
PH YS ICAL REVIEW VOLUME 247, NUMBER 4 29 JULY 2966

Exchange Contribution of the w w J=O, 7=0 Antibounti State*

M. M. ISLAM

Department of I'hysics, Brmen University, I'roeidence, Rhode Island

(Received 26 October 1965; revised manuscript received 4 April 1966}

It is shown that the exchange of the m-~ J=O, T=O antibound state in the crossed channel for ~-m and
m-N scattering gives a contribution similar to that due to the exchange of a scalar particle but with opposite
sign of the residue. In the direct channel, this antibound state gives a large T=0 s-wave ~-m scattering length,
as suggested by Atkinson to explain the ABC phenomenon. The contribution of the antibound state to the
physical amplitude is evaluated using dispersion relations involving the physical sheet and the second
Riemann sheet.

' 'T was suggested by Atkinson' that for m-x J=0,
~ ~ T=O amplitude an antibound state should occur.
The antibound state was defined as a pole between s =0
and s=4p. ' on the second Riemann sheet reached by
analytic continuation' ' through the elastic unitarity
cut. Atkinson further suggested that this antibound
state could give a large m-~ I'=0, s-wave scattering
length, as indicated by the ABC phenomenon. ' In this
work, we shall show that the antibound state not only
gives a large scattering length in the direct channel,
but also gives a contribution in the crossed channel
similar to that due to the exchange of a scalar particle,
but with a residue opposite in sign, i.e., positive. For
this purpose we consider dispersion relations of the
type suggested by Oehme' involving the physical sheet
as well as the second sheet. In these dispersion relations
the unitarity cut is removed in favor of contributions
from the poles on the second sheet.

We use Oehme's notation. The elastic scattering
amplitude F(s+) is the boundary value of an analytic
function F(s) which has a right-hand branch cut for

4y'~(s( and a left-hand branch cut for 0&~2» —~.
The analytic continuation of F(s) on the second Rie-
mann sheet is given by

Fn(z) Fr(s)/(1+2&p(s)Fr(s))

where the superscripts refer to the relevant sheets and
p(s)=L(z —4y')/s)"'. p(s) has a cut for 4g'&~s(~ and
a cut for 0&~s& —~, and on the physical sheet is
positive imaginary for 0(s(4p'. Equation (1) shows
that a zero of the 8 matrix 1+2ip(s)F'(s) gives a pole
on the second sheet. If we consider the Cauchy integrals

1 F(s')ds'

2m~ s —3

1 F(s')ds'

2s i p(s') (s' —s)

where the contours are taken around the branch cuts
on both sheets, we obtain

and

F'(s)+F"(z)= — +— +
SP—3 7l" B;

1 +0 1
9'(s)—F"(z)j= — +

u'(s) p'(so) (so—z) 2si

ImF'(s+')+ ImF" (z+')
ds )

QO
s' —s

F'(z+')+&'(s ') F"(z+') &"-(z-')—-
ds'.

p'(s+')(s' —z)

Eliminating F"(s) between Eqs. (2) and (3) and rearranging the terms, we have

py 1 oo

F'(s) =R (z,s,)
' iImF'(s+')

Iz

p

+ + (IL(s,s+')LF'(z+') —F"(s+')j+W(z z+')LF'(z-') —F"(s-')]i, , (4)
2x$ Bj 3 s
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/(z)
Rp(z, z') =— %1+

/ (z')-
(5)

If so is near threshold and if the antibound-state term
in (4) dominates, then we get

/ (z) =/'(z).
In Eq. (4) we have assumed that there is just one pole
at s=so on the second sheet corresponding to the anti-
bound state. In general, however, we can have a number
of poles and the first term on the right-hand side of (4)
then should be replaced by

F'(~) =
[(4/ '-»)/zo3"'-i/ (z)

This predicts a T=O s-wave scattering length

(10)

PN . 7-*
8 (z,z.) +E (z,z.*)

n s.*—s
(5a)

Again,

po p Po
lirn R (z,so)

$0—z (4/I —Sp)»

—1 j. so
lim F'(z) = =- . (7)

2iP(») 2 4/Iz —so

If we now consider that for s near so, the antibound-
state term in Eq. (4) is the dominant term, ' then we
have, ' equating (6) and (7),

—$3/2[4+2 $ ]I/z/2+2 (g)

Let us examine the antibound-state contribution for
s&4p, '. We have

+0
~ (~,so)

So—S

1 s(= —— 1+ip(s)—
2 4@2—so sp —s

~~

1//2 2@2

Qo
4/ '—»»s [(4/ '—»)/»O'" —IP{~)

So

[using (8)]. (9)
S [(4/I' —So)/»$'" —iP(S)

' lt is known that if an antibound state exists near threshold,
then it can dominate the scattering amplitude and give large
scattering length. The most familiar example is the n-p singlet
state. Here the large scattering length is explained in terms of the
dominance of a pole on the second sheet near threshold /see, for
example, W. R. Frazer and A. K. Hendry, Phys. Rev. 134, B1307
(1964)j. Now, if we believe that the large m-7i- T=0, s-wave
scattering length is also due to the existence of an antibound state
near threshold, then its contribution dominates over that of the
cuts in this region and this leads to Eq. (8}. The procedure is
justified a posterio by the fact that a large scattering length is
then predicted by the theory.' The appearance of the factor $4p' —sp)'" in the residue pp can
be physically understood from the following argument: The
position sp of the antibound state corresponds to a zero of the
S matrix SI=1+2ipFI. However, SI=e"'I is unity at threshold
and therefore no antibound state can occur at s=4p~. Thus,
FII(s) has no pole at the elastic threshold and this is indicated by
the fact that the residue yp of the antibound-state term vanishes
when sp ~ 4p, '.

po in Eq. (4) is the residue of F"(z) at the pole. The
function R (z,so) develops a zero at z=» and

For sz near 4/I', Eq. (11)gives a large scattering length'
and thus the antibound state can be identi6ed with the
ABC particle. If »=(0.25 Bev)', u=2p '.

Let us now examine the antibound-state contribution
for s&0, i.e., when this state is exchanged in the crossed
channel. We find that it becomes complex, the imaginary
part coming from p(») =i[(4//t' Sp)—/Sp] / How. ever, in
Eq. (4) the imaginary part of the left-hand side comes
from the second term on the right-hand side, and so the
imaginary part of the antibound-state term must be
cancelled by the imaginary part coming from the last
term in (4). Thus, the effective contribution of the
antibound state to the elastic amplitude F(s+) for s&0
is —yo/2(» —s), i.e., it is similar to the contribution due
to the exchange of a scalar particle but with a positive
residue. ' The details of the above argument are given
in the Appendix.

Let us next examine the production amplitude G(s)
for ~~~XX in the J=O, T=O state. The analytic
continuation of this amplitude to the second sheet is
given by

G'(z)
GII(z)—

1+2i (z)F'(z)
(12)

The amplitude G(z) has cuts along the real axis for
4p, '&s(~ coming from unitarity cuts in the direct
channel and for —~ &s&0 coming from unitarity cuts
in the crossed channels. "G(z) has an additional left-
hand cut for —~ &s&a coming from the single nucleon
pole terms; here /I=4@'(1 —

y, '/4//I'). The discontinuity
across this latter cut is known in terms of the m-E
coupling constant and the nucleon mass and its contri-
bution to G(z) can be explicitly obtained. We denote
this contribution by B(z). The second sheet function
G"(z) has now an additional branch cut for 0&z&a and
Cauchy integrals of the type which we have considered
before are not suitable for obtaining the antibound-state
contribution. Instead, we first define a new function

4(z) =G(z) —&(z)[1+2ip(z)F(z)j (13)
' Our result for the scattering length, viz. , Eq. (11),is larger by

a factor of 2 than the estimate of Atkinson.
"The contribution due to the exchange of a scalar particle in

the s-channel is (1/16')g, '/(m. '—s), where m, is the mass andg, is the coupling constant of the particle."W. R. Frazer and J. R. Fulco, Phys. Rev. 11?, 1603 (1960).
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Then, the analytic continuation of p(z) through the singularity p"(z) has for 0(z(4t& is the antibound-
branch cut 4p.'&z&16p, ' is state pole. %e now consider the Cauchy integrals

s)"(z)=G"(z)-B(z)[1—2it '(z)F"(z)j

G(z) —B(z)

1+2ip(z) F(z)
(14)

Now, ImG(z) =ImB(z) for 0(z(&t. Therefore, g"(z)
does not have any cut from z=O to z=a. The only

y(z')dz' 1 @(z')dz'
and

2x'z z z 27/"b p z z z

involving both Riemann sheets and then eliminate
g)'(z). A dispersion relation similar to (4) is obtained
with additional terms coming from the extra branch cut
0&z&a. The final result can be written as

G'(z) =@'(z)+B(z)[1+2i (z)F'(z) 3

~o
=R (z,so) +B(z)[1+2ip(z)F'(z)]

1 Imq))(z+')dz' p(z) Im&t)'(z+')dz' 1-+- + +
27r o z 2z o p(z )(z z)

p

' -Imp'(z+')dz'

+ + (~ (z,z+')[4'(z+') —@"(z ')]+&+(z,z+')[«)'(z-') —4 "(z-')j& (15)
27CZ 8 ' QQ

z' —z

g &+)(s t) f &+)z-o(t)
m' —t/4 (r)tz t/4) 2(s,——t)1 so Xo

G'(+) =—— 1+6 (s+) (16)
2 4p' —so so—s 16m.Xp 1

4' 2—sp sp —3 48$2—fand

Xo in (15) is the residue of p"(z) at the pole z=so. We state to the invariant amplitudes A&+)(s,t), B&+)(s,t) of
first want to show that ) p is positive. If for s near the m-E scattering to be
threshold, G(s+) is dominated by the antibound-state
term, then from (15) Sx Sx Xp

so '" Xo
G*(+)=-,' (") ( & ') ( 7)

4p —so s—sp

Again, G(s+) has the same phase as the elastic amplitude
F(s+) for 4ts'(s(16'', so that

16m%p 1

(4m' —s&)) so t— (20a)

(20b)

G'(si)
ImG'(s+) =

F'(s+)
ImF'(s~) .

2(so—s)
(19)

Identifying the production amplitude G(t) with the
helicity amplitude f+&+)~ o(t) of Frazer and Fulco, "we
find the contribution of the m-x J=O, T=O antibound

Since ImF'(s+) is positive, as can be seen, say, from
Eq. (10), therefore, ImG'(s+) is positive. From (17) we
then have Xp positive. For s&0, the antibound-state
term in Eq. (15) has an imaginary part. However, as
in the case of F'(z), this imaginary part has to be
exactly cancelled by the imaginary part coming from
the last term in (15). Thus, the effective contribution
of the antibound state to the amplitude G'(s+) for s(0 is

In (20a) we have neglected the term which would corre-
spond to the exchange of a particle of mass 2m and
therefore, to a very short-range force.

Comparing Eq. (20) above with the corresponding
equation in Ref. 12, we now see why the parameter X

there is negative" and why the parameter mp is nearly
equal to 2p. Thus, the force we have obtained in m-Ã
scattering can be explained as due to the exchange of
the x-m J=0, T=0 antibound state. This force, as we
have found, " gives the repulsive real part of the forward
scattering amplitude for 7r-X scattering. The cl.ose simi-
larity of the forces and the results obtained for x-X
scattering and spinless p-p scattering'4 suggest that,

"M. M. Islam, preceding paper, Phys. Rev. 147, 1144 (1966).'I It is worth pointing out that the contribution to ~-E scatter-
ing due to a T=O scalar particle exchanged in the t channel is
given by A(+)(s,t) =g,g~~, /(m, '—I). Since the exchange of such
a particle is expected to give an attractive force for s-channel
scattering, (g,g~N, ) should be taken as positive.

'4 M. M. Islam, Phys. Rev. 141, 1524 (1966).
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for actual pp scattering also, the repulsive real part of
the forward nuclear amplitude at high energy'~'~ is
due to the exchange of this m-m antibound state.

The author wishes to thank Professor D. Feldman,
Professor Y. S. Jin, Professor T. N. Truong, and Dr.
K. Kang for their interest.

APPENDIX

FrG. 1. Exchange of a system f
in the s channel.

( )

In this Appendix, we shall discuss how the force in
~-m scattering arising from the exchange of the anti-
bound state is calculated. One comment seems worth-
while to make. Phenomenological partial-wave calcu-
lations are done by considering contributions from a few
resonances of de6nite l in the s channel as giving rise
to important forces (or equivalently, left-hand-cut con-
tributions) in the t channel. This ad koc procedure has
produced meaningful results, even though it is well
known that the partial-wave expansion in the s channel
does not converge in the physical region of the t channel.
On this basis, we shall assume that the force in the
t channel due to the exchange of a system of de6nite l in
the s channel is a meaningful concept, provided we have
phenomenological reasons to consider that the exchange
of the system gives a strong e6'ect.

One way of calculating the force in the t channel due
to the exchange of a system (say, a resonance) in the
s channel is to consider Grst the diagram corresponding
to this exchange (Fig. 1). The invariant amplitude for
this process can then be calculated by considering the
partial wave in which this system occurs and next by
separating the contribution corresponding to this dia-
gram from other contributions in that partial wave. We
can now continue this invariant amplitude in s and t
variables till we reach the region s(.0 and t&4p' and
this gives us the contribution of the diagram in the
physical region of the t channel. If partial waves in the
t channel are projected out from this contribution, we
find. that in each 1 a left-hand-cut contribution occurs.
This we interpret as the force arising from the diagram
in Fig. 1.This way of calculating the force is similar to
the calculation of force by Feynman diagrams.

Now, in the present case, we have picked up an
invariant contribution in the s-wave amplitude Ii (s)
and identi6ed it as that due to the antibound state. This
contribution can be associated with a diagram like
Fig. 1 and can be continued to the physical t region. The
continuation gives a real part —pp/2(sp —s) and an
imaginary part oL&p/2

~
p(sp) ~ )Q(s)/(s —sp)). Since the

force or left-hand contribution should be real in the
"L. Kirillova, L. Khristov, V. Nikitin, M. Shafranova,

L. Strunov, V. Sviridov, Z. Korbel, L. Rob, P. Markov Kh.
Techernev, T. Todorov, and A. Zlateva, Phys. Letters 13, 93
(1965)."G. Selletini, G. Cocconi, A. N. Diddens, E. Lillethum,
J.Phal, J.P. Scanlor, J.Walters, A. M. Wetherell, and P. Zanella,
Phys. Letters 14, 164 (1965).' K. J. Foley, R. S. Gilmore, R. S. Jones, S. J. Lindenbaum,
W. A. Love, S. Ozaki, E. H. Killen, R. Yamada, and L. C. L.
Yuan, Phys. Rev. Letters 14, 74 (1965).

1 p(s)

2
( p(sp) (

Sp—s
(A1)

we 6nd that on the physical sheet U(s) has a right-hand
cut from s=4p, ' to Qo and a left-hand cut from s=o
to —00. It is analytic throughout the cut s plane and
its discontinuity across the cuts is given by

Vo C (s+)—LU(s+) —U(s ))=
2i 2ip(so)i (s—sp)

(4ps(s( pp, —pp ($(0) .

(A2)

Thus, on the physical sheet, the antibound state con-
tribution can be written as a dispersion relation similar
to the partial-wave amplitude,

1 " ImU(s') 1 ' lmU(s')
U(s) =— ds'+ — ds' (A3)

7T 4~ S —S S —S

where

+0
tIr(s)+Io(s)],

2)p(sp) (rr

p(s+') ds'
Ir(r)=, Io(s) =

o„(s'—so) (~'—s)

p(s+') tgs'

„(S'—so) (s'—s)

The integrals can he explicitly worked out and the

physical t region, we expect the imaginary part to be
cancelled by some other imaginary part. This indeed
occurs (another equivalent way of saying this is that
only the real part is relevant for calculating the force).
Thus, the effective contribution of the antibound-state
term which gives the force in the physical t region is
—pp/2(sp —s).

Let us now evaluate the force due to the antibound-
state exchange from a more formal point of view. For
this purpose, it is helpful to examine its contribution a
bit more closely. Denoting this contribution by U(s),
so that

+0
U(s) =R (s,sp)

Sp—S
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results are

2 s—4p,' 'I'
I (s)= —(s—4p') —F(1,—,'; —,'; 1 —4p'/s)+i

S s

2
+ (sp —4p')—F(1 -' -' 1—4p'/sp)

Sp

4p' —so) '" 1

(+w I, (AS)
sp ] s—sp

2
I2(s) = (s—4p, ')—F(1,—;—'; 1—4y /s)

2—(&0—4v') —F(»2 ' 5' 1—4w'/&o)
Sp s—sp

(A6)

where the F's are Gauss's hypergeometric functions.
Substitution of (A5) and (A6) in (A4) gives us back
(A1).

The dispersion relation (A3) shows an important
dynamical difI'erence between the antibound state con-
tribution and that due to a narrow resonance. In the
latter case, the amplitude in the physical region is ap-
proximately given by p, (s,—s—io,) ' and in the zero-
width approximation, the imaginary part is given by
~&„8(s—s„).Thus, the imaginary part essentially comes
from a single point in the physical region. For the anti-
bound state, on the other hand, as indicated by the
dispersion relation (A3), both the right-hand and left-
hand cuts are contributing, the imaginary part on these
cuts being the same function.

Let us consider the isospin-zero invariant scattering
amplitude in the s channel Ar 0(s, t,e) Chew and.

Mandelstam" have written down the following 6xed-
energy dispersion relation for this amplitude with the
s wave subtracted out:

co

A '(s, t,u) -= A i o' '(s)+==d&—'A
g '(i', s)

1 1 4k'——ln 1+, (A7)
t'+s+ t—4p' 2k'

where A&r(f, g) =Xrr A p'(t, s) and A, r(t, s) is the ab-
sorptive part in the t channel; X~~. is the crossing matrix

'1/3 1 3/3

1/3 1/2 —5/6

1/3 —1/2 1/6

"G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 {1960}.

Now, the scattering amplitude in the t channel in a
particular isospin state is related to the scattering
amplitudes in the s channel by crossing symmetry":

Ar(t, s,N)=xrr. Ar'(s tl) (A8)

From (A7) and (A8) we 6nd that the contribution of
A 00(s) to a t-channel isospin amplitude is XroA00(s). The
amplitude A 00(s) is the amplitude F'(s) discussed in the
main text. Let us write A00(s)= U(s)+V(s), so that
V(s) denotes the T=O, s-wave contribution with the
antibound-state term subtracted out. The contribution
of A0'(s) to a 1-channel isospin amplitude for t&4p' and
s&0 can now be written as

XroLU(s)+ V(s)j
= Xz'pLReU(s)+ReV(s)+i ImA00(s)]. (A9)

If the total scattering amplitude is in a pure 7=0 state
in the s channel, then its isospin decomposition in the
t channel is"

-', Ar='(t, s,u)+Ar '(t s I)+(5/3)Ar '(t,s,u=).

To each of the above isospin amplitudes in the t channel,
the antibound-state contribution, as seen from Kq.
(A9), is —', ReU(s). Thus, the effective contribution of the
antibound-state term to the total amplitude in the
physical t region is ReU(s) = —yo/2(so —s).

Perhaps, at this stage, we may wonder about one
point regarding the contribution of the antibound state
in the physical t channel. As seen from the dispersion
relation (A3), ReU(s) for s(0 comes not only from the
right-hand cut but also from the left-hand cut. On the
other hand, our experience with resonances indicates
that their contributions in the crossed channel essen-
tially come from their unitarity cuts in the direct
channel. Why does this difference occurs To answer this
question let us examine the Chew-Mandelstam disper-
sion relation (A7). We notice that even when we are in
the physical t channel (s(0), the s-wave contribution
Ao'(s) comes from both right-hand and left-hand cuts
in the s plane. Of course, no extra discontinuity of the
total amplitude occurs, since ImAO (s) in the physical t
region will be cancelled by a corresponding imaginary
part coming from the integral in (A7). The antibound
state term on the physical sheet has the same analytic
property as that of Ao'(s) and constitutes a part of it.
Therefore, in the physical region of the t channel, the
antibound-state contribution would come not only from
its right-hand cut but also from its left-hand cut in the
s plane. This result can, thus, be connected with the
fact that to suppress the high-energy behavior of the
absorptive part, we have used an s-wave subtracted
dispersion relation (Eq. (A7).

'9 See, for example, K. Kang, Phys. Rev. 134, Bj.324 {1964}.


