1144

be quite relevant to consider the “extended” algebra
which contains operators representing the inclusion of
that breakage. Thus it is important to specify com-
mutation relations for the physical operators

A,'= d*x Di(xo,x) .

Suppose the densities D;(x) commute with one an-
other as they could because of our discussion. Then
Vi and D;, i=1, --- 8, generate a noncompact sub-
algebra within the extended algebraic system with
representations perfectly analogous to those of SL(3,C).
This assertion follows from the argument that the D;(x)
form an octet of operators as do the noncompact
operators of SL(3,C) and, furthermore, since they
commute like translations with infinite degrees of free-
dom, they too can construct similar unitary, infinite-
dimensional representations. In particular, one may
form™ unit vectors D;=D,/(D?)?* which in turn can be
used to construct Hermitian, noncompact operators
N,=i[C,D;], where C is the bilinear Casimir operator
of SU(3). Then V,; and N; generate the classical group
SL(3,C). An example of one of the unitary, infinite-
dimensional representations involving a sum over com-
pact SU(3) representations is (8, 27, 64, 125, - -).

Should the quantities D;(x) prove useful for multiplet
building, the origin of possible manifestations in a

RICHARD W. GRIFFITH

147

particle spectrum of a noncompact group could lie in
the brokenness of the compact [SU(3)XSU(3)] sym-
metry. The fact that SU(3) symmetry itself is broken
perhaps partially accounts for the approximate influ-
ence or ‘‘traces” of noncompactness in a physical
particle spectrum. Also, we noted previously that the
bootstrap approach could support the hypothesis of
no subtractions in our discussion of the commuting
property for the D;(x). Thus a connection could be
established between the bootstrap and approximate
noncompactness of a particle spectrum.

Finally we mention that the notions of this paper
can perhaps be applied to particle algebraic systems
(where breakage is important) other than the particular
chiral SU(3) X.SU(3) system of operators and densities
used here. For example, one may view our discussion
as an attempt to identify physical operators—broken
densities—with at least some noncompact operators of
the “gigantic” symmetries such as SL(6,C) (actually,
their mathematically “contracted” or translation ver-
sions as described above).
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A model for high-energy wp scattering is presented. Partial waves with /<[, are taken as completely
imaginary and those with /.>!>1, are given by their Born terms. Values of the partial-wave inelasticity
0,47 are calculated dynamically. A force similar to the exchange of a scalar particle of mass <2y but with
residue of opposite sign is found. This force gives a repulsive real part of the forward scattering amplitude.
The origin of this force is explained as due to the exchange of the x-x J=0, T=0 antibound state or ABC
particle,

I. INTRODUCTION

IN a recent model calculation for high-energy p-p
scattering,! it was found that a simple approxima-
tion of the force yielded (i) physically acceptable values
of 5,=e ™3 dynamically, and (ii) a repulsive real
part of the forward scattering amplitude, in agreement
with experimental results. The approximate force was
similar to the force due to the exchange of a scalar
particle with mass <2, but with a residue which was
opposite in sign. The opposite sign of the residue in-

dicated that this force did not correspond to the ex-
change of a physical scalar particle. One wonders
whether this result is a reflection of the model, or has
some deeper physical significance. With this in view,
we have investigated the high-energy p scattering.
This problem is of further interest, since a negative real
part of the forward scattering amplitude has also
been found for wp scattering.? As in the p-p case, we
approximate the force as that due to the exchange of a
scalar system whose mass and residue are taken as

*K. J. Foley, R. S. Gilmore, R. S. Jones, S. J. Lindenbaum,

W. A. Love, S. Ozaki, E. H. Willen, R. Yamada, and L. C. L.
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parameters of the theory. Further, to make the model
more realistic, the spin of the nucleon is taken into
account and a force corresponding to the exchange of the
p meson is included.

A formulation of the model for the equal-mass spin-
less case hasbeen givenin I. Here, in Sec. II the formula-
tion for NV scattering is given and in Sec. III the results
of the calculation are presented. In Sec. IV the physical
interpretation of the resultsis discussed.

II. FORMULATION OF THE MODEL
FOR =N SCATTERING

In the model we are discussing, the partial-wave
inelasticity 7,47 is calculated from the force.® The
physical partial-wave amplitude

fusT= (ruaTermeansT—1), 2ik

is related to an amplitude F,.7, which obeys elastic
unitarity throughout the physical region, by the
equation*

1424k fi(s) = €201 @[ 14 2ikF1(s) ], 1)
R+ /‘” Imé;(s')ds’

(s —s)

where

01(5)=

)

™

k=c.m. momentum, and s;=inelastic threshold. The
amplitude F,(s) can be written as

F1(5) = (¢3n)—1)/ 2k, )
where a;(s) is given by a;(s) = 8:(s)—6:(s) and is real
for s> (m~+u)2. Writing 6;(s)=Ai(s)+% Imé;(s), one
can express 6;(s) as an integral over A;(s)?, namely,
kA (s—s)t2 e Ay(s")ds’
0:(s)= ; /

) o R —s)M2 (s —5) '

©)

As discussed in I, we impose the following asymptotic
behavior:

BL(S)

——I;—=()([s[") for [s| =« (e>0). 3)

Then,
0u(s)

= —l—3—¢
k2l+l(S—Si)”2 O(IS] )

for |s| —w. (6)

Using the identity relation

1 -1 [5'— (m+p)2]"

§'—s —,,,0 [s— (m—+p)? ]+

[5'— (m+u)?}
"= (mt ) i(s'—s)

3M. M. Islam and K. Kang, Phys. Rev. 139, B973 (1965).

4 For simplicity, we drop the = signs and the superscript T.
I+ stands for /, J=I+}, and T stands for the isotopic spin. We use
¢=#%=1, m=nucleon mass, u=pion mass.

)
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we have from (4),%
k2l+1 _.‘,112 o A / ’r__ + 21dr
5y O / WL bW Fas” - o)
wi[s— (m~+u)? ] BAHI(s — s )12(s"—5)

Now Ai(s)=Redi(s)—au(s), and if we take Redi(s)=0
for s>s;, then from (8) we obtain

EEH(s—s)lU2 1
Imé;(s)=~—————P—
[s—(m+p)?] =
= ay(s')[s'— (m+p)2]'ds’
J)

o RF(s— s U5 —s)

Asin I, for e;(s’) in Eq. (9) we make the approximation®
al(s) =k fiB(s),

where fi2(s) is the Born approximation of the amplitude
fi(s). Since the Born amplitudes are completely deter-
mined by the input force, so Egs. (9) and (10) provide a
dynamical method for calculating n,=e=2mé:,

To obtain the Born terms, we consider that the in-
variant functions 4 & (s,f) and B®)(s,t) of =V scattering

(10)

42 Note added in proof. Instead of Eq. (8), a simpler equation can
be derived from (4) using the asymptotic behavior (6). For this
purpose, let us write

1 _ & An(s) t Bm(s) , 1
FIT=5) ey —sn s (7= B =)
where s1=(m+p)?, s;=(m—pu)?. Examination of the coefficients

Amn(s) and Bn(s) shows that

|4n(s)], IBm<s>|zo(|s—‘|,) for s—>o.

This, together with Eq. (6), then leads to

_k(s—s12 = A(s")ds’
0i(s)= T /.‘ B (s —s5:)12(s"—s)’

which is the same as in the equal-mass case.

6 It is interesting to look at the physical meaning of the approxi-
mation (10). For this purpose, let us recall the steps which lead
to this result:

(1) On the basis of potential scattering F;(s) is considered, for
s large, to approach its Born term &;2(s), which is real. Writing

Fi(s) = (e¥1—1) /2ik
=ay/k+iontfk: - -, (a)

we find that o; should be small for large s, so that the higher terms
in (a) can be neglected and F:(s) can approach a real quantity.

This leads to
ai/k~FB. (b)
(2) The force for the amplitude F(s) is approximated by that

of the physical amplitude fi(s), i.e., the left-hand cut contribution
is calculated by ignoring the inelastic scattering. This gives

FiB= fiB(s). ©
From (b) and (c), we then arrive at the approximation (10),
namely,

ai(s) =k fiB(s). @

The physical meaning of (d) is now clear; it gives the asymptotic
phase shift which we would obtain if we had the same input force
as that of the physical amplitude and no inelastic scattering.
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F1c. 1. Calculated angular distribution for pion incident mo-
mentum 8 BeV/c. The experimental points are from Ref. 7
(CERN) and from Ref. 8 (Brookhaven).

are given by

AD(s,)=N/(me*—1), (11a)
B®)(5,6)=0; (11b)
mEm, S—u
4O =228 , (12a)
2m m,—t
2(getgm)gs
B“’(s,t)=——g——g—-g:. (12b)
my2—1

Equations (11) are similar to the contribution due to
the exchange of a scalar meson of mass m, and isospin
zero. Equations (12) correspond to the exchange of the
p meson. The NNp and the 7rp interactions have been
taken as

Hyy,= ige\l-")’u"‘p@“"' (gM/ 2m)\[70' w007,

. —
Hﬂrp =28np€rs tPr“"rcau"rl .

(13)
The Born amplitudes can now be calculated using the

standard formula for fi.7.
The =V elastic differential cross section is given by

door/dQ=| f(6)|*+]g(6)|*, (14)

where

1(6)= z= [A+1) futLfiJPilcosh),

¢(0)=i z= [fis— fi1P 2 (cosh);

PiY(cosf)=sinb(dP(cosh)/d cosb).
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We assume that the partial waves with I</, are com-
pletely imaginary and those with />, are given by the
Born amplitudes and therefore, are real. Further, all
partial waves with />, are neglected, where /. is a
large number. In this approximation, we have

f(0)=é z [U41) (1= 1)+ (1= ) 1P4(cosd)
+ 5 [0+ fuB -+ B]Pi(cost), (15)
=lg+1

1 &
g(0)=— 3 [ni—mi_]P:i*(cosb)
2k 1=1

e
+i X

l=lg+1

LfiB—fi-B1Pi*(cosh). (16)

Equation (15) shows that there will be a real part of
the forward scattering amplitude coming from the Born
terms.

III. RESULTS OF CALCULATION

There are five main parameters in our calculation,
namely, s;, A, Mo, ge, and /,. As for the other parameters,
m, and g., are obtained from the experimental mass
(750 MeV) and width (100 MeV) of the p meson; to
obtain g, we have kept the ratio g./g. fixed at a value
—3.7, as indicated by the form-factor data.® Regarding
the parameter /., the calculated results are insensitive
to it so long it is sufficiently large. Our method of find-
ing the unknown parameters has been to assume a set
of values for them and then to calculate values of
m+ T, the differential cross sections and the total cross
sections. For an acceptable set of values we require that
the calculated 7,’s should satisfy the unitarity require-
ment 1>7;>0 and the calculated total cross sections
should be in agreement with experimental values. A
set of parameters which we have found satisfying
the above criteria for pion incident momentum 8 BeV/¢
is 5,=12.0 (BeV)?, \/4r=—5.615 BeV, mo=0.25 BeV,
go=—0.8633, 1,=25, and l,=60. For this set the
calculated differential cross sections dg/d¢ are shown
in Fig. 1 and the calculated values of Imé,..7 are given
in Fig. 2. Some experimental points”:8 are shown in Fig.
1 for purpose of comparison. The theoretical angular
distribution shows a diffraction peak, a sharp fall with

¢ For a discussion on how the relative signs and magnitudes of
gmy e, and gr, are determined, see M. M. Islam and R. Pinon,
(unpublished).

7 D. Harting, P. Blackall, B. Elsner, A. C. Helmholz, W. C.
Middelkoop, B. Powell, B. Zacharov, P. Zanella, P. Dalpiaz, M. N.
Focacci,S. Focardi, G. Giacometti, L. Monari, J. A. Bearey, R. A,
Donald, P. Mason, L. W. Jones, and D. O. Caldwell, Nuovo
Cimento 38, 60 (1965).

8 J. Orear, R. Rubinstein, D. B. Scarl, D. H. White, A. D.
Krisch, W. R. Frisken, A. L. Read, and H. Ruderman, Phys. Rev.
Letters 15, 309 (1965).
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FiG. 2. Im§;,. T as a function of /.
The calculated values at integral / are
joined by smooth lines.
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increasing momentum transfer and a tendency to level
off at large angles. For large —? the calculated cross
sections are 2 orders of magnitude larger than the
cxperimental values. This possibly indicates that the
approximate force we have considered does not ade-
quately represent the short-range interactions. Our
calculated total cross sections for #+p and #~p scattering
are 26.4 mb and 27.1 mb, respectively. These values are
in reasonable agreement with the experimental values
25.1 mb and 27.5 mb.? We find a repulsive real part of
the forward scattering amplitude for #*p as well as
for #~p scattering. The calculated ratio of the real part
to the imaginary part of the forward scattering ampli-
tude is —0.168 for n*p and —0.163 for =—p. These
values are consistent with the experimental results?
and forward dispersion-relation calculations.0:!
Further, the p exchange contribution to the real part
of f(6=0) is found to be negligible. We have also cal-
culated total elastic and charge-exchange cross sections
using only the partial waves which are absorbed, i.e.,
those with I<I,. The results are ¢, *?=2.67 mb,
0e1™ ?=2.60 mb, and o¢....=0.027 mb. These values are
smaller by about a factor of 2 than the corresponding
experimental elastic’ and charge-exchange!? cross
sections.

® W. Galbraith, E. W. Jenkins, T. F. Kycia, B. A. Leontic, R. H.
l(’hillggs, A. L. Read, and R. Rubinstein, Phys. Rev. 138, B913
1965).
( 10618. Hohler, G. Ebel, and J. Giesecke, Z. Physik 180, 430
1964).
( ;‘ﬁgf) S. Barashenkov and V. I. Dedyu, Nucl. Phys. 64, 636
1 .
12T, Mannelli, A. Bigi, R. Carrara, M. Wahlig, and L. Sodick-
son, Phys. Rev. Letters 14, 408 (1965).

IV. PHYSICAL INTERPRETATION

From the above results, we find that, as in p-p
scattering,! a force similar to the exchange of a scalar
particle, but with opposite sign of the residue, gives
a repulsive real part of the forward scattering ampli-
tude and also physically acceptable values of 7:57. In
the following paper,'* we shall show that a =-w J=0,
T=0 “antibound state” gives a contribution in the
crossed channel similar to that due to the exchange of
a scalar particle of mass <2u, but with residue of
opposite sign. Thus, our explanation of the negative
real part of the forward scattering amplitude for
m-p and p-p scattering is that it is due to the exchange
of this antibound state, or equivalently, the ABC
particle.!* Physically, we may consider that virtual
pions in the cloud of an elementary particle such as
nucleon or pion tend to stick together in pairs forming
the antibound state. The exchange of this state between
two particles produces repulsion. It is worth pointing
out that the quantum numbers of this antibound state
will be consistent with theorems regarding the exchange
of quantum numbers for forward elastic scattering
at high energy.15-16
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