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The relativistic Faddeev equations derived from the Bethe-Salpeter equation are considered with the
alternative rules of Blankenbecler and Sugar which put the intermediate particles on the mass shell. The
above rules give rise to three alternative sets of equations. Another set of equations is obtained by intro-
ducing relativistic kinematics and phase-space factors in the (nonrelativistic) Faddeev equations. Each
alternative set of equations is applied to the problem of the possible existence of the pion as a bound state of
three pions, considered previously. Although qualitative results are similar, quantitative results from the
various alternatives differ considerably. Because of the phase-space factors, no cutoff is needed in these
calculations. It is also found that the three pions can form a bound state at the pion mass only if the scatter-
ing length in the two-body amplitude is negative.

I. INTRODUCTION

T is by now mell known that a straightforward solu-
- s tion of the Lippmann-Schwinger equation for a
system of three particles is in general not possible. '*' The
main difIiculty comes from the possibility that two of
the particles can interact while at the same time the
third one remains free. This, among other things, gives
rise to the so-called dangerous 5 function in the kernel.
The difFiculties were removed by Faddeev' and in a
slightly different way by Weinberg. ' However, the
resulting equations are still too complicated for prac-
tical calculations —even after the partial-wave de-
composition. A possible simplification occurs in some
cases where the two-body amplitudes which enter in the
equations can be approximated by a separable form.
This may be expected to be the case when these two-
body amplitudes are determined by resonances or
bound states. ' In this separable approximation one then
obtains a coupled set of one-dimensional equations
which are amenable in actual numerical calculations. 4

Having found a somewhat practical three-particle
theory in the nonrelativistic case, one is then tempted to
make a relativistic generalization with possible appli-
cations in the case of strongly interacting particles.
A natural generalization of the above procedure is to
use the Bethe-Salpeter (B-S) equation, rather than the
Lippmann-Schwinger equation, as a starting point.
Obviously, the three particle 8-S equation can be
written in Faddeev form. In contrast to the non-
relativistic case, however, there is the extra complica-
tion of the intermediate particles being o6 the mass
shell. This gives rise to additional integration variables
(i.e. the fourth components of the momenta) in the
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equations. A procedure of putting the intermediate
particles on the mass shell, based on the Cutkosky rules
is given by Blankenbecler and Sugar. ' This procedure is
based on the requirement that the right-hand dis-
continuity be correctly given. This method, however,
yields no unique result and three natural alternatives
arise.

In the present paper we compare the results using the
different alternatives in an actual numerical calculation.
We also find that the resulting equations from one of the
three alternatives are closely related to those obtained
from the Faddeev equations by introducing relativistic
kinematics and also relativistic phase-space factors to
make the volume elements of the integration invariant.
We expect the difference between the various alterna-
tives to be more pronounced for bound-state problems
than for the case of resonances. We have thus considered
for definiteness the problem of the possible description
of a pion as a bound state of three pions. 4 In this model
the two-body amplitude is approximated by the (iso-
spin-zero S wave) scattering-length formula. We 6nd as
a general result that the phase-space factors suppress
the effective force considerably. Thus no cutofI's in the
integration are required. We also find that, in all the
various alternatives, unless the scattering length is
negative, the force is not sufhcient to produce the pion
as a three-pion bound state. This result is in agreement
with the arguments given by Chew' in favor of a
negative scattering length.

In the next section we write down the 8-S equations
in the Faddeev form. We also give the free resolvents
obtained from the Blankenbecler and Sugar alter-
natives. In Sec. III we then proceed to give the resulting
formulas in our model for the pion. Finally in Sec. IV
the numerical results are presented and discussed.

II. THE RESOLVENTS

Let us first write down the 8-S equation in the
Faddeev form. For simplicity we consider spinless equal-

' R. Blankenbecler and R. Sugar, Phys. Rev. 142, 1051 (1966).' G. F. Chew, Phys. Rev. Letters 16, 60 (1966).
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mass particles. Furthermore, the interactions between
the particles are assumed to be only due to two-body
forces. The three-particle Bethe-Salpeter equation for
the r matrix can be written as

eter s. We have'

ds'
A;=4 bD '(P-' k—)+k g)' —1j

9 $ —S

T=P, I;—P, I;D,&@T, (2 1) X ht {-',(P' —k,)—k,g)' —1$, (2.6)
where I; represents all the two-particle irreducible
diagrams in which particles j and k are interacting
while the particle i remains free (i, j, k=1, 2, 3;i' Wk&i) In .the ladder approximation I; is given by
the one-particle exchange process between particles
j and k. Furthermore, D;& & denotes the free Green's
function of the particles j and k,

with

s=P2, P'= (s'/s)"P k &=-'(k —k~); (iWjWk).

Note that the deanition of A; is relativistically in-
variant. Without any loss of generality we may evaluate
equation (2.6) in the over-all c.m. system. Equation
(2.6) becomes

where
D;&0' =—(2i/w)d, dl„ (2.2) A;=

2
&(k,o

—40—~;+~a), (2.7)
NMp (g CO ) —S

d, =gk' —1j—'

k; being the four-momentum of particle j. Equation
(2.1) can now be rewritten in the Faddeev form (see
also Ref. 7). Defining

r, ' o rD&» rD«~ r~
T' = Tm —TgDs&') 0 TzDg&0'

r r, r~, «& r~, «& o r
(2.4)

with T= T'+ T'+T' and where T, are the two-body T
matrices satisfying the equation

r'=I,—I,D,«&r,

we have for the relativistic generalization of the
Faddeev equations

where ru; = (k '+1)'~'. Now from Kq. (2.4) we see that
this propagator is multiplied by the two-body ampli-
tude r, for which we have

A;=
%ply (Q j &oi) z

(2 9)

where z=gs. Similarly one can write the dispersion
integral in the two-particle invariant energy,

(k|ksks i T, i
kg"ks"ka")

= k'(k, k;")(k,—kj, i &,(0;) i
k/"kl, "). (2.8)

It can easily be seen from Eqs. (2.4), (2.7), and (2.8)
that this procedure amounts to nothing more than
putting the intermediate particles on the mass shell and
writing for the "on-mass-shell" propagators

Therefore, a procedure to solve the three-particle Bethe-
Salpeter equation (in the absence of the three-body
force) would be to find the two body amplitudes T; from
Eq. (2.5) and then solve Eq. (2.4) for the three-body
amplitude. In practice one would like to use the two-
body amplitudes from experiments which are given for
on the mass shell and on the energy shell only. The oG-
energy-shell e8ects are approximated by introduction of
appropriate form factors. '4 In view of the conservation
of total four momentum P, Kq. (2.4) is a coupled set of
integral equations with eight integration variables. To
reduce the number of variables in the integration and
to be able to utilize the phenomenological two-body
amplitudes, one would like to 6nd an approximation to
put the intermediate particles in Kq. (2.4) on their
mass shell. A procedure for doing this, based on the
Cutkosky rules, is given by Blankenbecler and Sugar. '
This prescription is not unique, however, and various
natural alternatives arise as we now see. Let us write
instead of the Green's function D;&'& a dispersion
integral in the three-particle invariant-energy param-

' D. Stojanov and A. N. Tavkhelidze, Phys. Letters 13, 76
(1964); V. P. Shelest and D. Stojanov, ibid. 18, 253 (f964).
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da;
bL(V'~~'+k~~)' 1j—

4 Os 0'g

XhL(~P g' —k p)' —1] (2.10)

Gli4&g (co~'+Np) +kg (z—co~)
(-.12)

8 V. A. Alessandrini and R. L. Omnes, Phys. Rev. 139, B167
(~965).

~,=(P k,)'=P,a', P;—1=k,+kI, P,I'=(~,'/~~)"'P, a

Explicit evaluation of Kq. (2.10) yields

2 (dz+(alp
S(f;,), (2.11)

co,cog ((o;+cog)'+ k s—(z—a&,)'

where co,= (1,s+ 1)'12 and f, is the same as the four-vector
k,—kI„but its value should always be computed in the
c.m. system of the j-k pair. Furthermore, k and ~; are
computed in the over-all c.m. system. This alternative
corresponds again to putting the intermediate particles
on the mass shell but with now as propagator
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Ke can also write a similar dispersion integral in the
one-particle invariant energy. Instead of the Green's
function D, ('& in the expression T;D;&"T& of equation
(2.4) we can use

and Namyslowski' gives an additional right-hand cut
starting at z=0. For this reason we have not used it
here for the bound-state problem although it produces
the on-shell three-particle unitarity correctly.

with
g= (P—k,—k;)'= ko', ICo'= (q'/g) "ko.

GI. THE PlON PROBLEM

Our starting point here is Eqs. (3.1) and (3.2) of
Ref. 4 which, after some manipulation, become

Thus
2 1

C"=—— 8(l;o) .
oo, &ooo—(s—a);—s);)o

(2 14) with

4'(kg) = dkoK'(kg, ko)%'(ko) (3.1)

In this case the propagator becomes

2 1C"=—sj
G&j 07o (z ooj oog)

(2.15)

E(kg, ko) = d coseoioo o(p~~ pot $—g~')

X , (3.2)
poo+qo' —5

G,= (P; l, /2 —g)-

VA'th relativistic &i~ematics this becomes

(2.16)

Finally let us consider the nonrelativistic free resolvent
where p; and q; are the same as in Ref. 4, namely,

py
———', (ko—ko), qg ————,'v%g, kg+ko+ko ——0,

Go=(g oo —z) '

where a= )+3. Now, if we symmetrize this
with respect to z we 6nd

(3.3)
1 1 2+ra,

Go'= + = . (2.17)
Z~ oo~ s Zi o4+s (Zs ~s) s— In this nonrelativistic version we use for the two-body

amplitude

with cyclic permutation of (1,2,3) for po, qo, etc.
Equation (3.2) as it stands is of course purely non-

expression relativistic with the free resolvent

The only difference between Eqs. (2.17) and (2.9) is
the phase space factors 1/cop&o. Thus as a fourth alterna-
tive we may use the unsymmetrized form with the
phase-space factors, namely

(2.18)

Thus, if we use E, for D; in equation (2.4), the resulting
equation is indentical to the one obtained from the non-
relativistic Faddeev equations with relativistic kine-
matics4 —provided that in the latter case one also
includes the phase space factors which make the volume
element of the integration relativistically invariant. It
is easily seen that in the nonrelativistic limit all the
four alternatives —Eqs. (2.9), (2.12), (2.15), and (2.18)—become equal.

The numerical calculations consist of using the above
alternatives in our model of the pion and comparing the
results. Let us make the remark that all alternatives
give rise to the same right-hand cut in z. They have
different extra cuts, however, For example, the propa-
gator given by Eq. (2.9) gives a left-hand cut in s
starting at s= —3. Also, the propagator in Eq. (2.15)
which corresponds to that given by Freedman, Lovelace

C(pi)g(po)
&o(p~, po, k—C~')= . (34)

2or' 1/ao —&($—qP)'Io

The form factor g(p) is assumed to be given by a con-
stant with a cutoff.

Although the separation of angular momentum as
carried out in Ref. 4 is nonrelativistic, we shall use it
here too. As we are only considering zero angular
momenta, this should make little or no difference. For a
fully relativistic partial wave decomposition, one may
apply the method given by Wick. '

Furthermore, the quantity 0; in Eq. (2.8) is taken to
be the relativistic generalization of s—q'. It is given by

0,= (z—a),)'—k,o.

The two-body amplitude used here for the relativistic
case is given by the scattering-length formula of Chew
and Mandelstam. "As in Ref. 4 we have

~o(p~ p4 &
—8') = —Lg(p~)g(po)/2+j~o(~) (3 5)

9 D. Freedman, C.Lovelace, and J.Narnyslowski, CERN report,
1965 (unpublished).

"G.C. Wick, Ann. Phys. (N. Y.) 18, 65 (1962}."6. F. Chew and S. Mandelstam, Phys. Rev. 119, 476 (1960).
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Fzo. 1. The dependence of the largest eigenvalue P on the
scattering-length parameter ap for the various alternatives.

where we have"

with

and

D(v) =1—

.& o(v) =X(v)(D(v)

cV(v) = ar= ao(1+2ao/or)

a (+1)
v'+1) (v' —v) (v'+1)

dv

(3 6)

and, where

v= oL(s—(ov'+1)'")'—oc' —4J= ol:(s—~i)'—&P—4j

In Eq. (3.5) we set g(p) = 1, and in all the relativistic
alternatives used here no cutoff is necessary.

The numerical calculations consist of using (3.5) with
the alternative propagators of the previous section
(instead of (3.3)] in Eq. (3.2). We then compute the
eigenvalues of the matrix E in the same way as in
Ref. 4. Ke want a situation in which, for a given z&3
and a given ao, the kernel K(k~, ko) has a unit eigenvalue.
This then corresponds to the result that there is a three-
particle bound state at that energy z; and the binding is
provided by the two-body amplitude with the scattering
length a0. If all the eigenvalues are smaller than unity,
it means that the force is not strong enough to bind the
three particles.

IV. NUMERICAL RESULTS AND DISCUSSION

Here we present our numerical results in the form of
figures. In Fig. 1 we give the dependence of the largest
eigenvalue on the scattering-length parameter a0 for
various alternative forms of the propagator, for z=1.
Notice that for ao(0, small values of laos have not
been considered. %'e have discarded these values from
our calculations since the kernel becomes singular for
these values of a0. This is due to the occurence of a
bound-state pole in the two-body amplitude in the
region of integration. Each alternative is identified by

1.4—

l.2—

1.0—

0.8—

0.6—

0.4 Gp op=2

0 =20

FIG. 2. The depend-
ence of the largest eigen-
value X on the energy
parameter s for ap=+2
and ao ———2 in case A.
For comparison the non-
relativistic case is also
shown.

"H. Rothe, Phys. Rev. 140, 31421 (1965).
'3 ale are indebted to Professor D. Y. Kong for discussion on

this point.

Figure 2 shows the variation of the eigenvalues with the
three-particle energy parameter z for a0 ——2 and for
&so= —2. Because the results for separate alternative
propagators have the same qualitative features, only
a typical case (case A) is given. For the sake of compari-
son we have also given in this figure the results of the
purely nonrelativistic case with propagator GO. It is
interesting and somewhat curious that in the rela-
tivistic case for a certain range of z the eigenvalue is a
decreasing function of z. The reason for this behavior
might be that a three-particle bound state in this region
would correspond to a ghost solution. A check for this
would be the determination of the sign of the residue of
the three-particle bound-state pole.

As can be seen from Fig. 1, with the exception of the
nonrelativistic case which is cutofI'-dependent, for a
positive scattering length the largest eigenvalue is
always smaller than unity. Ke interpret this to mean
that for a positive scattering length the force is not
large enough to bind the three particles. It is the rela-
tivistic phase-space factors which keep the eigenvalues
small. However, with negative scattering length it is
possible to bind the three particles. In a recent calcula-
tion by Rothe" based on Regge poles the scattering
length has been estimated to be a0 ———1.7. Also, Chew
has recently given arguments in favor of negative
scattering length. ' Furthermore, it seems that nearly
all the phenomenological fitting which has been made
with a positive scattering length could equally be done
with a negative scattering length. "It would be interest-
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ing to have an experimental determination of the sign of
this quantity. One such possible experiment has already
been suggested by Chew. ' Ke should remark that we
have presented the nonrelativistic case only for the
sake of comparison. However, even for the nonrela-
tivistic case the eigenvalues are very small for ao&0
unless unreasonably large cutouts are introduced. Al-

though there is a qualitative agreement between the
various alternatives, quantitative results diGer rather
substantially. For this reason it would be interesting to
consider the problem without putting the intermediate

particles on the mass shell and compare the results with
the above alternatives. On the other hand we have seen
that the qualitative results of the Blankenbecler-Sugar
alternatives applied to the Bethe-Salpeter equation are
also obtained by introducing relativistic kinematics and
phase-space factors in the Faddeev equation. A similar
situation holds in the two particle case. There the
Blankenbecler-Sugar rule applied to the two-particle
Bethe-Salpeter equation gives the same result as the
I-ippmann-Schwinger equation with relativistic kine-
matics and phase-space factors.
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A nonet coupling ansatz which requires zero couplings for the nonstrange baryons to the p {1,1020 MeV)
and s(2~, 1525 MeV) I=O mesons is investigated in the framework of a Regge-pole model for forward
elastic scattering amplitudes at high energy. The analysis indicates that total cross sections are roughly
consistent with the ansatz.

ENTRODUCTION

N extension of the vector-meson nonet scheme
relevant to the couplings of the vector mesons to

baryons has recently been proposed' to account for
(i) the relative suppression of backward g/co production
of A. p collisions, (ii) the proportionality of electric
and magnetic form factors, and (iii) the isospin in-

dependence of the hard core in nucleon-nucleon scatter-
ing. The explanation of the above phenomena follows
from a postulated SU(3)-invariant interaction Lagran-
gian in which all couplings of the nonstrange baryons
to the physical @ meson are zero. Such an ansatz is
made in the framework of a SU(3) quark model in
which the quark indices of the vector-meson nonet wave
function are only allowed to couple direc/ly to the quark
indices of the baryon wave function. This anatz is
independent of the f/d ratios of the BBV vertex and
is therefore less restrictive than Lagrangians derived
from higher symmetry schemes. '

*Work supported in part by the University of Wisconsin Re-
search Committee with funds granted by the Wisconsin Alumni
Research Foundation and in part by the U. S. Atomic Energy
Commission under Contract No. AT(11-1)-30, No. COO-30-106.

f'On leave from Tata Institute of Fundamental Research,
Bombay, India.' H. Sugawara and F. von Hippel, Phys. Rev. 141, 1331 (1966).

'In this paper we shall specihcally deal with the BBV vertex
which enters in the Reggeized vector-meson-exchange contribu-
tion to the forward elastic-scattering amplitude. In general both
the conventional y„and cr„„vector-meson nucleon couplings can
contribute to the forward s-channel helicity nonfhp Regge ampli-
tude, Consequently, the f/d ratio for the BBV vertex at t =0 will

In this article we investigate the validity of such a
coupling ansatz for both the vector-meson and the
tensor-meson nonets in the framework of a Regge-pole
mode for forward elastic scattering amplitudes at high
energy. Our analysis indicates that the total cross
sections are roughly consistent with the ansatz.

VECTOR-MESON NONET

On the basis of mass formula and decay rates, the
vector mesons Lp(760), IC~(890), p(1020), co(783)] are
assigned to a SU(3) nonet' (V) = (Vs) ~+(1/v3) Vi8
with the cu —p mixing specified by p= (&2&s—co&)/vS
and co= (P&+VZco, )/V3. The 3X3 matrix form of V may
be written as

(p'+~)/v2
V= p

+ +g+&

(—p'+u&)/V2
++0

Then the most general SU(3)-invariant interaction
I,agrangians for the vector-meson Regge-pole residues
at t=o are

Iv jr'="/2vssv(~[V, ~j),
+VBB /2 rh'V(f (B[V,Bj)+(1—f) (B(V,B)) (2)

+~«)(B»),
represent a combination of both the electric- and magnetic-
coupling contributions.

3 V. Barger and M. Olsson, Phys. Rev. Letters 15, 930 (1965);
16, 545 (1966); Phys. Rev. (to be published).' S. Okubo, Phys. Letters 5, 165 (1963).


