
NONET MESON COUPLINGS TO BARYONS

ay = 0.39&0.24,
F= 2.0+0.6,
8=2.3+1.1.

(13)

Consequently the ansatz condition 8=2F—1 is to be
compared with the 6tted values b= 2.3+1.1 and
2F—1=3.0~1.2. Hence the total-cross-section data
indicate approximate validity of the ansatz for the
tensor nonet couplings. If we constrain 8=2F—1 for
the fit (which decouples S from the nucleons), then we

obtalQ
O.p =0.57&0.22,
F=2.2a1.0, (14)

5= 2F—1=3.4&2.0.

the Z~g given by Galbraith et el.' Our solution yields
X'=22 indicating an adequate 6t to the data. The
6tted parameters aq, F, and 8 were determined to be

However, since this value of n~ is somewhat larger than
the value as=0.4 determined' from the s.—p~r)rs
differential-cross-section data, it appears that S is ap-
proximately but perhaps not entirely decoupled from
XE."More precise measurements on the Z~g will permit
considerable refinement of this analysis (such as re-
moval of the constraint a~ ——a~.——rrs).
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'o Kith 5 =2E—1 we have not been able to find a X~ rr1i»mum

for ug&a8-0. 1. However, this does not exclude the possible
existence of such solutions with an acceptable x'. The decoupling
of the physical particle s depends somewhat on the precise value
of the mixing angle (Ref. 7). An independent test of the sS'S
decoupling hypothesis would be experimental observation of
suppression of K p-+As relative to E p-+h.f at backward
angles.
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Separable potential forms which lead to on-energy-shell partial-wave transition amplitudes for two-body
scattering which have analyticity properties very similar to those proved in local potential theory are studied.
An explicitly energy-dependent potential form is shown numerically to give a better approximation to the
amplitude from a local Yukawa potential than the best previous form, for l&0 in the scattering region.
Some remarks are made about the applicability of these potential forms to multiparticle scattering calcula-
tions.

I. INTRODUCTION

ECENT papers on multiparticle scattering' have
stressed the need for a good separable approxima-

tion to the two-particle transition amplitude. In par-
ticular, the introduction of a separable approximation
for the oG-energy-shell two-body amplitude in the
integral equations for the three-body transition ampli-
tude reduces the dimensionality of these integral equa-
tions and makes it possible to solve them on a computer,

Not long ago, Noyes' and Kowakski' gave a separable
approximation to the oft-shell two-body amplitude de-

~Talus work was performed under the auspices of the U. S.
Atomic Energy Commission.' C. Lovelace, Phys. Rev. 135, B1225 (1964);B.S. Bhakar and
A. ¹ Mitra, Phys. Rev. Letters 14, 143 (1965);R. Aaron, R. D.
Amado and Y. Y. Yam, ibid 13, 3N (1964);. M. Bander, Phys.
Rev. 33, B322 (1963); J. L. Basdevant, ibid 138, B892.
(1963); J. H. Hetherington and L. H. Schick, ibid. 139, B1164
(1965).

~ H. Pierre Noyes, Phys. Rev. Letters 15, 538 (1965).
I K. L. Kowalski, Phys. Rev. Letters 15, 798 (1965).

rived from local potential theory. However, Sasdevant4
points out that their approximation has cuts for k'&0
(we take k=2rrs=1, so that k' is the energy variable)
that are not present in the full off-energy-shell two-
particle transition amplitude de6ned by the I ippmann-
Schwinger equation. He further points out that these
cuts will be in regions of k' over which one must inte-
grate in the three-body problem and that they can lead
to complex eigenvalues in the three-body bound-state
region. Finally, numerical solutions of the equations of
Noyes and Kowalski for a Yukawa potential have
shown that the term neglected in their approximation
to t~(p, p', k) is comparable in size to the term retained
when p and p' differ from k by an amount comparable
to k.

In the light of these developments, the spirit of the
present note is as follows:

4I. L. Basdevant (Centre de Recherches Nucldaires, Stras-
bourg), private communication to H. Pierre Noyes.
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(a) A good separable approximation to the off-shell

two-body transition amplitude is still needed.

(b) Since the on-shell amplitudes derived from local
potential theory are known to be of some use in de-
scribing the interaction of subatomic particles, we shall
demand that our approximation to the oB-energy-shell
two-body amplitude have the same analyticity prop-
erties on the energy shell as those derived from local
potential theory. Ke will see that our separable po-
tentials will not have the higher left-hand cuts arising
from higher Born approximations to the local potential
amplitude. However, we will say that amplitudes
di6ering only in these higher left-hand cuts have the
"same" analyticity properties.

(c) Although the off-energy-shell properties of two-

body amplitudes required to give a useful description
of physical phenomena are not nearly as well known as
the corresponding on-shell properties, we shall use the
analyticity properties of the off-shell two-body ampli-
tudes known from local potential theory' as a guide,
at least to avoid introducing troublesome singularities.

II. SEPARABLE POTENTIALS

It has long been known that one way of obtaining a
separable two-particle transition amplitude in each
partial wave is to use a single separable potential in
each partial wave, and that the choice of a separable
potential determines the off-energy-shell behavior of
the two-particle amplitude, which is of fundamental
importance in the calculation of multiparticle ampli-
tudes. Mitra' has given criteria which a separable
potential must satisfy in order that the on-energy-shell
partial-wave transition amplitude will have the ana-
lyticity structure which it is known to possess in local
potential theory. He points out that almost all of the
separable potentials commonly used do not lead to the
correct analyticity structure for the on-shell two-body
amplitude. However, the commonly used separable
potentials are at least capable of reproducing the cor-

rect strength and range of the interaction in each partial
wave, and since the present multiparticle scattering
calculations are still too crude to be sensitive to any
oner details of the interactions, we may understand the
relative success of recent calculations.

Mitra proposes a separable potential of the form

V)(p,p') =hagi(p)g&(p'),
where

—
IGI 1 2 )—1/2

-Q 1+—
I

4w p' 2P'I

G is the coupling constant, p is the inverse range, and )
is +1 if G is positive, —i if G is negative. He shows that
this leads to the proper analytic structure for the
on-shell two-body amplitude and is "equivalent" to a
local Yukawa potential,

V()=G(e ""/ )

in the loose sense that they both have the same Born
approximation in a given partial wave, and lead to
amplitudes with the same analytic structure.

We feel that this "equivalence" is interesting because
a local Yukawa potential is one of the very few simple
potentials known to have any value in describing the
interaction of elementary particles.

Ke would like to extend the work of Mitra and

propose separable potentials of the form

l'i(p, p') =~a(p)g~(p')
where

G. 1 —S/2Pi
g~(p)= 2 M~ 1+

' 4x p' 2p'

G;, p, ;, and ) are analogous to the similar quantities
appearing in the previous potential, and the summation
must have defjInite sign for p&0. The advantage of
this form of potential is that, subject to the restriction
mentioned above, we obtain a transition amplitude

G 1 & ~-~t2- G.
t(p, p', ~)=l 2 —Q 1+

I 2 —,Q 1+' 4x' p' 2P') ' kr' p" 2p"l

q' G; 1 p, ,'
1+4m% dg Q —Qi 1+—

q2 P2 Z~ s ~2 q2 2g

which has the same Born approximation and the same
analyticity structure as that arising from a super-
position of Yukawa potentials in local potential theory,
even though we have used only one separable term. The
requirement that the sununation entering into g~(p) be
of deanite sign is necessary to prevent the appearance

' C. Lovejace, Phys. Rev. 135, B1225 (1964).' A. N. Mitra, Phys. Rev. 123, 1892 (1961).A. N. Mitra and
J. D. Anand, i''. 130, 2117 (1963).

of spurious cuts in the numerator function of t~(p, p'; t't).

A separable potential cannot change sign in momentum
space without introducing spurious cuts into the ampli-
tude, which is a defect common to this and all earlier
separable potential approaches. Finally, this potential
is Hermitian and leads to an off-energy-shell amplitude
with the same analytic structure as that obtained from
the I.ippmann-Schwinger equation in local potential
theory. The same trick could be used with other po-
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tential shapes, but then our analyticity arguments

might not hold.

III. SEPARABLE POTENTIALS WITH
EXPLICIT ENERGY DEPENDENCE

0.035

I.O
nqc = I.O

=0

Let us now consider the introduction of an explicit
energy dependence into our separable potentials. This
is done in an attempt to obtain a form for t~(k) in the
scattering region similar to that obtained in local
potential theory by Noyes and Kowalski and displayed
in Sec. IV, Eq. (3).

%e choose a Hermitian energy-dependent separable
potential of the form

where
V &(p,p'; k) =Kg((p, k)g((p', k), —0.035 ~—

0.0 I 0.0

G; I p'+k'+pP)
g~(p, k) = E —Qi

' Mpk 2pk

for k'&0 (scattering region),

G; 1 .2 —1/2

g(p, k)= 2 —Q I+
' 4n p' 2p'

for k'&0 (bound-state region). G;, p, , and X have the
same meaning as before,

G; I p'+k'+g,

)
——Qi

' 4'' pk 2pk

must be of definite sign for p)0 and k2&0, and

must be of definite sign for p&0. The k independent
form was chosen in the bound-state region to avoid the
introduction of cuts similar to those which appear in
the Noyes and Kowalski approximation and to insure
Hermiticity. That is, if the form used for k')0 were
used for k2&0, we would encounter two problems, cuts
and non-Hermiticity. The form chosen in the sca, ttering
region, the square root of a superposition of Vukawa
potentials in momentum space, was picked because
numerical analysis has shown that it represents the
on-shell sca, ttering amplitude from a superposition of
local Yukawa potentials substantially better than the
generalization of Mitra's form does for l&0 and in the
sca, ttering region. Note that when p=k (on the energy
shell) this new separable form reduces to the earlier
form

G. 1'l. ps',2
—I /2

gi(k, kl=—g((k)= Q ——Qi 1+—
' 4m2 k' 2k'

for;cll values of k2. Considering the on-shell properties
of this potential further, we see that it satisfies Mitra s
criteria and thereby leads to an on-shell two-particle

I'rG. 1. $~(k) versus k for l =0. The upper curves are the real
parts of If~(k) from the various approaches; the lower curves are
the imaginary parts. The curves without symbols are the curves
of tf(k) from a local Yukawa potential; the marked curves repre-
sent t~(k) obtained from the two separable potentials, which give
identical results in this case. En all 6gures, k has units 1/E. where R
is the range of the potential.

amplitude which has the same analyticity properties
as those proved for a superposition of Yukawa potentials
in local potential theory and that it is "equivalent" to
a local Yukawa potential in the same sense as the earlier
form.

%hen we turn to the more general properties of the
potential and the resulting amplitude (i.e., peak) we
see that, although the introduction of an explicit energy
dependence in the potential does not impair its useful-
ness for multiparticle scattering calculations, we can
no longer speak of analyticity properties of the resulting
anlplitude in the whole k' plane; instead, we may speak
only of the analyticity properties in the half-planes
k')0 (scattering region) and k'&0 (bound-state re-
gion). Of course, within these regions, separately, the
amplitude t&(p,p'; k) from our energy-dependent sepa-
rable potential has the same analytic structure as the
amplitudes from both the earlier energy-independent
separable potential and the local potential theory
approach based on Yukawa potentials and the Lipp-
mann-Schwinger equation. To sum up, this potential
leads to an oB-shell scattering amplitude with a dis-
continuity between the bound-state and scattering
regions, while the on-shell scattering amplitude that
one obtains from this potential has no such discon-
tinuities and has analyticity properties which are the
same as those obtained in local potential theory from a
superposition of Yukawa potentials.

%'e shall want to see some benefits to this energy-
dependent separable potential before we accept the
accompanying loss of analyticity properties. It will
develop that the energy-dependent separable form repre-
sents the on-sheH sc I.ttering amplitude obtained from
a local Yukawa potential for l&0 in the scattering
region (k')0) substantially better than the corre-
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Fxo. 2. t~(k} versus k for /=1. The upper curves are the real
parts of t~(k); the lower curves are the imaginary parts. The un-
marked curves represent t~{k) from a local Yukawa potential, the
curves marked with x represent tf(k) from Mitra's separable po-
tential, and the curves between them represent t~(k) from our
separable potential.

Fro. 3. tg(k) versus k for l =2. The upper curves are the real
parts of t~(k); the lower curves are the imaginary parts. The
unmarked curves represent tg{k) from a local Yukawa potential,
the curves marked with s represent tg(k) from Mitra's separable
potential, and the curves between them represent tg(k) from our
separable potential.

G (p'+k'+ p')"~"=~ kQ'l

sponding energy-independent form. This will be seen in with k'&0, so
Kqs. (1) and (2) below and in Figs. 1, 2, and 3.

IV. RESULTS

%e have studied numerically the real and imaginary
parts of the on-shell two-body transition amplitude
«(k) in the scattering region (k')0) for amplitudes
obtained from

(a) solution of the Lippmann-Schwinger equation
with a local Yukawa potential, V(r)=Ge &'/r with
G=p= 1p

(b) Mitra's potential,

Vg(p, p') =&gi(p)gr(p'),
with

G ( s -1/2

and G=p, =X=1, and
(c) the potential proposed in this note,

Vg(p, p'; k) =hagi(p, k)g((p', k),

and 6=p, =h= i.
Ke use a system of units in which 6=2m= 1 and the

range R of the potential (R= 1/p) is taken as the unit
of length, so that the unit of energy is k'/2''. The
Lippmann-Schwinger equation for the transition ampli-
tude is

t (p,p', k) = V (p,p')

—4 « . V~(p, q)«(q, p', k).
p q' k' is- —

(a) For a Yukawa potential, V(r) =G(e I'"/r) and

(P'+q'+I '
V~(p q)=

4ssPq k 2Pq

the equation was solved numerically, by matrix in-
version techniques, for various l and k values.

(b) For Mitra's separable potential, the solution can
be given explicitly

G ~s )-II2( G I -111

«(P,P', k)= Q, 1+
l

~1+4 «- Q, l

1+"
l Q,

l
1+.

"
-4s p' 2P'&- 0 q k ie 4s q' —k —2q'] 4ssp" E 2p"I

G
«(k)= Qi 1+

4x'k' 2P]
+4 «Q, l

1+
q

0 q' k' ie 4ss—qs —k 2qs)

(c) For the potential proposed in this note, one finds, analogously,

G (P'+k'+y'y
t

q'-—G (q'+k'+~'q- —'- G (p"+k'+&'~-'I'
«(p,p' k) = Q~l l

1+4 dq Q~l I Q~lmpk E 2pk q' k' ie 4s qk —( —2qk J 4s p'k k 2p'k )
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q' G q'+k'+p'
1+br dq Q(

g —P—i 4rqk 2qk )
for k'&0.

Note that even though the two separable potentials and their Born terms are equal when p= p'=k (on the
energy shell), the expressions (1) and (2) for the full on-shell amplitude are different because of the explicit energy
dependence of our potential. In spite of this, expressions (1) and (2) seem to give nearly identical results (to within

1%) for /=0, although the difference is rather pronounced for l) 0 and G)0.5.
Noyes' and Kowalski' have derived for the on-shell transition amplitude from local potential theory the

expression

t)(k) = V((k,k) 1+4' dq V&(k,q)f&(q,k)
p

—P—i&

where f~(q,k) satisfies a nonsingular integral equation, and ft(k, k) = 1.When Vq(k, q) is a Yukawa potential, this
becomes

G
tt(k)= Q i

1+—--
4x'k' 5 2k

q' G (q'+k'+ p'
Q,

~
y, (q,k) .

a q
—k zc 4w kq —E 2qk

(3)

Thus, the numerator and the imaginary part of the
denominator of our expression (2) and this expression
are identical, and they differ only in the factor f&(q,k)
in the principal value integral. Finally, f~(q,k) is close
to unity in the vicinity of the singularity at g=k. One
may also note that the transition amplitudes obtained
from the expression above and the expressions (1) and
(2) approach each other at high k as the contribution
from the integral term in the denominator becomes
less important.

We have investigated numerically the behavior of
t~(k), obtained from the three approaches mentioned
above, as a function of k. We have held p fixed (a:=1.0),
as 8=1/p has been taken as the unit of length, and
varied G, the coupling constant. The results for G=1.0
and l =0, 1, 2 are shown in Figs. 1, 2, and 3. The agree-
ment of the separable potentials with the Vukawa
potential is poorest for low k in the s wave, where both
separable potentials give the same result. When 6=1.0
and k=0, we find that t~(k) from the separable poten-
tials is 73%%uo of tt(k) obtained from a Yukawa potential.

We have investigated coupling constants in the
range from 6=0.01 to G=15.0 and found that the re-
sults have the same qualitative behavior as those for
G=1.0. For the real part of tt(k), we find that:

(a) The agreement of the separable potentials with
the Yukawa potential is poorest at 4 =0 in the s wave.

(b) Both separable potentials lead to the same re-
sults for l =0.

(c) For /)0, the agreement of the separable poten-
tials with the Vukawa potential is poorest at the peak
in the curve of tg(k) versus k.

(d) For /) 0, in alt cases the curves from the poten-
tial proposed in this note lie higher (and thus closer to
the curve from the local Yukawa potential) than the
curves from Mitra's potential, even though the differ-
ence may be negligible for small G.

(e) In mo case did the curves from the separable
potentials lie higher than those from the local Yukawa
potential. In other words, the real part of the on-shell
scattering amplitude from a local Yukawa potential is
always greater than the real part of the on-shell ampli-
tude obtained from either of the separable potentials
considered.

(f) The agreement of the separable forms with the
Yukawa potential (and with each other for t&0) rapidly
improves as G goes below 1.0 and deteriorates as G
becomes greater than 1.0.

Let us look at the results in more detail. For G= 0.01,
we get 97%%uo of the Yukawa amplitude from the sepa-
rable potentials at k =0 in the s wave. In addition, both
separable potentials give essentially the same result in
all partial waves and these results never dier from the
results for a Yukawa potential by more than 3%. For
G=0.2, we obtain 91% of the Yukawa amplitude from
the separable potentials at 4=0 in the s wave; the
amplitudes from the two separable potentials never
differ from the Yukawa amplitude by more than 10%%uo;

and (for l)0) they never differ from each other by
more than 5%.

Therefore, for G less than about 0.5 one can use the
Mitra separable form as a good approximation to a
Yukawa potential in all partial waves. This is because
both separable potentials lead to amplitudes which are
approximately equal to the amplitude from a Yukawa
potential, and the Mitra separable potential leads to an
amplitude with the correct analyticity properties for
the full oB-shell scattering amplitude. For G greater
than about 0.5 and t)0, the curves of t~(k) versus k
from the potential proposed in this note agree with the
curves from a Yukawa potential substantially better
than the curves from Mitra's potential (see Figs. 2
and 3).As a further example, consider G= 5.0, where we
obtain 49%%uo of the Yukawa amplitude from the sepa-



1122 THOMAS R. MON GAN

rable potentials at k=0 in the s wave. For l=1, at the
peak of the curves of t~(k) versus k, where the agreement
with the amplitude from a Yukawa potential is poorest,
the amplitude from the potential in this note is 79%
of the amplitude from a Yukawa potential, while the
amplitude from Mitra's potential is only 47.5% of the
Yukawa amplitude. For l =2, at the peak of the curves,
the numbers are 89% for our potential and 56% for
Mitra's potential. For G greater than about 5.0 both
separable potentials give a very poor representation of
the on-shell scattering amplitude from a local Yukawa
potential. For example, for G=15.0, we obtain only
35% of the Yukawa amplitude from the separable
potentials at 0=0 in the s wave, Thus, even though
our potential enjoys an ever-widening advantage over
Mitra's potential for l&0 and G greater than about 5.0,
they are both so poor that the advantage seems
unimportant.

The same kinds of remarks could be made about the
imaginary part of the on-shell amplitude t&(k) which
shows the same general behavior as the real part.
However, for G less than about 5.0, the imaginary
parts are small and the imaginary parts of the ampli-
tudes from both separable potentials are quite similar.

V. SIGN CHANGE AND ADDITIONAL
BOUND STATES

All separable potential approaches which have been
studied, including those in this note, su6er from two
major defects:

(a) The potentials are not allowed to change sign in
momentum space.

(b) The potentials can support only one bound state.
We have noted that an explicit energy dependence in a
separable potential does not impair its (practical) use-
fulness for multiparticle scattering calculations. Thus
one might take a potential of the form

1'~(p,p'; k) =f(k')e(p, k)g i(p', k)

and attempt to circumvent the limitations mentioned
above by proper choice of the function f(k2) Lwe
choose f(k') to avoid making the potential non-
Hermitian if gE(p, k)gE(p, k) is already Hermitianj.
However, this will not work because any singularities
in f(k') will appear in both the numerator and de-
nominator functions of the resulting two-body scatter-
ing amplitude. However, the numerator and denomina-
tor functions are supposed to have no singularities in
common. Thus f(k') must be analytic for all k', and
since it must be bounded to keep the potential finite,
f(k') is a constant by Liouville's theorem of analysis.

VI. CONCLUSION

We have shown that one may obtain a two-particle
partial-wave scattering amplitude from a single sepa-
rable potential which has the same on-shell Born ap-

proximation and the same analyticity properties as the
amplitude obtained in local potential theory from a
superposition of Yukawa potentials. This is subject to
two restrictions;

(1) The separable potential can support, s,t most,
one bound state.

(2)

the on-shell Born approximation of the superposition
of Yukawa potentials, must be of definite sign for k&0.

Ke may obtain an on-shell amplitude which repre-
sents the on-shell amplitude obtained from a local
Yukawa potential substantially better (for /)0 and
G)0.5) than the method mentioned above, at the cost
of introducing a discontinuity between the bound-state
(k'(0) and scattering (k')0) regions in the off-shell
amplitude (the on-shell amplitude is not affected). That
is, we obtain a two-particle partial-wave scattering
amplitude from a single separable potential which has
the same on-shell Born approximation, the same on-
shell analyticity properties and, in the regions k'&0 and
k'(0 separately, the same analyticity properties as the
full oG-shell scattering amplitude obtained from local
potential theory with a superposition of Yukawa po-
tentials. This is subject to one further restriction in
addition to those mentioned above. That is,

G, 1 p'+ k'+ p,2

1'i(p, k) =2 —
Q~

' 4x' pk 2pk

the superposition of Yukawa potentials in momentum
space, must be of definite sign for p)0 and k2)0.

Finally, for l=0 and G less than about 5.0, both of
the separable potential forms in this note lead to the
same result, which represents the on-shell scattering
amplitude from a local Yukawa potential quite well.
In addition, Mitra's form has the advantage that it
leads to the correct analyticity properties for the full
o6-shell amplitude. For l&0 and G less than about 0.5
both separable potential forms lead to amplitudes which
represent a Yukawa potential quite well, but the
superior analyticity properties of Mitra's form lead us
to suggest its use in this case. For l&0 and G less than
about 5.0 and greater than about 0.5, our separable
potential leads to an amplitude which represents the
on-shell scattering amplitude from a Yukawa potential
(in the scattering region k') 0) substantially better than
the corresponding amplitude using Mitra's form. The
improvement is such that we might suggest its use
despite the attendant introduction of a discontinuity
in the full off-shell amplitude.

For G greater than about 5.0, both of the separable
potential forms in this note lead to poor representations
of the scattering amplitude from a local Yukawa
potential.


