m+.

Because SU(6) is a nonrelativistic theory, it contains
no de6nite prescription for dealing with orbital angular
momentum, and hence it becomes ambiguous when
applied to P-wave nonleptonic decay. Two plausible
alternatives are to assume either that a I'-wave pion
behaves like the vector meson p, or that it transforms
under SU(6) in exactly the same way as an S-wave
pion; the former implies a dose relation between angu-
lar momentum and spin in SU(6), and the latter cor-
responds to the assumption that orbital angular mo-
mentum is independent of SU(6). As we have no
a prsori criteria for choosing between these alternatives,
we shall determine the consequences of both of them,
and leave the choice to experiment and to higher
symmetries.

One of the higher symmetries we may consider is the
relativistic generalization of SU(6) known as U(12).'
In this scheme, leptonic decays can be assigned to the
143 representation, but nonleptonic decays must be an
admixture of the 143 and the 5940. As expected, the
consequences of this assignment for 5-wave nonleptonic
decay are identical with those of SU(6); in addition,
the collinear subgroup SU(6) w can be used to impose
extra constraints upon the interaction, and it yields
the same results as were derived from T-I. invariance
in the nonrelativistic theory. The consequences of U(12)
for P-wave decays can be derived from SU(6) provided
that a P-wave pion is treated like the vector meson p.

A detailed discussion of leptonic decays is given in
Sec. II. The effective Hamiltonian is assigned to a
35-piet in SU(6), and to a 143 in U(12); it is found that
both assignments yield exactly the same results.
Section III is devoted to a general discussion of non-
leptonic decays in SU(6), and in Sec. IV, we make use

H. Sugawara, Progr. Theoret. Phys. (Kyoto) 31, 212 (1964);B.W. Lee, Phys. Rev. Letters 12, 83 (1964).'R. Delbourgo, A. Salam, and J. Strathdee, Proc. Roy. Soc.
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TABLE I. Predictions for matrix elements and branching ratios for leptonic decays based on SU(6) (Ref. 12).
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Decay Matrix element Predicted
Branching ratio

Observed

n + p+e +ve
X+ —+ A+e++v,

~A+e +v,~ n+e +v,
Z ~ n+p, +v„
A~ p+e +v,

+ p+p, +vy
~A+a +v
~ZO+e +v,

~~Z++e +v

G cosg( V—1.15A)
—,'(q 6)G cosg(1.15A)
—-,'(y 6}Gcosg(1.15A}
—G sin8(V+0. 23A)
—G sing(V+0. 23A }
—(q —;}Gs1ng(V —0.69A}
—(Q —,')G sing{ V—0.69A}
—(Q —,')G sin8(V —0.23A)
—(1/N) G sin8(V —1.15A}
—G s1ng(V —1.15A)

0.33X10 4

o.54x10~
119 X10 4

5.5 x1o-4
9.1 X10 4

1.5 X1O-4
X1O-4

0.66X10-4
2.24X10 4

(0 32~0.17)X10 4

(0 /5~0 2S) X10 4

(12 ~2) X10 4

(6.6 ~1.4)X10 '
(s.s ~o.s}x 1o-4

(1.3 ~0.6) X10 '
(14 as) x1o-4

& 13X10-4

of T Linvaria-nce and CF invariance. The U(12) theory
is applied to nonleptonic decay in Sec. V. Mathematical
details are relegated to the appendices: Appendix A
contains the identification of the generators of SU(6)
with spin and unitary spin; and Appendix 8 contains
some of the tensor components used in the body of the
paper.

II. LEPTONIC DECAYS IN SU(6)

%e assume that leptonic decays of hadrons are en-

gendered by a current-current interaction of the form

type matrix elements, respectively. " In Fermi-type
matrix elements the intrinsic spins of the baryons are
coupled to a resultant zero, and in the Gamow-Teller

type they are coupled to a resultant unity. With our
assignment of J„to 35, this means that the Fermi-type
matrix element is assigned to the (8, 1) part of a 35 and
the Gamow-Teller type is assigned to the (8, 3) part.
At this point we assume that the Fermi type and the
Gamow-Teller type matrix elements belong to two
different 35's.

Because the direct product

III.——J„I.„'(+H.c. , (2.1)
56*Qx56= 1Q+35Q+405Q+2695 (2.4)

where J„is the hadronic weak current and I.
„

is the
leptonic current:

L„=P&y„(1+ye)g.g (1= e, p) . (2.2)

Since we consider leptons to be outside the group SU(6)
Li.e., L„transforms as a singlet under SU(6)j, Hr,
transforms in exactly the same way as J„.

In order to extend Cabibbo's theory of leptonic
decays, ' to SU(6), we make the following assumptions
about J„:(i) J„transforms as 35 under SU(6); and
(ii) J„hasunit length. Since the SU(3) content of the
35 consists of octets and a singlet (which does not con-
tribute to leptonic decays), assumption (i) leads auto-
matically to the

~
AT~ = 1 rule for strangeness-conserv-

ing decays, and to the LLS=LLQ, ~AT~ =-,' rule for
strangeness-violating decays. Assumption (ii) allows
us to write J„in the form

J = (j ~ ~+g ~'~) cosa+(j ~"+g ~") sin8, (23)

where j„and g„represent vector and axial-vector
current, respectively, and the superscript indicates the
value of

~
AS~. By comparing E+~ p+v and E+ —+ s'e~v

to the corresponding pionic decay modes, Cabibbo
found a consistent value of O~sin8 0.26. We shall
adopt this value of 0 in our calculations.

In the nonrelativistic limit, the vector and axial
vector parts of J„become Fermi and Gamow-Teller

' ¹Cabibbo, Phys. Rev. Letters 10, 531 (1965).

j4«) = ~24+~0

g (0) g4 p3

j (1) g 6++ 5

g
(I) T6 7 5

(2.5a)

(2.5b)

(2.5c)

These are based on our identification of the 35 tensor
in Appendix A. Each term T„"is constructed from
baryon-antibaryon states

p y gappg (2.6)

"E.J. Konopinski, Ann. Rev. Nucl. Sci. 9, 99 (1965}."W. J. Willis er, a/. , Phys. Rev. Letters 13, 291 (1965).See also
W. J. %'illis, Proceedings of the International Conference on
Weak Interactions, Argonne National Laboratory Report No.
ANL —7130, Argonne, Illinois, 1965, p. 159 (unpublished).

contains only one 35, the form of the baryon current is
unique and the D to F ratios are 6xed; Fermi matrix
elements are pure Ii type and Gamow-Teller ones have
a D/F ratio of —',. In Cabibbo's original theory, F-type
coupling for Fermi transitions is a consequence of the
conserved vector current hypothesis; the value of
D/F= ', for Gamow-Tel-ler transitions is in good agree-
ment with a recent analysis of experimental data. "

%e now turn to a more detailed treatment of J„in
order to evaluate the hyperon decay rates explicitly,
and to predict the leptonic decay rates of 0 . The
assignment of 35 for J„leads to the following expres-
sions for j„(')and g„('):
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TABLE II. Decay rates for 0 -decay modes predicted in SU(6).

Decay mode

0 ~h+E
Q ~~~ +7l
n-
0- ~ =~+~-
0 ~ ~+7r0
Q ~ ~+g +V
Q- ~ ~~+~-+V
0 ~ 4 +e +v
0 + Z~+P, +Vp

Rate in 10' sec '

3.56
2.23
1.12
0.22
0.11
0.0047
0.0032
0.0017
0.0001

The matrix elements and decay rates for all octet
hyperon leptonic decays are listed in Table I."We have
compared our predictions with experiment where
available and find good agreement. The experimental
estimate" for A/V in A —+ p+e +P, is —0.9 o.~+ "
which is to be compared with the predicted value of
—0.69. We have used

G~/Gv(& —+ p) = —1 15,
sin8~~= 0.26,

G = 1.025/my'.

(2.7)

In the case of 0 decay, the matrix elements for

are found to be"

0 ~~ +3 +v)

0 -+ *0+ l +v(

(2.8a)

(2.8b)

(0-~ ')g= (2Q 6/5)1. 15G sin8 (2.9)

(0-
~

')v ——(24 6/5)G sin8$(y, ,—p„)/2m„7 (2.10)

(0
~

*')=—VSG sin8(V —0.692) (2.11)

and the corresponding decay rates are given in Table II.
The predicted rate for (2.8a) is somewhat smaller than
the estimate of Glashow and Socolow, "but the rate for
(2.8b) is in good agreement with theirs. The vector
matrix element in (2.10) is derived from the conserved-
vector current hypothesis, and its contribution to the
0 —+ transition rate is negligible.

We conclude from this analysis that the assignment
of J„to the 35 in SU(6) is quite successful in predicting
the leptonic decay rates of hyperons. The detailed pre-
dictions about the V/A ratios in each case remain to be
tested. We also note that had the vector and axial vector
currents been assigned to the same 35, then"

G~/Gv(m ~ p) = —5/3 (2.12)
'~ The experimental values are based on W. J. Willis, Ref. 11,

and I. V. Chuvilo, in Proceedings of the International Conference on
High Energy Physics, DNbna, 1061 (Atomizdat, Moscow, 1965)."0 ~ ~+l +,v was also considered by M. A. B. Beg and
A. Pais, Phys. Rev. Letters 14, 51 (1965); and by I. J. Muzinich,
Phys. Letters 14, 252 (1965)."S. L. Glashow and R. Socolow, Phys. Letters 10, 143 (1964)."R. P. Feynman, M. Gell-Mann, and G. Zweig, Phys. Rev.
Letters 13, 687 (1964).See also M. A. B.Bhg and A, Pais, Ref. 12.

which is to be compared with the experimental value of
Eq. (2.7).

The assignment 143 in U(12) for weak currents was

examined by Horn et al. ," and in the low-momentum

limit, i.e., when we confine our attention to vector and
axial vector matrix elements, it leads to the same
results as were found above in SU(6).

HNL= H(35)+B(405) . (3.1)

There are several arguments which seem to make the
assignment in (3.1) appear reasonable. One is the
heuristic argument given in I; another is to consider the
nonleptonic decays as being engendered by a current-
current interaction" with the current transforming as
35. Then the nonleptonic decays can only transform as
representations symmetric in the two currents, " i.e.,
1, 35, 189, and 405. Of these, 1 does not contribute to
observable decays and, with the assumption of octet
dominance, the contribution from 189 is proportional
to one of the terms in 35. Hence we are left with 35+405
for nonleptonic decays.

If the current-current interaction is engendered by an
intermediate boson, it is possible to build a model which
leads to the assignment (3.1). The simplest SU(6)
transformation properties for an intermediate boson are
15 and 21. Under SU(3) &&SU(2), these decompose into

15= (6,1)+(3*,3),
21= (6,3)+ (3*,1) .

(3.2a)

(3.2b)

We now assume that the weak interaction Lagrangian
transforms as the 21. Then since

z =J;TV,t+J;tW;+L,W, t+L;W;, (3.3)

where 8'; are the intermediate boson field operators,
our assumption about Z fixes the S'; to belong to 21."
From (3.3) we can form the effective Hamiltonians for
both leptonic and nonleptonic decays of hyperons.
Since this involves taking Z to second order, we obtain

"D. Horn, M. Kugler, H. J. Lipkin, S. Meshkov, J. C. Carter,
and J. J. Coyne, Phys. Rev. Letters 14, 717 (1965).

"This assignment automatically restricts the interaction to
transform like an octet under SU(3) and so the 3T=$ rule is
guaranteed.' R. P. Feynman and M. Gell-Mann, Phys. Rev. 109, 193
(1958).

"This is analogous to only 1, 8 and 2? appearing in an SU(3)
version. See M. Gell-Mann, Phys. Rev. Letters 12, 155 (1964).~ This scheme is very similar to that of d'Espagnat in SU(3).
B. D'Espagnat, Phys. Letters 7, 166 (1963);B. D'Espagnat, and
Y. Villachon, Nuovo Cimento 33, 948 (1964).

IIL NONLEPTONIC DECAYS IN SU(6)

The simplest assignment for the effective non-

leptonic decay Hamiltonian is the 35."As shown else-
where4' this leads to a serious discrepancy with experi-
ment, and so it was suggested that the nonleptonic
decays transform as a linear combination of 35 and 405:
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Jfs (405) = I:(Ilail) «sOX v'sslsss (3.5c)

JI,'(405) = $(88)4ssQx(pss jsss (3.3d)

Hs(405) = L (BB) zsQsxstofssss.s(3.5e)

Equation (3.5) exhausts" the possible ways in which
BS and 405 can be constructed out of 56"Qx56QxBS. The
contributions from H'1 and Hg are written down in I
and in several other papers. H3 and H3' correspond to
the two ways in which one can construct a 405 out of
405QxBS, and are given in detail in Appendix B.

We now consider the S-wave amplitudes arising from
couplings in Eq. (3.5). For the 405 part we assume
octet donunance" and so pick out the (8,1) component.
Since this component is unique and since the contribu-
tion of H3 is identically zero, there are only four in-

dependent S-wave amplitudes. From these amplitudes
we obtain the following matrix elements:

(Alp -),=~(s,+—,',5,+ ~s,)

(:"
I
A

—
) =v3 (5,—5 +-,'5,)

(3.6a)

(3.6b)

the result that both HL and HNL transform as

21*Qx21=1Q+B5Q+405. (3.4)

For leptonic decays it is possible to drop the contribu-
tion from 405, whereas for nonleptonic decays we are
forced to keep the 405.

To determine possible coupling schemes arising out
of the assignment HNI, 35+405 we consider the
following:

&~t(BS)=L(&Il)»O&«ssj» (3.5a)

I&z(BS)= L(8Il)4osQxtzssfss (3.5b)

(-""
I
~

&
=

L P+3—P +—(P .+P ')
v3

—(Psb+Psb') (P4.——Psb)], (3.9b)

(~ i~ ').=(lP -».-P..-P.),
(~ l»x &p=&2(sPs —Ps+Ps. '+Psb

(3.9c)

+Ps b' P4. Psb)—, (3—.9d)

with orbital angular momentum. » If the gradient
operator V is independent of SU(6), then a P wav-e

pion transforms under SU(6) in the same way as an
S-wave pion, and the P-wave amplitude for non-
leptonic decay transforms as (8,B) under SU (3)X

SU�(2).

If, on the other hand, orbital angular momentum and
intrinsic spin are intimately related, it is reasonable to
suppose that a P-wave pion behaves like the vector
meson p under SU(6).z4 In this case, the P wave -ampli-
tude transforms as (8,1). We shall refer to amplitudes
arising from the (8,B) as type 1, and those arising from

(8,1) as type 2.
The 405 contains two (8,B)'s, and so the terms Izrs,

B3' and B4 each contribute two independent amplitudes
of type 1. We choose the two (8,B)'s in 405 to be or-
thogonal and distinguish between them by subscripts
a and b. In all, we have eight independent amplitudes.
The P-wave matrix elements of type i are

1
(AIPzr )p= L 3Pt+—(P—s —Ps.')

v3

—2(Psb+Psb') (P4. P—sb)j, —(3.9a)

(~+
I
«+)p= ~&(Ps+Ps.+Pso'+Psb

Z+ Pzr' s= St—25z+-,'Ss—zss 3.6c

(X+I sszr+)s =v2(Sz+-', 54)

(Z I
sszr &s=V2(st Sz+sss—s)

(n-I=-*o -),= —(4 6)s

(3.6d)

(3.6e)

(3.6f)

The amplitudes ( I"* zr') and (0 I"*'zr ) are re-
lated by the

I shTI = —,
' rule:

(n-I =-*'x-)= —v2(11-I =--xe& .

We note that the Lee-Sugawara sum rulev

(3 1)

«~'I p-'&+(Al p--&=2(=--IA=& (38)

is satished only if S4——0.
Turning to the P-wave amplitudes we recall that

SU(6) contains no clear-cut prescription for dealing

» Actually there are two more. One is I/0(35)~t (BB)IQX+35$35
which obviously does not contribute to decay modes of interest
and the other is lj, i405)~LiBB)ssOXyss)4ss which as stated in
Ref. 4, gives amplitudes proportional to HI(3S) when octet domi-
nance is assumed."S. Coleman and S. L. Glashow, Phys. Rev. 134, 8671 (1964);
R. Dashen, S. Frautschi, M. Gell-Mann, and Y. Hara, Eightfold
8'ay (%. A. Benjamin and Company, Inc. , New York, 1964).

+Psb' Psb), (3.—9e)

(0-
I

= ~szr—)p
———&2P, ,

1
(il—I:-'zr—)p ———(—4Pt —3Ps.'+3Psb'),

V3

(3.9f)

(3.9g)

Again the matrix elements (0 I
zr'& and (0 I

ozr )
are related by ch T= ~:

(n-I=-s~-) = —v2(a-
I
=-~o& . (3.10)

We note that the sum rule (3.8) is satis6ed individually
by the amplitudes P1, P3„P3~,P3,', and P4~.

With the above treatment of orbital angular mo-
mentum, we expect a D-wave octet to transform like

~ This ambigu. 'ty was also discussed earlier in S. P. Rosen,
Phys. Rev. Letters 14, 758 (1965).

~4 It is interesting to note that it is only with this type of treat-
ment of P-wave pion that an SV(6)-invariant strong baryon-
meson interaction can be written down.

(0 IAk &p
——v2( —6Pr —2P„—2Psg'

+2Psb+2Psb' P4,+Psb) . (3—,9h)
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(z-I ~x-&,=vs(-;P, --;P, +P.),
(Z+

I
nx+&p= —VZ(6P2'+2Pg'+P4),

&n-I"-*o~-&,= —(v2/P„
&0-

I
-' —

&z
———(4/VS)P,

&0 IAK )=VX(P '+4P') .

(3.12d)

(3.12e)

(3.12f)

(3.12g)

(3.12h)

We notice that the amplitude engendered by the
coupling Hz (i.e., Pz) is the same for either type of
treatment of P wave. Furthermore P'& is the only
amplitude that satisfies the sum rule of Eq. (3.8).

IV. T-I AND OTHER SYMMETRIES

To reduce the number of amplitudes appearing in
Eqs. (3.6), (3.9), (3.11), and (3.12) we look for further
restrictions that can be imposed on HNz, . From SU(3)
considerations we know that only two weak symmetries
are availabl- T-L symmetry and R invariance. "
The concept of T-L invariance can be easily generalized
to SU(6), and the TL(1) and TL(2) syzzunetries can
be delned by:

TL(1) invariance: HNz, is even under the interchange
of SU(6) indices

(6~4 and 5+-+3).

TL(2) invariance: HNz, is odd under the interchange
of SU(6) indices

(6~4 and 5~3).
It has been shown that a current-current theory of

nonleptonic decays with Cabibbo-type currents and

'6 S. P. Rosen, Phys. Rev. 137, B431 (1965).

(8,5). 405 contains one (S,S) and we obtain for the
D-wave amplitudes of 0 decays

&n-I"-o~&.= (1/3+)D. (3.1»)
(0 IAK )J)= —(1/6v2)D4. (3.11b)

Since Eq. (3.11) relates the two decay modes neither
to one another nor to any other better known ampli-
tude, it might seem academic to write down Eq. (3.11).
However, the equation does turn out to be useful, as
we shall see later.

Next, we consider P-wave amplitudes of type 2, i.e.,
treat a P-wave pion like a p meson under SU(6). As
discussed before, in this case the effective interaction
transforms as (S,l) and there are five independent
amplitudes in all (unlike the S wave, the contribution
form Ha' is not zero). The matrix elements are then

&A I p~ &~= (1/%—(3Pz+Pm'+3P3+2P3'+P4),
(3.12a)

IAs )p= —(1/V3)(Pz+2P2'+2Pg), (3.12b)

(a+I px'&p (3Pz+SP2+P3+2P3+P4), (3.12c)

D3—D3'= D4= 0,
P3.—P3.'= Ps~+ P3a'= P4~ =0,

P3—P3'= 0.

On the other hand, TL(2) invariance requires

PR P3a+P3a —Peb P3b —P4a

P2' ——Ps+ P3' ——P4 ——0,
D3+D3' ——0.

(4.1)

(4 2)

As expected from an SU(3) analysis, the Lee-Sugawara
sum rule is a consequence of TL(1) invariance in the
case of S waves and of TL(2) invariance in the case of
P waves; in other words, TL(2)XP invariance gives
the sum rule for both S and P waves. "Furthermore
TL(1) invariance predicts &X+

I
ns+&s=0. It is amusing

to note that one can define an "R" (R6) transformation
in SU(6) such that R~XP invariance is the same as
TL(2) XP invariance for HNz, . R& is defined by
R6(T,")R6 '= —T„".This +P-invariant HNz, leads to
the attractive predictions given above and does not
lead to any violent disagreement with experiment. How-
ever, since we have based our assignment of JINA to
35+405 on a possible current-current origin of B'NL,
we shall, in the following, confine our attention to TL (1)
invariance for HNL.

For S-wave amplitudes TL(1) invariance yields

&A I
p~-&, =VS(S,+~z,S3), (4.3a)

(.
I
As )s ——43 (Sz+-', Sa), (4.3b)

&&+I px'&8 = (Sz+4S3), (4.3c)

&z-I~ -&,=sr(s, +-,'s,), (4.3d)

&z+I ~~+&,=0, (4.3e)

&s= —(«)S (4.3f)

Hence, as noted earlier we predict the sum rule (3.8)
for 5-wave amplitudes and also predict that 2+~ n+~+

2' It is crucial that the currents be Cabibbo-type as opposed to
pseudo-Cabibbo type i.e., 8,=eg and not 8,= —8g. In the latter
case one gets TI.(1) invariance for P waves and Tl.(2) invariance
for S waves; this does not yield the nice predictions that Tl.(1)
invariance yields for 5 waves. See also S. Coleman, S. L. Glashow,
and B. W. Lee, Ann. Phys. (N. Y.) 30, 348 (1964).

'~ Throughout this paper we have used an eGective nonderiva-
tive coupling. See Ref. 25 for a discussion on this point.

CP invariance leads to a TL(1) invariant Hamil-
tonian. ""Thus, we shall obtain the consequences of a
CP-invariant current-current theory when we impose
TL(1) invariance. We would like to emphasize this
point because there exists a misconception that certain
results follow from CP invariance when, in fact, they
really follow from TL(1) invariance.

The requirement of this extended TL(1) invariance
leads" to the following restrictions on the amplitudes
in Eqs. (3.6) to (3.12):

S2=S4=0,
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is a pure P-wave transition. In view of recent experi-
mental evidence, " this is an attractive result. We note
that it is obtained here from weaker assumptions than
in SU(3) (Ref. 24) and in SU(6) with 35 dominance. '

For amplitudes of Type 1 Pi.e., V outside SU(6)] we
note the following: TL(1) invariance requires D4 Oso-—
that

more, it is possible to satisfy n =0 by setting:

isPi ——',P2'+Pa ——0. (4.8)

This creates no difhculties.
We can express 0 -decay amplitudes in terms of the

better known octet decay amplitudes. For S wave we
obtain

(n ~AIC-&n= 0. (4 4) —(n
~

*'s )s=VZL2(A~pir-)s —( ~A~ )s] (4.9)

(n-iAIc-& =o (4.6)

if (3.8) holds. Empirically the Lee-Sugawara sum rule
is satisfied" quite well for both S- and P-wave ampli-
tudes, and so TL(1) invariance implies that the decay
0 ~A+E is almost forbidden. Since three out of the
seven observed events of 0 exhibit this decay mode, '0

the above result clashes badly with experiment. We
conclude that type-I matrix elements do not provide a
satisfactory way of dealing with P-wave decays in
SU(6).

We turn to the P-wave amplitude of type 2 fi.e.,
Vs. ti in SU(6)]. We find that TL(1) invariance gives

(A
~ p -) = —(1/43)(3P,+P '+SP,+P ), (4.7a)

(.
~

Am. )s= —(1/VS) (Pi+—,'P2'+2P3),

&Z+
I
p~'&s= (s»+ 3P2'+3P~+ P4)

(Z
—

~

nm.-&s= W2(-', Pi——,'P2'+Pa),

&z+~ n~+&~= —v2(-;P;+2P, yP4),
(n-~=-*'x-)s= —(4 -', )Pi,

(n-~=-o~-& =—(4/A) p„
(n iAE &p

——v2(P2'+4PI) .

(4.7b)

(4.'/c)

(4.7d)

(4.7e)

(4.7f)

(4.7g)

(4.'/h)

In this case the relation (4.5) does not hold and so there
are no unsatisfactory predictions for 0 decays. When
Eq. (4.3) and Eq. (4.7) are taken together, it is easy
to show that the empirical relations'

Gag(0, llgtl 40
can be satisfied. We recall that this was the crucial
point on which 35 dominance for HNL failed. 4 Further-

"M. Bazin, H. Blumenfeld, U. Nauenberg, L. Seidlitz, R. J.
Piano, S. Marateck, and P. Schmidt, Phys. Rev. 140, B1358
(1965).

'9This relation was also obtained by C. Iso and M. Kato,
Nuovo Cimento 37, 1735 (1965)."N. P. Samios, Proceedings of the International Conference on
Weak Interactions, Argonne National Laboratory, Argonne, 1965,
p. 189 (unpublished).

After imposing TL(1) invariance on the P-wave ampli-
tudes, we obtain the following interesting relation":

(n ~Az &-=(4 ;)pv-S(z+~p o) y(A~p -)
—2( i

As —
&s] . (4.5)

Comparing this result with the Lee-Sugawara sum rule,
(3.8), we see that

and for P waves

(4.1Oa)(n-~ =-*0~-& =-,'v2(n-~ =-0~-&,

(n-~ '7r-&s ——2/1346(7(Z ~ns )i-
5(—Z+~ns+&i+5(46)(A~ pm &~

—4(v' 6)(" i' )s], (4.10b)

&n l~& &~=(1/13)L21&z l«&~
—15(Z+~ nor+&/+15(v'6)(A

~
ps )/

—38 (4 6)( ~Am. )z] . (4.10c)

The P-wave amplitudes can be simplified by letting

(z-~n -)„=o.
Using the above relations and the experimental values

of the octet decay amplitudes, we can calculate the
0 -decay amplitudes. For 0 —+ ' +x ' and
0 —+ A+E, we assume that D-wave contribution to
the rate is not significant because of its suppression by
phase-space factors. Notice that this assumption is not
inconsistent with the D-wave amplitude being of the
same order of magnitude as the P wave. The results for
0 decay rates" are summarized in Table II. We note
that our values for the decay rates are higher than
those obtained by Glashow and Socolow. '4

V. WEAK INTERACTIONS IN 0(12)
It is well-known that SU(6) is a nonrelativistic

theory. Several relativistic extensions have been pro-
posed, ' and the groups SL(6,c)"and U(12) 3' have been
put forward as strong-interaction symmetries. The con-
sequences of SL(6,c) for weak interactions have already
been studied, leptonic decays by Ruhl3' and nonleptonic
decays by Rosen. "Here we study the implications of
U(12) for weak interactions.

As has been emphasized by Lipkin, "it is sufFicient
for our purposes to use the algebra of the compact
group SU(12). This group contains two important and
useful subgroups: one is the static subgroup SU(6),
which corresponds to the nonrelativistic SU(6) theory,

"We have used the phase-space estimates of Glashow and
Socolow (Ref. 14) and hyperon decay amplitudes calculated in
R. H. Graham and S. Pakvasa, Phys. Rev. 140, B1144 (1965).~ B. Sakita and K. C. Wali, Ref. 8; W. Ruhl, Ref. 8.

3' R. Delbourgo, A. Salam and J. Strathdee, Ref. 8; M. A. B.
Bbg and A. Pais, Ref. 8.~ W. Ruhl, Phys. Letters 15, 99 (1965)."H. J. Lipkin, Trieste Seminar, 1965 (unpublished). SU(12)
was also arrived at from a different starting point by R. Dashen
and M. Gell-Mann, Phys. Letters 17, 142 (1965).
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HNz 143+5940 (5 1)

are those contained in Eqs. (3.12) and (4.1).
The S-wave amplitudes which transform in SU(6)„

as (8,3) parts of 55 and are 405 are

1 1 1
(dip -).=c5(S'd—S'+—S.+—S

18 36 18

and the other is the collinear subgroup SU(6) ."Like
SU(6)., SU(6) can be decomposed into SU(3)
XSU(2) where SU(3) is the unitary symmetry group
and SU(2)„ is generated by the relativistic spin
operator W.'~ Because 8' spin commutes with the
Dirac Hamiltonian, SU(6) is a valid symmetry for
collinear motion at all momenta both relativistic and
nonrelativistic. "

To make predictions from this theory, we observe
that, in the rest frame of the parent baryon, nonleptonic
hyperon decay is a collinear process. Consequently,
both SU(6), and SU(6) are applicable to the decay.
In the case of 5 waves, we follow Lipkin and Meshkov"
and insist that the predictions of the two subgroups be
identical. P-wave amplitudes vanish in the static limit,
and so we can derive useful predictions about them only
from SU(6) .

Because of the S'-5 Hip discussed by Lipkin and
Meshkov, "the pion transforms in SU(6) as a member
of (8,3), and the p meson with SS——0 transforms as
(8,1). This means that in SU(6) the P-wave non-
leptonic decay amplitude transforms as W=O and the
5-wave as %=1, lV3 ——0. It follows that the P-wave
matrix elements are of the type 2 discussed in Secs. III
and IV, and that the predictions of the SU(12)
assignment, ""

1 5 1
(&+I p+)s=I S2'+ S-2'+ —SS.+ S-db

)b 9 36 9

5 2 1
+—S,.'+-S,c'+—S.), (5.2c)

18 9 18

5 1 5
(2-

~

c ), v2(S=,'+ S,'+—-S, + S.„—
36 9 36

1 1 1 1
+-S, '+-S, '+—S„+—S„),(5.2d)

4 4 12 12

t 1 1 1
7+

I «+&s =~I —S2'——SS.+—SSb
Ib36 36 36

——SSo'+—S 'S+b—Sdb I (5.2e)
36 36 12 )

(Q I
-~2r ) = —(0 6)S,'. (5.2f)

53.=53& (5.3a)

53~'= 53~' (5.3b)

In Eq. (5.2) S2' and S,' are the amplitudes from the
couplings of the type H2 and H2 in Eq. (3.5) and the
rest from III, Hs and IJ4 with u and b distinguishing
between the two (8,5)'s contained in 405. We now
impose the requirement that, in the limit of SU(12)
symmetry, the predictions of SU(6). and SU(6)
should coincide for S wave (in the zero-momentum
limit). Comparing Eq. (3.6) and Eq. (5.2) we note that
the amplitude S~' is proportional to S~. Also a linear
combination of 53„53'and S3,', 53~' is proportional to
S3. if we let

1 1 1 1
+ S3 '+—S()(c'——S4,——Sdb

I
(5.2a)

9 18 36 18

and deine
S3 S3cc+2S325 —S3b+ 2ssb' (5 4)

1 1 1
(=-l~~-)s=el s,'+—s, +—s..+—s»

12 12 12

5 1 1+—S,'+—S, '+—S,——S ) (5.2b)
36 36 36 36

"H. J. Lipkin and S. Meshkov, Phys. Rev. Letters 14, 670
(1965).

'~ M. E. Rose, ReIatieistf'c E/ectron Theory (John Wiley R Sons
Inc., New York, 1961).

"This was noted earlier by K. J. Barnes, P. Carruthers, and
F. Von Hippel, Phys. Rev. Letters 14, 82 (1965). See also
R. Dashen and M. Gell-Mann, Phys. Letters 17, 145 (2965)."This is analogous to the assignment 35+405 in SU(6). The
assignment 143 for leptonic decays was studied by Horn et al.
(Ref. 15) and leads to the same results as in the 35 assignment in
SU(6). The assignment 143 for nonleptonic decays was studied by
several authors (Refs. 15, 40) and found to have the same troubles
as those associated with the 35 in SU(6).~ M. P. Khanna, Phys. Rev. Letters 14, 711 (1965);R. Oehme,
Phys. Letters 15, 284 (1965); R. Gatto, L. Maiani and G.
Preparata, Phys. Rev. 139, B1294 (1965); K. Kawarabayashi
and R. White, Phys. Rev. Letters 14, 527 (1965).

then we 6nd that S3' is proportional to S3. However,
S2' and 54„54&are quite distinct from S2 and 54. Hence
the only way to reconcile SU(6) predictions for S wave
with those of SU(6), is to use Eqs. (5.3), (5.4) and
impose

Sg' ——54 =54' ——S2——S4——0. (5.5)

No further restrictions can be imposed on the S-wave
amplitudes by means of symmetry arguxnents. Thus,
we had that for both 5-wave and P-wave amplitudes,
SU(12) conirms the conclusions derived in Sec. IV
from SU(6). and several reasonable conjectures.

Equation (5.5) implies that the only independent
amplitudes are 5& and Sa', consequently we predict
Eq. (4.3) on the basis of SU(12) and without requiring
Tl.(1) invariance. From this we obtain the Lee-
Sugawara sum rule, (3.8), and also

(z+
I
rd2r+) s ——0.
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VI. CONCLUSION TAaxE III. Identidcation of baryon states of interest in SU(6).

In our study of weak interactions within the SU(6)
scheme we have found that the assumption of minimal
transformation properties (55 in this case) for weak
interactions is adequate for leptonic decays but not for
nonleptonic decays. The assignment (55+405) for the
nonleptonic decays is based on a current-current origin
for nonleptonic decays and several other arguments.
We have derived the consequences of this assignment,
and have found that it is possible to remove the dis-
crepancy with experiment. Furthermore, using TL(1)
invariance (which follows from current-current inter-
action and CE invariance) we are able to predict (a) the
sum rule

Baryon

g0

Se=y1

~ (B123 B114,)
~(B»3—B ~)
(B14s —B23s)
~{B125 Bile)
(B14s+B23s—2B13e)

&{B34s—B33e)
&(Bise—B2ss)
~'2 {Bese—B4ss)

(281se+B2ss)
(2B3se+B4ss}
—&Bsse

V2{B223—B124)

V2(B234—B144)

VS{B14e—B23e)
~(B22s B12e)

(2824s —B23e—814e)
H(B44s —B33e)
&&(Bice—B2se)
&~(B3ee B4se)

(2B»e+Bi«)
(2B4se+Bees)
—VSBsee

VS(Z+[pe)+(A( p -)=2(=-(A~-)

for the S-wave amplitudes; and (b) that Z+ ~ 22+2i+ is
a pure I'-wave transition. Both of these results are in
good agreement with experiment. We relate amplitudes
for 0 decay to known decay amplitudes and predict
decay rates for decays of Q both leptonic and
nonleptonic.

In a study of weak interactions in a relativistic
version of SU(6), namely, U(12), we find that we are
able to deduce results (a) and (b) above without TL(1)
invariance. Apart from that the conclusions arrived at
in SU(6) are essentially unchanged.
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where 8 are generators of SU(3) (Ref. 42).

SU(2), :
5+———A2

S —1(A2 2a A2 2a-1)

S=—A '~~

(a= 1 to 3).

(A3)

The remaining 24 "oG-diagonal" generators which
transform as (8,3) under SU(3)XSU(2), are given by42

(g ),i—A . 2i 1S iA 2a

(&o)1'=2(A212*—A24-1" ')—oh '(A~' —A2 1' '), (A4)

(g ) .i A 24—1+23.iA 2a-1

(i,j,a= 1 to 3) .

Since the mesons are assigned to 35, we can identify all
35 meson states from Eqs. (A2)-(A4). The pseudo-
scalar meson states and the corresponding vector meson
states with S3=0 are given by

pA& A„a5=b&aA;—b„.A&a (A1)

are traceless, and obey the unitary restriction
(Asa)t=A ~. The breakdown of SU(6) into SU(3)
XSU(2), is achieved by identifying the generators of
SU(3) and SU(2), as followso a:

APPE12IDIX A: BREA&'r2OWitf OF 8U(6)
AND IDENTIFICATION OF STATES

In this Appendix we identify the generators of SU(6)
in terms of those of SU(3)XSU(2), and also identify
the physical states of interest. We denote the generators
of SU(6) by A „"where I4, 1 run from 1 to 6; they satisfy
the commutation rules

2r+ = (1/V2) (2224+ 2212),

2r =2(o14+ipo ip1 ip2) 4

~ = —(1/~2)(4p4'+4 2')

& = (I/~2)(o 2'+ o 2'),

po+= (1/N(o 2'—2 1'),

Po'=-'(4P '+4P '—4P2' —2 ')

po = —(1/V2) (O44' —yo'),

&o* = (I/v2)(o '—v' ')

(ASa)

(ASb)

(ASc)

(ASe)

(Asg)

(ASh)

SU(3): 8'=(A242'+A2; 12' ')'

22bii(A2. 2a—+—A2. 12~') (A2)

(ij, a=i to 3)
"A somewhat diferent breakdown has been given by M. A. B.

Bhg and V. Singh, Phys. Rev. Letters 13, 418 11964).'I Here and throughout the appendices we have used the sum-
mation convention for repeated indices.

where y,& is the traceless tensor transforming as 35.
From above Eq. (AS) it is easy to obtain the correspond-
ing classification under SU(6)„by interchainging 2r+

with pp+ etc.
The baryon states in 56 are identi6ed with a tensor

8 22 which is totally symmetric in a, p, and p. We list
the resulting identi6cation for states of interest in
Table III.
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APPENDIX B: SOME RELEVANT RESULTS
OF TENSOR ANALYSIS OF SU(6)

In this Appendix we list the relevant components of
various tensors of SU(6) which were used in the text.
These components are the octet parts of various SU(6)
representations with intrinsic spins 0, 1 or 2. In SU(3)
space the octet is chosen to have the quantum numbers
corresponding to the nonleptonic decays of hyperons
i.e., I'=1,

I ATI =—ATs ——s, and in SU(2). space for
simplicity the S3=0 component is picked out.

(i) 35:
The breakdown of B5 under SU(3)XSU(2), is

The tensor T pf"" transforming as 405 is symmetric
between both Is and s, and a and p. The component for

(S,l) is

(8,1) (Tss's+ Ts,")—(Tsss'+ Tsss') (B4a)

and the two orthogonal (S,B)'s, which we have dis-

tinguished by the subscripts u and b in the text, are

(8,B). Tss"+ Ts "+Tss" T,s"—Tss"—Tss"—, (B4b)

(S,B)s~Ts "—Tssss+Tss" —Tssss+ Tss" Tssss.—(B4c)

The (8,5) is given by

(8,5)-2Tss"+3Tsss'+2Tss"+2Tss"+3Tss"
+2Tssss+ Tssss+ Tsss'. (B4d)

B5 (8,1)+(S,B)+(1,B) .
The tensor component for (S,l) is

(8,1) Tss+ Tss

(B1)

(B2a)

%e also give below the way in which the amplitudes
corresponding to Hs to H4 of Kq. (3.5) are constructed
out of 56*Qx56QxB5.

and that for (S,B) is

(S,B) (Tss—Tss) . (B2b)
(ii) 405.

The breakdown of 405 is given by

405 (1,1)+(S,l)+ (27,1)+2(8,3)+ (10*,B)

+ (10,3)+ (27,B)+(1,5)+ (8,5)+ (27,5) . (B3)

II1 B»B ps'„s,

82 B Bas v'pp

H B s"B, psS+B s~B .„s»"
H3' B»B sq~s+B I"~B s ~ s

II4 B»Bs„~q'.

(B5a)

(B5b)

(BSc)

(B5d)

(B5e)

Errata

F-Spin and the Rotation Group in Four Dimen-
slonsg K. AHMED, S. A. DUNNE, M. MARTINIs AND

J. R. PosTON LPhys. Rev. 142, 995 (1966)j. In
Ref. 3, insert "H. J.Lipkin, in" before "Proceedings
of the Seminar. . ."

The third line of Eq. (2.3) should read

I 0,0&s = (v'l) (I+ —
&
—

I
—+&).

The fourth line of Eq. (4.1) should read

I2, —1&sr ——+ I1, —1&s.

Polarization of the X' Particles Produced in the
Reaction ss-+P —+ K'+X' at 1.5 and 1.8 BeV/c,
YQUNG S. KIM, G. R. BURLEsoN, P. I. P. KALMUs,
A. ROBERTS, AND T. A. ROMANOwsKI LPhys. Rev.
143, 1028 (1966)j. There is a misprint in the 3rd
line after Eq. (5): "sr p c.m. frame" should read
"Z' rest frame. "

Ke wish to thank Professor F. Crawford for
kindly bringing the misprint to our attention.

Nucleon Form Factors and Their Interpretation,
L. H. CHAN, K. W. CHEN, J. R. DUNNING, JR.,
N. F. RAMSEY, J. K. WALKER, AND RICHARD
WILsoN I Phys. Rev. 141, 1298 (1966)].In Ta.ble II,
Fits Nos. 4 and 5, the mass 3' should read 752
instead of 760. Under 6t No. 3 the annihilation
threshold constraint should read "No" instead of
"Yes."These were the actual constraints used.

Equations (3) should read:

p(r) =3.08 exp{ (—4.26+0.06)rI
(electron charges) XF ',

Is(r) =8.59 exp{ (—4.26&0.06)rI
(nuclear magnetons) XF—'.


