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The contribution of self-consistent terms arising from strong-interaction reciprocal bootstraps to the
electromagnetic mass differences of the Z, Y&*, ",and

' are considered within the formalism developed by
Dashen and Frautschi. It is shown that the self-consistent terms from a Z-F~ reciprocal bootstrap lead to
an enhancement of the Z and Yi electromagnetic mass differences transforming as I„but not of those
transforming as I, . The ™and electromagnetic mass differences are found not to be enhanced by a -™
reciprocal bootstrap mechanism, but the large P- mass difference is found to be explained by terms arising
from external Z mass shifts in the EZ channel of a bootstrap calculation.

I. INTRODUCTION

ITHIN the past few years there has been much
~

~ ~

~

~ ~

~

~
interest, both theoretical and experimental, in

electromagnetic mass differences within baryon isospin

multiplets. Part of this interest stems from the fact
that theories of strong interaction symmetries can be
used to obtain relations between the electromagnetic
mass splittings in one isospin multiplet and those in

another. The subject of electromagnetic mass splittings
can thus be looked upon as forming a testing ground for
conjectures about strong interactions and strong
interaction symmetries.

One of the most interesting of these conjectures
pertains to the violations of SU(3). On the basis of
present experimental evidence, it would appear that
the strong, electromagnetic, and weak violations of

SU(3) follow a characteristic pattern in that those
violations of SU(3) which transform like the compo-
nents of an octet seem to predominate in nature. '
It has been proposed' ' that this octet pattern follows

from the operation of bootstrap dynamics. This sugges-
tion has been systematically explored in the case of the
strong and electromagnetic mass splittings4 between
members of the —,'@baryon octet (B) and the —',+ baryon
decuplet (rl), and for the strong, electromagnetic, and
weak shifts" in the BBIIand BAII couplings from their
SU(3) symmetric values. '

*Work supported in part by the U. S. Atomic Energy Commis-
sion. Prepared under Contract AT(11-1)-68 the the San Francisco
Operations OfFice, U. S. Atomic Energy Commission.
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fulfillment of the requirements for the degree of Doctor of
Philosophy.
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497 (1964)~

4R. F. Dashen and S. C. Frautschi, Phys. Rev. 137, B1331
(1965).' R. F. Dashen, S. C, Frautschi, and D. H. Sharp, Phys. Rev.
Letters 13, 777 (1964).' R. F. Dashen, Y. Dothan, S. C. Frautschi, and D. H. Sharp,
Phys. Rev. 143, 1185 (1966).' For recent reviews of the methods and results of the bootstrap
theory of octet enhancement see the lectures of D. H. Sharp in
Recent Developments in Particle Symmetries (Academic Press Inc,

In the case of the mass splittings, 4 the calculation
begins by assuming an SU(3) synunetric reciprocal
bootstrap model for the 8 and A. That is, one assumes
that the exchange of the baryon octet and decuplet in
pseudoscalar meson-baryon scattering results in the
octet and decuplet appearing as direct channel poles
associated with zeros of the relevant denominator
functions.

In studying the perturbations about this SU(3)
symmetric problem, one describes the mass splittings
by a mass shift operator which is decomposed into
irreducible representations of SU(3). One supposes that
one can work to hrst order in the symmetry violation
of interest —neglecting, for example, the eBect of
medium strong symmetry-breaking on the electro-
magnetic mass shifts. The various relevant mass ratios,
and hence the Pa]tern of symmetry violation, are then
described by a matrix, the A matrix, whose structure is
determined by self-consistent terms coming from the
SU (3) symmetric bootstrap equations. "' The approx-
imate evaluation of this matrix yields the result' ' that
mass shifts transforming like an octet are enhanced
compared to those transforming like a 27-piet. Since
this octet enhancement is determined by the SU(3)
symmetric A matrix Lthat is, the A matrix does not
distinguish between different components of an SU(3)
representation), the electromagnetic mass shifts are
characterized by the same ratios as the strong mass
shifts.

More speci6cally, for electromagnetic mass diGer-
ences, octet enhancement implies that mass differences
transforming like J„i.e., M= 1 mass differences, which
in SU(3) transform as the third compoenent of an octet,
are strongly enhanced relative to mass differences
transforming as (3I 2—1)/2, i.e., AI = 2 mass differences,
which in SU(3) transform as part of the 27-dimensional
representation. A number of sum rules, originally given
by Coleman and Glashow, ' are then predicted. One
of these is an equal spacing rule, with a de6nite value

New York, 1966); S. C. Frautschi, lectures given at the Pacific
International Summer School in Physics, August 1965 (Gordon and
Breach Science Publishers, New York, to be published).'S. Coleman and S. L. Glashow, Phys. Rev. Letters 6, 423
(1961).
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for the spacing, for all the electromagnetic mass
splittings within the decuplet, '4 another relates the
electromagnetic mass splittings within the baryon
octet, ' others relate strong to electromagnetic mass
splittings. ' The latter are a consequence of the universal-

ity of the octet enhancement mechanism. These predic-
tions, insofar as they have been tested, are in moderately
good agreement with experiment.

All the above results were obtained on the assumption
that one can treat the electromagnetic violations of
SU(3) to first order (order e'), with the effects of strong
symmetry-breaking appearing as small second order
corrections. One may well ask whether this is at all a
reasonable approximation. After all, strong symmetry
breaking has quite a violent eRect on some of the
properties of the baryons. In the case of the X and Ã*,
for instance, strong symmetry breaking forces the x.V
threshold far below that of the KA and EZ channels.
At the same time, in broken SU(3) the couplings of the
E and S* to the higher mass channels are substantially
reduced, compared to their SU(3) symmetric couplings,
while their couplings to the low mass channels (irk')
are raised. ~ As a result of these features of strong
symmetry breaking, a certain simplification is intro-
duced in that the X and E* can be considered as a
separate, closed SU(2) symmetric reciprocal bootstrap
system, split oR from the rest of the octet and decuplet.
However, it is no longer clear that the pattern of
electromagnetic mass splittings within such an SU(2)
multiplet will bear any resemblance to the pattern
obtained on the basis of a first-order calculation of
octet enhancement in which strong symmetry-breaking
eRects are neglected.

This point has already been investigated4" in the
case of the X-S* system. A calculation of the A
matrix elements using values for masses, coupling
constants, and denominator functions which appear to
be reasonable from the point of view of broken SU(3)
and experiment showed that in this case there is no
enhancement of any of the mass differences due to
self-consistent terms. Hence, in an SU(2) symmetric
model of the X-X* system, the bootstrap mechanism
does not operate so as the enhance the mass shifts
transforming like AI=1 over those transforming like
DI= 2. In this case, then, the octet enhancement result
is largely washed out by strong symmetry-breaking
and an SU(2) synnnetric calculation, together with a
careful study of the driving terms, is required to give an
accurate description of the pattern as well as the
magnitude of the mass shifts.

It is our purpose in this paper to carry out such
calculations for the remaining members of the octet and
decuplet; the Z, Yi~, , and .* (the A and 0, being
isosinglets, need not be considered). Here we shall
concentrate on the A matrix, whose eigenvalues,

' R. F. Dashen, Phys. Rev. 135, 81196 (1964).' S. Bisvras, S. Bose, and L. Pande, Phys. Rev. 138, 8163
(1965).

together with the associated eigenvectors, will determine
the pattern of the electromagnetic mass shifts as long
as there is an enhanced eigenvector. A study of the
driving terms, which determines the magnitude of the
mass shifts (as well as the ratios of mass shifts in those
cases where no enhancement emerges) will form the
subject of a separate paper. "

In Sec. II of this paper, we briefly summarize the
relevant kinematics pertaining to meson-baryon scatter-
ing, and write down the formulas to be used for calculat-
ing the A matrix.

Section III contains a discussion of the electro-
magnetic mass diRerences in the Z and Yj.* isomulti-

plets. Like the Ã and E*, these particles form a
reciptocal bootstrap system, split oR from the rest of
the octet and decuplet by the breaking of SU(3). In
this case it appears to be a reasonable approximation
to consider the Z and Y~* as bound states coupled
mainly to the ~A and xZ channels, with A, Z, and Y&*

exchange providing the important binding forces. The
Z+-Z —and Y~*+-Y~~ mass diRerences transform as
M= 1, while the 2++2--2Z and Yj*++Yq* -2Yq

mass differences transform as BI=2. We find that the
structure of the A matrix for the Z-Y~* system leads,
in each isomultiplet, to an enhancement of the BI=1
mass shifts over those transforming like AI=2 by an
amount in reasonably good agreement with experiment.
Thus, in this case the result expected on the basis of
octet enhancement is left intact.

In Sec. IV, a similar calculation is carried out for the
electromagnetic mass diRerences in the and
isomultiplets. It is found that the contributions to the
mass diRerences arising from changes in the mass of
the ™or ~ entering as exchanged or external particles
do not lead to an enhancement of the or ™*mass
diRerences. In this respect, the -™*system is similar
to the E-X* system. However, in contrast to the E-S*
system, the ™-™*system is not a closed system split oR
from the rest of the octet and decuplet. In particular,
the coupling to the EZ channel is large, and the change
in the external Z masses gives a contribution which
largely accounts for most of the observed ™0-™mass
diRerence.

II. KINEMATICS AND METHOD OF
CALCULATION

In the electromagnetic mass diRerence calculations in
this paper, it will be assumed that the baryons of the
unperturbed situation can be considered as bound-state
poles in two-particle pseudoscalar meson-baryon scat-
tering amplitudes. In particular, we shall be considering
the /= I, J = (-', )+, and J = (~3)+ partial-wave ampli-
tudes as functions of 8', the total center-of-mass energy
of the baryon and meson. We shall not give a detailed
treatment here of the analytic properties of the partial-
wave amplitudes in the 8' plane, but as we proceed we

"F. J. Gilman (to be published' ).
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shaO refer for needed properties to the excellent general
discussions of Frazer and Fulco" and Frautschi and
Walecka, " and to the specific discussions of pion-
hyperon scattering in Feldman and Hwa" and Kayser. "

We shall thus consider meson-baryon scattering with
M; (Mr), E; (Ef), rn; (rrr j), and q; (qf), the initial (6nal)
baryon mass, baryon energy, meson mass, and meson
momentum in the center-of-mass system where W is
the total energy. We take the l=1, J'~= (-', )+, and
J~= (—',)+ partial-wave amplitudes to be

2W
Tg,~(W) = (1)

((Ef Mf) (E —M ))"'»(q qr)'"

g2sy J'

where

qP (W) = [(W+M;)' mP][(—W M;)'- —rrr P)/4—W'. (2)

T(W) =N(W)D(W) '

The amplitudes 1'i,~(W) are free of kinematic singula, r-
ities in the W plane and have the proper threshold
behavior factored out." "

In general, we must consider an n-channel un-
perturbed scattering amplitude T(W), '6 where T(W) is
an n X n symmetric partial-wave scattering matrix
which has a bound-state pole. Ke assume further that
the unperturbed amplitude has been written in the
form'~

where N(W) is an nXN matrix whose elements are
analytic in W except for left-hand cuts (LHC) and

D(W) is an rtXn matrix whose elements are analytic
except for right-hand cuts (RHC) present in the
the partial-wave amplitude T(W).

On the right-hand cut, we assume elastic two-particle
unitarity before the perturbation is introduced:

ImT(W) = T(W)y(W)T(W)t, (4)

where tr(W) is a diagonal nXn matrix containing phase-
space factors which are functions of the total center-of-
mass energy W. For partial-wave amplitudes defined as
in Eq. (1), the elements of the diagonal y(W) matrix are

p, ,(W) = ((E;—M;)/2W)q;(W)8(W' —(M;+m, )') . (5)

The pole in T(W) is assumed to be due to the vanish-
ing of det[D(W)) at W=Ms, the bound-state mass.
The residue at the bound-state pole is then defined by

R= N(Me)a, (6)
where

4= lim (W—Me)D(W) '.

When the perturbing electromagnetic interaction is
introduced, T(W) ~ T(W)+ST(W) and Me ~ Ms
+VII~. Following Dashen and Frautschi, ' to lowest
order in the perturbation we have

SMg=Tr Rch—
oute

ImDr(W)i)T(W) D(W)
dW' cL

W' —M~
Tr[RR].

bM, =Q A;,4Mr+d„ (9)

~%. R. Frazer and J. R. Fulco, Phys. Rev. 119, 1420 (1960)."S. C. Frautschi and J. D. Walecka, Phys. Rev. 120, 1486
(1960)."D. Feldman and R. Hw'a, Ann. Phys. (¹Y.}21, 453 (1963)."B.Kayser, Phys. Rev. 138, 31244 (1965)."A denotes a matrix; (A~);;=(A);;; (At);;=(A);;*; det(A)= it[ = the deterroi&ant of A; and Tr(A) =Z;(A);;f=the trace
of A.' J. D. Bjorken, Phys. Rev. Letters 4, 473 (1960).

We shall separate contributions to Eq. (8) for the
change in the baryon masses into two parts. The erst
part consists of contributions due to changes in the
masses of the baryons themselves when acting as
exchanged or external particles in the strong-interaction
bootstrap. We call these the self-consistent terms. The
second part consists of all other contributions due to
changes in other exchanged or external particle masses,
changes in coupling constants, or changes in the
discontinuity across the left- or right-hand cut in Kq.
(8) due to additional diagrams with explicit photons.
We lump together all contributions of the second kind
and call them driving terms.

We are thus led to first order in the perturbation to
write equations of the form' 4

~here the A's are numerical coeKcients which represent
the eGect of the self-consistent terms and the d's are
the driving terms. Now the solution of the linear
equations (9) for the 5M, involves the quantity
det[l —A] in the denominator, so that if det[l —A] is
small, i.e., if A has an eigenvalue near one, then the
corresponding mass shifts are enhanced by the self-
consistent terms coming from the reciprocal bootstrap
dynamics.

For the problem we are interested in here, we might
write the A matrix symbolically as

ANN

A= A»
AFN

ANX

Azz
A="~

AN

A~= .
Agp

Here, ANN is a submatrix which represents the
efkct of a shift in the mass of a strangeness zero
(X or S*) baryon acting as an external or exchanged
particle on the X and X*bound-state masses. Similarly,
A~-" is a submatrix which represents the e6'ect of a
shift in mass of the strangeness = —2 baryons, and

' R. F. Dashen and S. C. Frautschi, Phys. Rev. 137, 81318
(1965).
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~, acting as exchanged or external particles on the
strangeness = —1 (Z and Fq ) bound state masses.

fn the SU(3) symmetric calculation, all these sub-
matrices are, of course, related to one another by
suitable SU(3) Clebsch-Gordan coeScients and none
is zero or generally neglectable. In the case of broken
SU(3), the submatrices are no longer simply related,
but there is an important asymmetry of the large A
matrix "A. s noted before, the breaking of SU(3)
results in the S and X*splitting oG from the rest of the
octet and decuplet bootstrap and forming their own
reciprocal bootstrap subsystem. Stated in terms of the

matrix of Eq. (10), this means that in broken
SU(3), A~x and A~""=0. Similarly, inasmuch as in
broken SU(3) we can consider the Z and F& as only
~A and xZ bound states, they also form their own
reciprocal bootstrap subsystem, i.e., A~~ and A~-=O.
So in broken SU(3), the large A matrix looks like

.A~~ 0 0 .
A= 0 A» 0

.A=. & A=' A~-.

Now it is clear that the eigenvalues of such a matrix
are simply the eigenvalues of the diagonal submatrices.
Thus, to determine if there is an enhancement, i.e.,
an eigenvalue of A near one, we need only calculate
the diagonal submatrices of A, A~~, A~~, and A-""-".

Furthermore, from solving the linear equations (9),
it is apparent that for the asymmetric A matrix above,

bM"=d"/(1 —3~") (11a)

8M*=ds/(1 —A ss) (11b)

6M"== (A =~SM~+A xhMx+d"-")/(1 A """=). —(11-c")

The question of whether there is an enhancement of the
cV-Ã* or Z- Yy* mass diGerences is then answered by
just calculating their respective diagonal subrnatrices
of the large A matrix. The -™*mass diGerences,
however, depend both on the diagonal A== submatrix
and the oG-diagonal A-""~ and A""~ submatrices. From
previous calculations, ' we know that A~N has no
eigenvalue near unity in broken SU(3) and the X-.V~
mass diGerences are thus not enhanced by self-consistent
terms. As stated in the Introduction, we find that A==
also has no eigenvalues near one in broken SU(3), but
that there is an eigenvalue of A ~~ near one, correspond-
ing to an enhancement of DI=1 mass diGerences. Even
through they are not directly enhanced, the mass
diGerences are still large, since we find A="~ 1, so that
the mass differences follow ihe enhanced eigennctor
of the Z mass diGerences.

Up to this point, our comments on the eGects of the
breaking of SU(3) upon baryon electromagnetic mass
diGerences have been rather general and would be
"Some of the eBects of the asymmetry of the A matrix are

discussed at length in Ref. 4.

expected to hold independently of any particular
bootstrap model or perturbation formalism. We now
proceed, however, to calculate in detail the values of the
various A matrix elements discussed above in a specific
model and using the S-matrix perturbation theory
developed by Dashen and Frautschi. '

III. THE X AND F,* SYSTEM

Let us now consider the electromagnetic mass
diGerences of the Z+, Z, Z, and Y~*+, Y~, Yi*
baryons within a reciprocal bootstrap model where
both the Z and Y~* are regarded as xA. and ~Z bound
states. Using approximations very similar to those
used in the octet enhancement calculation of Dashen
and Frautschi, 4 we shall see that the strong-interaction
reciprocal bootstrap leads to an enhancement of the
electromagnetic mass diGerences transforming as DI= 1
over those transforming as M=2.

We start by assuming that the unperturbed (by elec-
tromagnetism) two-channel, strong interaction problem
of obtaining the Z with a mass of 1190MeV as an I= 1,
JP= (-', )+ bound state of xA and nZ has been solved,
and that the unperturbed amplitudes have been
obtained in the form T= ND '. Exactly this problem
has recently been treated by Kayser. " Possible ex-
changed baryons which are members of the octet and
decuplet are the A, Z, and Y~*. It is the exchange of
these particles which results in a large part of the
"binding force" in Kayser's calculation. The inclusion
of both channels turns out to be essential for a successful
Z bootstrap.

We shall further assume that the Y~* has been
obtained as an I=1, JP= (2)+ resonant state of xA and
xZ scattering with a mass of 1385 MeV and a width of
50 MeV in a calculation similar to that for the Z bound
state. This strong interaction problem has been con-
sidered recently by Kayser and Bloom, "who include
both a mA and xZ channel, and also by Martin, "who
considers only the xA channel. Recent experimental
indications are that the coupling of the Y~* to the mZ

channel is about a factor of 2 smaller than the coupling
to the vrh. channel, "so we shall include the mZ as well
as xA channel in our calculation.

The two-body channel with the next highest threshold
is the EE channel. As we shall see later, predictions
based on SU(3) Land also broken SU(3)j give a small
value for the EST coupling constant. For the Y~*, one
may argue from the lack of appreciable I' wave K p-
scattering that this channel can be neglected in the Y~*
bootstrap. ~ It is precisely in the neglect of this and the
higher threshold gZ and E" channels that we are first

~ For data on particle and resonance masses, spins, and decay
widths, we shall refer, unless otherwise indicated, to A. H.
Rosenfeld et a/. , Rev. Mod. Phys. 36, 977 {1964)."B. Kayser and E. Bloom, Phys. Rev. 144, 1176 (1966).~ B. Martin, Phys. Rev. 138, B1136 (1965).~ D, O. Huwe, University of California Radiation Laboratory
Report No. UCRL-11291, 1964 (unpublished).
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~~A, I=i, i)= ~A~,). (12)

As the Z has isospin one, we define Z+= (Zi+iZi)/v2,
ZO=ZS, and Z = (Zi —iZ2)/v2 analogously to the pion
states. The I= 1, xZ states are then defined by

Since the Z and Y~* have the same isospin, we can
read ofF the proper signs of the residue and isospin
crossing matrices for the Y&* directly from the corre-
sponding Z channels.

With the above definitions, the Z+, Z, and Z will
occur as bound states in the I"= (-', )+, I=1, I.= 1, 0,
and —1 channels, respectively. We denote the partial-
wave amplitudes in these channels as Ts+(W), Ts'(W),
and Tx (W), i.e., we label the partial-wave amplitudes
for a given channel by the bound state which occurs in
that channel. In the absence of electromagnetism, we
assume that the strong interactions conserve isospin,
so that T~+(W), Ts'(W), and Tx (W) all have poles
with the same residue at the unperturbed Z mass, M~,
of the form

T~= Rs/(W —Mx) . (14)

The residue matrix R~ is related to the coupling
constants defined in Appendix A by

Rgg Ri2 1 —
g g~' v2g~, pygmy~Rr= =— . (15)

R2j R22 4' &2g~p~g~~~ —2g~vv

We have defined the Lagrangian density in Appendix A
so that g q~ and g ~~ are the rationalized, renormalized
pseudoscalar coupling constants (g ~N2/4ir=14. 8).

breaking the SU(3) symmetric reciprocal bootstrap of
the octet and decuplet. In their analysis of coupling
constants in broken SU(3), Dashen et al. ' have found
that the breaking of SU(3) generally raises the coupling
strengths to low-lying channels and decreases the
coupling strengths to higher mass channels, thus
providing an added justification for our neglect of higher
mass channels. For the particular case of interest here,
they find on the basis of coupling strengths alone that
the Z and Vi~ are both 50—60% ~A and irZ in broken
SU(3), while they are only 30—40% irA and s-Z in
unbroken SU(3). In any case, in the calculations to
follow, we shall neglect the ES, qZ, and E channels,
as well as three-particle channels, but we shall estimate
their efkct on the calculation at the end. We again
stress that in taking only the mA and mZ channels, we
are assuming a badly broken SU(3) symmetry.

The partial-wave-scattering matrix will then be 2)&2
with channel one being mA scattering and channel two
mZ scattering. Since the A is an isospin singlet while
the pion has isospin 1, the xh. system can only have
total isospin I=1. If we let i=1, 2, 3 be a Cartesian
isospin index with n+= (iri+isq)/v2, ir0=7r3, and ir
= (s.i—iir2)/W2, then we define the I= 1 vrA states to be

Similarly, in the J = (2)+, I= 1, I,= 1, 0, and —1

channels, the corresponding partial-wave amplitudes,
Tr+(W), Tr'(W), and Tr (W) all have poles at the
unperturbed V~* mass, MY, of the form"

RY 1 R„Y R,,Y

gl MY g MY R Y R Y

The magnitude of o6-diagonal residues is fixed by
~
R;,

~

= (R;;R; )'" Note that RiP, R»x, Rii" and R»r
must all be negative with-our conventions, but that the
signs of off-diagonal residues depend on relative
coupling constant signs which will be taken from SU(3)
predictions. "

In the presence of the electromagnetic interaction, the
poles in Tx+(W), T~'(W), and Tx (W) will be shifted
from their common unperturbed value, M~, to M~+,
M~', and M~, the observed masses of the Z+, Z', and

baryons, respectively. Similarly, the poles in
Tr (W), T"'(W), and Tr (W) will be shifted to Mr+,
MY', and MY, the observed masses of the F~*+ V~*P

and Y&*, respectively. We write 5M =M —M,
GAMY =MY+ —MY etc.

Since the electromagnetic perturbation breaks the
invariance of the strong interactions under isospin
rotations, it is convenient to write mass operators in
isospin space, the diagonal expectation values of which
are the observed masses, and which are expressed as
sums of parts which transform according to irreducible
representations of the group of isospin rotations:

M,„*=Mx+8Mox+-,'8MisI, +-',8M2s(-,' (3I '—1)),

M Y =MY+5M pY+-'5MgYI

+-',8M2v(-,' (3I 2—1)),
where

Ms+8Mos = )Ms++4M~'+Mx ]/6,
Mr+8Mor = prr++4Mr'+M' ]/6

8Mis= [M~ M~ ]=8Mx 8—Mx, —
8M Y LMY+ MY ]—8MY 8M i'

Wr, &=M&'+M~ —2M"
=8M~ +8M~ 28Ms', —

8M Y= MY++MY —2M"'
=~M Y'+~M Y —2&M Y'

(18)

(19)

"Since the I'I*is a resonance, the pole in T (W) is in fact not
on the real axis in the IV plane. However, in all calculations
involving members of the decuplet in this paper, we shall treat
them as stable particles."E.Abers and C. Zemach, Phys. Rev. 131, 2305 (1963)."In the calculation of coupling constants in broken 5U(3) in
Ref. 6, it was found that while there are large changes in the
magnitudes of the coupling constants, there are no changes in
signs.

The partial width for the decay of the Y&* in channel i
is given by"

I';= —2p, ,(Mv)R;,v.
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bMg~ ——A 2,~~8M ~+A ~~bM2~

+A 2.x*bM@+d2x,

bM ~=A ~~6M ~+A ~~8M ~

+A„»m, ~+d,~,
(20b)

where A~,~~ is a numerical coeKcient giving the effect
of a AI=1 shift in the mass of the Z acting as an
exchanged particle on the position of the Z bound state.
Similarly, A&,~~ is a numerical coefIicient giving the
effect of a shift in the mass of the Z acting as an external
particle on the position of the I'i* resonance, with both
shifts transforming as AI=1. The d's are the corre-
sponding driving terms. There is no term containing

The subscripts denote the transformation properties
(AI=O, 1, 2) of the corresponding parts of the mass
operator under the group of isospin rotations.

We now note that if we restrict ourselves to first
order in the mass shifts, then due to the invariance of
the strong ingeractions under isospin rotations a shift
in an exchanged or external mass transforming accord-
ing to a given irreducible isospin representation can
only give rise to shifts in the bound-state mass trans-
forming according to the same representation. ""The
problem of determining the mass shifts thus splits up
into a set of problems which are disconnected from each
other, one for each irreducible representation of the
isotropic spin group. We can thus write"

AMER =Aj 8Mg +Ay 8Mi

+A „~9MP+d,~,

~M, i'=A, i'~~M, ~+A, i'i'~M i' (20a)
+A „~9M,~+d,~,

and

an A,~~ since the F~* never appears as an external
particle. 6MO~ and 5MO~ are not of interest to us since
they involve a symmetric increase in all the masses
with no relative shifts.

The A's are now the objects of interest and will be
calculated using Eq. (8). We shall write the results in
matrix form as

Ez A zY) A XE+A zz A ZY

AF' Ag"rl Ag. rx+Ag. "' Ag. rr

with a similar expression for A2. As observed in Sec. II,
there will be an enhancement of the AI=1 or AI=2
mass differences if

~

I—A~
~

or
~

I—A2~ is small,
respectively. We now turn to the detailed calculation of
the elements of the matrices A~ and A2.

In order to calculate the A 's, we must know the
individual contributions of the various Z and I'j*
charge states to the amplitudes which contain the
Z+, 2, 2— and F~*+, I"~*', I'~* bound states and
resonance poles, respectively. We label the resulting
amplitudes due to Z exchange, Tx+ (W, Z exch. ),
T+ (W, Z exch. ), etc. In calculating the effect of
changes in the masses of exchanged particles, we
closely follow Dashen and Frautschi4 and use the
approximation of keeping only the nearby (to W= Mx)
short cuts of the I-channel exchange amplitudes""
and approximate these short cuts by pseudopoles, i.e.,
we shall use the static approximation. Within the
static approximation, exchange of the Z+, Z', and Z
gives rise to pseudopoles in Tx(W) and T"(W) at
8'=2M~ —M~' '"." From some long but straight-
forward arithmetic using the crossing relations for
partial-wave amplitudes in the static approximation, "
we 6nd

1 1 0 0Tx"(W,Z exch. )=+— (2+ exchange)
3 W—2M~+M~+ 0 4'R22~

1 1 0+-
3 W —2M +M '(—-,'R„

1 1 0
Tx'(W, Z exch. )=+—

3 W—2M +M~ ——,'Rie~

R
(Z' exchange)

0

1
+ (Z exchange,

3 W—2Mx+Mx k —-'R&2x -'R x

——',Ri2~ 1 1 Riz~ 0+-
0 3 W—2M +M ' 0 —,'Rgg~

1 0
+—

3 W—2M~+M~- —-', R»~

gR12
(22a)

0
'7 S. Glashow, Phys. Rev. 130, 2132 {1963)."R.Cutkosky and P. Tarjanne, Phys. Rev. 132, 1355 {1963)."For the purpose of calculating the eKect of exchanged particle~~= 1190MeV.
'0 For a derivation of the crossing relations within the static

QNuetlm Field Theory (McGraw-Hill Book Company, Inc. ,
I-channel cuts of the relativistic partial-wave amplitudes by poles

mass shifts, we have set both the external A. and Z masses equal to

model, see for example, E. Henley and W. Thirring, Elementary
New York, 1962), Chap. 18. Also, see the approximation of the
in Ref. 13.
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1 1 R11~ —-,'R12 1 1 0
Tx (W,Z exch. ) =+— +-

+~ 2R12 gR22 3 ~ 2~ +~ gR12

—lR ')
0

and

Similarly,

Tr+ """(W, Z exch. )= —2Tx+ x' x (WZ, exch. ). (22b)

4 1 0 0 4 0
T~(W, F~* exch. ) = ——

3 W—2M~+MY+ 0 -', R22Y 3 8'—2M~+MY' —-'R12

4 1 R11 2R12

3 8'—2M~+MY ——'R

4 1 0
T+(W, F~~ exch. )= ——

3 ~'—2~~+~Y+ —-'R1xY

1 R11Y 0

0 3 W—2m~+WYD 0

4 1 0

3 n —m'+M Y- ——,'R„Y
(22c)

0

4 1 R11Y —zR Y 4 1 0
T~ (W& Vq* exch. ) = ——

2~X+.~Y+ 1R Y 1R Y 3 gl 2~X+,~Yo 1R Y

—-'l4, ")
0

and

4 1 0 0

3 lV—2M~+MY 0 -'R

Tr+ r' r (W, Y~* exch.) =-'Tx+ @ s (W, Yq~ exch. ) . (22d)

All of our exchange amplitudes have the form T= R/(W —2M*+M*). When the electromagnetic interaction
is turned on, the change in M results in a change in the amplitudes to first order of the form

5T= RSM*/(W —2Mx+M*)' (23)

In our choice of 9 function, we again closely follow the octet enhancement calculation of Dashen and Frautschi4
by assuming that in a representation in which the multichannel D function is diagonal at the bound state or
resonance mass, it is also approximately diagonal over the nearby parts of the left- and right-hand cuts. "Such
a 9 function is

D(W) = D(M*)+D'(M*)[(W—M*)/(W —Wo)](M"—Wo)1 (24)

where M~ is the bound state (resonance) mass, det[D(M*)]=0, the prime denotes the derivative with respect to
W, and Wq is the position of a pole in D(W) which is taken to approximate the right-hand unitaritv cut of D(W).
We rewrite Eq. (24) as

Ds(W) = Dx(Mx)+D~(W) 1,

Dr(W) = Dr(M")+Dr(W) l,

(25a)

(25b)

where, for the purposes of this calculation,

Dx(W) =Dx'(Mx)[(W —Mx)/(W —Wg)](Mx —W,),
D r(W) =D r'(Mr) [(lV—M")/(W —W,)](Mr—Wg)

(26a)

(26b)

"This assumption on the behavior of D(5') would be expected to hold if the left-hand cut is dominated by a single pole and we
only need take account of singularities close to the bound-state mass. Although one or both of these conditions hold in, say, a
reciprocal bootstrap model of the Z and F'j~, Eq. (24) must in general be treated as an additional assumption.
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With D functions such as those in Eqs. (26), Eq. (8) simpli6es22 to

[D&'(M&)]2 Tr[R'R']
(27a)

for the Z mass differences, and
1 dS"

Tr R"— Im([DY(W')]25TY+ Y' " (W'))
,„t,8"—M~

Qf F+,F0, Y— (27b)
[DY'(MY)]' Tr[R "RY]

I (R ')'—(R ')'p [D'(W)]'

(R,*+R P)' ([3&*'(M*)3'(W—M*))

4 Rii Rll R12 R12 ( [D (W)]

(R,P+R,P),[33'(M*), (W M*)) .-...-.,
2 Ri)YR1 s R»YR 22— [DY(W)]'

YZ —+
3 (R„+R,d')' ([D '(M )j'(W—M )) '

for the V~* mass differences.
After substituting Eqs. (22) in Eqs. (27), carrying out the integrals and traces, and taking account of the

definitions of the A-matrix elements in Eq. (20), we find that

1 (R„")'—(R12Y)2( [DY(W)]'

3 (R,F+R F)' ([ll '(M")J(W—M ))
(R»')'+(R12*)'+2(R22)'( [D'(W)]'

(R '+R ')' ([D*'(M*)y(W-M*))

(28)

4
XF

3

R»'R»"+ R» R» +-2R22 R22 [D'(W)]'

(R,P+RRP)2 [Ds'(Mr)]2(W —Ms) )Y 22rz 22R

2 Rll Rli +R12 R12 +2R22 R22 [D (W)]

3 (RiiY+R22Y)' [DY'(MY)]2(W—MY) ~ 2~x ~Z'

& (R»")2+(R»Y)2+-'(R22Y)' [DY(W)]'FY—
3 (R Y+R Y)2 [DY'(MY)]2(W MY)3)

Ke now turn to the calculation of A j,"",A &,~", 3 2,~~, and A2, ~~. In a calculation of perturbations to a single-
channel bootstrap, one can use the invariance of the bootstrap solution under over-all scaling of all the masses in
the problem to determine the 3,'s in terms of the A, 's. 33 However, in a multichannel calculation the scaling
invariance of the bootstrap solution alone is not sufhcient to determine the A, s, and one needs more information
about the dynamics in the various channels.

Following our previous approximations, we shall obtain this dynamical information with which to calculate
the 3,'s by approximating the left-hand cut of the partial-wave amplitude by a sum of Born pseudopoles. Specif-
ically, we shall take the static approximation Born terms due to the I-channel exchange of the A, Z, and Vj*. The
corresponding residue matrices are given in Appendix B. On the left-hand cut we then have

8 p
(~)',= (29)

s &,&.»* 8'—M;—M;+M"
where M; and M, are the masses of the external baryons in channels i and j.34

"For details of this simpli6cation, see Ref. 4.~ For general discussions of the use of the bootstrap scaling invariance, see Refs. 18 and 28. The particular application to the
octet and decuplet bootstrap is found in Ref. 4.~ For the purpose of explicitly exhibiting the dependence of the pseudopole position on the external masses, we have written the pole
in fT{W'}j;g as being at W =M;+My —jII. After carrying out the differentiation, we again set M; =M~ =M~.
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A shift in external masses changes T(W) on both the left- and right-hand cuts. In particular, when the external

Z mass changes, we have to first order on the left-hand cut,

~(T)* ~(T)' I:B(p)]'(bt'+bt)
(bT) . , — bMz ext — bMz ext —p bMz ext

BMz e"t BM2 n (W M;—M—+M&)'
(3o)

%e are now in position to calculate the eGect. of the shift in T on the left-hand cut due to a change in external

Z masses. Using Eqs. (27), we find

g~x+, Zo, x-

WfY+ Y' Y =

0 0—Tr RzB'(P)
0 2 D&W2

bMz '-'(I, =+1,0, —1),
[D'(M')]'(W —Mz)& s=t~z pgeTr[RzRz]

0 0—Tr RrBr(P)
0 2 DYW

bM'-t(I. =+1,O, —1),
Tr[RR) [Dr'(Mr)]'(W Mr)~ —tr=2~z-, &

(31)

where bMz '"'(I,= +1, 0, —1) is the change in the external Z masses in the I= 1, I,= +1, 0, and —1 trZ channels,
respectively.

There is also a contribution to the dispersion integrals in Eq. (27) from the change in the external masses coming
from the right-hand cut of bT(W) of the form"

i
bMz=Tr Rz(ckz)r—

1
bM'= Tr R'(~')'—

RHC

RHC

(Nz)rbp Nz
dW'

W —M~

(Nr)rbp Nr
dW'

W' —MY

Tr[RzRz],

Tr[RrRr].
(32)

However, detailed numerical calculation of this contribution to bM using a left-hand cut approximated by pseudo-
poles yields the result that the right-hand-cut contribution of Eq. (32) is negligible compared with the contribution
from the right-hand cut given in Fq. (31).»

Noting from the I= 1 trZ states defined in Eq. (13) that

bMz '"'(I =+1)= 'bMz++ 'bMz' -bMz '-'(I =0)= 'bMz++ '8-Mz -bMz '*'(I = —1)= 'bMz +-'b V-z' (33)

we find from taking the contribution from changes in the left-hand cut given in Eq. (31) that the resulting A.
matrix elements can be expressed as

le

0 0—Tr RzB'(P)
0 2 D&W2

Tr[RzRz] It[Dz'(Mz))'(W —Mz) s =»rz ~e

0 0—Tr RrBr(p)
0 2 DY W 2

Tr[RrRr] k[D"'(Mr))'(W —Mr) s»rz ~e

ZZ — g XZ g YZ g YZ

In a few cases where we can compare the results of a
calculation of the A, 's by the method given here with
those obtained by using the scaling invarinance of the
bootstrap equations, such as in the S-E* reciprocal
"F. J. Gilman, Ph. D. thesis, Princeton University, 1965

(unpublished).

bootstrap, we 6nd that the A, 's from the two di6erent
methods are in fairly close agreement.

Now that we have explicit expressions for the
elements of the 3 matrix in terms of R~ and RY, we
are in a position to use a combination of theory and
experiment to numerically evaluate R~ and RY, and
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Tmx.E I. Values of the A matrix elements, det(1 —A1}, and
det(1 —A2) for r(FI~xA) =50 MeV, r(YI~~&)/r(Fp~a)
=9'PD WI =W'2=Mz+3MY and F/D=), $, and $.

F/D =
R11Z= —g AZ2/47r =
R12 ~gz.kg sZZ/47I

R22 = —2g,ZZ'/47I =
Rll
R12Y ——

R22Y—
ZZ

ZY

YZ

YY

ZZ

YZ

det(1 —AI}=
ZZ

A2.ZY =

det(1 —A2) =

—11~ 1

+9.0
—7.4

—17.2
—12.1
—8.5
—0.04
+0.99
+0.25
+0.06
+0.59
+0.00
+0.17
+0.22
—0.37
—0.09
—0.15
—0.59
—0.00
+1 53

—8.8
+10.8
—13.2
—17.2
—12.1
—8.5
+0.03
+0.66
+0.23
+0.06
+0.53
+0.05
+0.23

+0.19
—0.18
—0.07
—0.15
—0.53
—0.05
+1.52

—7.1
+11.6
—19.0
—17.2
—12.1
—8.5
+0.04
+0.43
+0.22

+0.06
+Q.41
+0,10
+0.38
+0.18
—0.10
—0.05
—0.15
—0.41
—0.10
+1.39

"J.J.DeSwart and K. C. Eddings, Phys. Rev. 128, 2910 (1962)."M. Gell-Mann, California institute of Technology Synchro-
tron Laboratory Report No. CTSL-20, 1961 (unpublished)."A. W'. Martin and K.. C. Wali, Phys. Rev. 130, 2455 (1963};
K. C. Wali and R. L. Warnock, ibid. 135, B1358 (1964).~ N. Cabibbo, Phys. Rev. Letters 10, 531 (1963}.~ M. L. Goldberger and S. B. Treiman, Phys. Rev. 110, 1478
(1958)."W'. Wilhs et a/. , Phys. Rev. Letters 13, 291 (1964).~ F. Gursey, A. Pais, and L. A. Radicati, Phys. Rev. Letters
13, 299 (1964).

thence A~ and A2. Direct experimental evidence for the
numerical values of the elements of R~ is, however,
rather poor. There is some evidence from the study of
hypernuclei that g zz'/4ir=10, " but this result is
inconclusive owing to uncertainties in the theoretical
analysis of the experimental data. Ke shall instead use
the values of g +z, g zz, and gz&z given by unitary
symmetry (see Appendix A):

g.~z= (2/&) Ã/(F+D) jg.~N,

g.z.= [2F/(F+D) jg.NN,

gKNz L(D F)/(F+D) jg NN

where F/D is the ratio of F to D type pseudoscalar
meson-baryon coupling in unitary symmetry. " The
value of g q~' given above from studies of hypernuclei
would indicate that F/D= ', . Bootst-rap calculations of
the baryon octet and decuplet also indicate a value of
F/D of -', to 2."Perhaps the best evidence on the F/D
ratio follows from the Cabibbo theory of weak leptonic
decays" together with the Goldberger-Treiman rela-
tion. ~ Again the values of F/D obtained are in the
range 3 to ~.~ More recently, there has been much
theoretical interest in the strong interaction symmetry
5U(6) and its variants, which predicts F/D= sz.42 Note

TABLE II. Values of the A matrix elements, det(1 —A1), and
det(1 —A2) for 1"( I p—+~h.}= 5Q MeV, I ( I'1*~71-5)/F (Y1*~7I.A)
=9'po, F/D=), and IVI =8"2=Mz+MY, Mz+3M, and inhnity.

R11' ——

R12
R22Z-
R11
R12Y ——

R22Y =
A I,ZZ ——

A ZY

YY

det(1 —A 1)

A2, ZZ ——

A 2e

det(1 —A2)

.VZ+cVY

—8.8
+10.8
—13.2
—17.2
—12.1
—8.5
+0.03
+0.46
+0.15
+0.02
+0.41.

+0.04
+0.46
+0.19
—0.12
—0.04
—0.07
—0.41
—0.04
+1.29

3Iz+3MI

—8.8
+10.8
—13.2
—17.2
—12.1
—8.5
+0.03
+0.66
+0.23
+0.06
+0.53
+0.05
+0.23
+0.19
—0.18
—0.07
—0.15
—0.53
—0.05
+1.52

—8.8
+10.8
—13.2
—17.2
—12.1
—8.5
+0.03
+0.78
+0.28
+0.08
+0.62

+0.06
+0.06
+0.19
—0.21
—0.08
—0.22
—0.62
—0.06
+1.71

that for F/D in the range -', to —', we have that Rizz
=V2g ~~g„~~ is positive and that g~~q' is small com-
pared to g ~~'.~ It is for this reason together with its
higher threshold that we neglect the ES channel in
the Z bootstrap. In what follows, we shall vary F/D
between 3 and 3 and observe the effect on the A
matrix.

In contrast to R~, we have relatively good exper-
imental results from which to compute R~. From
I'(Yi* ~ ~A) = 51.4~4 MeV" and Eq. (17), we
calculate Riir= —17.7&1.4. Values for P(Yi"~ irZ)
are somewhat more uncertain. Early measurements
gave P(Yi*~ i')/P(Yi* —+irA)=2 to 4%,~ in dis-
agreement with the predictions of (unbroken) 5U(3):
F (Yi*~ 7')/P (Yi* ~ irA) = 16%.4~ In a more recent
experiment, Huwe" obtains P (Yi*~ irZ)/I'(Y&~ ~ irA)
=9~4%, which with Eq. (17) yields R»"= —8.5~3.8.
SU(3) gives the sign of Ri2r as negative.

In Table I, the values of the A matrix elements for
F/D ratios of —,', —,', and a3 are given with Riir= —17.2
and Rzz = —8.5 corresponding to F(Yi*~zA)=50
MeV and I'(Yi*-+7rZ)/P(Yi~ —+irA)=9%. We have
used lVi ——$V2 ——M +3M~, which gives D functions
with moderate curvature and which go to a constant
at ininity. In order to test the sensitivity of our calcula-
tion to varying TV& and 8'2, we have in addition cal-
culated in Table II, for a fixed F/D ratio of —,', the two
extreme cases of using D functions with no curvature at

~ The coupling of the Z to the K1V channel remains very small
in broken SU(3};see Ref. 6.

44 M. H. Alston and H. Ferro-Luzzi, Rev. Mod. Phys. 33, 416
(1961).

4' R. E. Behrends, J. Dreitlein, C. Fronsdal, and B. W. Lee,
Rev. Mod. Phys. 34, 1 (1962).
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TwsLE III. Values of the A matrix elements, det(1 —AI), and
det(1 —A2) for I'(YI*~xh) =50 MeU, F/D=), O'I=Wg=M
+3MY and I'(YI*—+~X)/F(Yp~xA) =4 and 9%.

E$$

A]2
~22X=
@I IY-
RI2~ =
R22Y =

XX—

AI YY=

AI,YX=

det(1 —AI) =
XX—
XY-

A~YX ——

YY—
XX—

det(1 —A2) =

—8.8
+10.8
—13.2
—17.2
—8.1
—3.8
+0.03
+0.55
+030
+0.12
+0.41
+0.07
+0.28
+0.19
—0.20
—0.11
—0.19
—0.41
—0.07

1.41

—8.8
+10.8

1302
—17.2
—12.1
—8.5
+0.03
+0.66
+0.23
+0.06
+0.53
+0.05
+0.23
+0.19
—0.18
—0.07
—0.15
—0.53
—0.05

1.52

all, corresponding to H/'j. =W2= ~, or strongly curved
D functions, corresponding to Wr= Wa=Mz+M".
To check the sensitivity to the value of F(F&*~ mZ)/
F(Yr*~ sA), we have calculated in Table III the A
matrix for Ii/D= 2and F(Fr*~-mZ)/F(Fr*~ sA)
=4% and 9%, corresponding to the earlier and later
experiments for this branching ratio.

The first thing to be noticed about Tables I, II, and
III is that in all cases" the quantity

~

1—A&
~

is smalL
i.e., typically in the range 0.1 to 0.4, whereas

~

1—A~~

is typically in the range 1.3 to 1.7. Recalling that these
quantities enter the expressions for the corresponding
mass differences in the denominator, we see that the
BZ= 1 mass differences will be enhanced over the LU = 2
mass differences by a factor of three or more if we
assume that the driving terms for the two cases are of
approximately the same magnitude. Secondly, explicit
calculation of the enhanced eigenvector gives its direc-
tion as = —0.45M&~+5M&~ ——0 rather independently
of the particular values of the parameters chosen. We
then expect bÃrr=0. 4hMP to within about 20%.
Finally, since we know from other calculations that
typical driving terms are 1 to 3 MeV in magnitude, '"
we roughly expect

~
b3fP~ =5 to 20 MeV,

~

bM&r
~

=2
to 8 MeV, while without enhancement ~8M2z~ and

~
Mf mr

~

are of the same magnitude as the driving terms,
1 to 3 MeV.

These theoretical results are in rather good agreement
with experiment. One set of experimental values for

4' A strong enhancement of the b,I=1 mass difkrences is also
found using the broken SU(3) values for g Ax and g xx given in
Ref. 6.

the Z mass differences" is bM1~=M —M~ = —7.6
~0.4 MeV and F2~ ——M~ +M~ —2M""=1.9~0.4
MeV. More recent values are Bf1~=—7.89&0.12 and
bM~~ ——2.09&0.24.4' If we assume approximately equal
driving terms, then we may take (8Mp/5M2z), x, as
an experimental measure of the enhancement of the
hI = 1 mass di6erences over the hI = 2 mass differences.
For either of the experimental results above, we then
have an "experimentally measured" enhancement of
about a factor of 4 to 5, while the theoretical prediction
is an enhancement by a factor of 3 or more.

Experimental results for the V~* electromagnetic
mass differences are somewhat unsettled at present.
One experiment" gives bM1~ ——M~ —M~ = —17~7
MeU, while others4' give —4.3+2.2 and —2.0~1.5
MeV. Taking WIIj~= —8 MeV from experiment, the
direction of the enhanced eigenvector would predict
Rlfq"= —3 MeV, agreeing in sign with all the experi-
ments and in fairly good quantitative agreement with
the latter ones.

Looking at some of the finer details of the calculation,
we see from Table I that smaller F/D ratios, which are
favored by reciprocal bootstrap calculations of the octet
and decuplet, result in small values of ~1—A&~, and
thus more enhancement of the AI=1 mass differences.
Similarly, from Table II we see that curved D functions
lead to less enhancement. This could have been easily
predicted from Eqs. (28) and (34) where each A
matrix element is multiplied by a factor which is one
for a linear D function and decreases as D acquires
curvature.

Although Table III would seem to indicate that the
calculation of the A matrix is not sensitive to changing
F(Fr ~sZ)/F(Yr* —+~A), it should be emphasized
that the ~Z channel is important, especially to the
strong-interaction Z bootstrap. With only a xA. channel
for both the Z and F~*, we would have found that

~

1—Aq
~

=
~
1—

Am~ so that there would be no enhance-
ment of the mass differences transforming as AI = 1 over
those transforming as bI= 2.

Now let us note the e6ect of additional channels which
have been neglected. The most important of these is
likely to be the XN channel for the I'&*. It is clear
that in our calculation the effect of such an additional
channel will be to decrease the enhancement, for neither
the Z nor I'1* can be an exchanged or external particle
in the EN channel, so that changes in the Z and F~~
masses do not affect the XN component of the I'1~.
This can be seen more directly from the expressions for
the A matrix elements in Eq. (28). The addition of the
XN channel will not change the numerators of the
expressions for the A matrix elements, but the sum of
the squares of the coupling constants to the various
channels which appears in the denominator will increase.

4' H. C. Dosch et al. , Phys. Letters 14, 239 (1965).'8 P. Schmidt, Phys. Rev. 140, B1328 (1965).~ W. A. Cooper eI al. , Phys. Rev. Letters 8, 365 (1964); R.
Armenteros et al., Phys. Letters 19, 75 (1965).
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To check on the effect of the EÃ channel, let us
assume for the moment that the residue at the I'l~

pole in the J~= (—', )+ partial wave is the same for the
EX and aZ channels, as it is in unbroken SU(3)."
If we take F/D=-,', I'(V,*~ sZ)/I'(Yg*~ sA) =9%,
and D functions with 8'~=W2 ——M~+3M~, we 6nd
that

~

1—A~~ =0.43 with the EX channel present, as
contrasted with ~1—A~~ =0.23 with the EE channel
absent. There is thus still a strong enhancement effect,
and in actuality we expect the EX channel to have less
effect than even this.

Since it is the reciprocals of
~

1—Aq
~

and
~
1—A2~

which enter the expression for the mass difI'erences, a
calculation of the hI = 1 mass difkrences will necessarily
be rather sensitive to small changes in the small
quantity

~

1—A& ~, but not to small changes in
~

1—Am ~,
which is of order one. A better determination of A~ and

~

1—Aq~ in order to eliminate the uncertainties in our
A matrix calculation requires much better bootstrap
calculations to start with than have so far been
performed.

Iv. THE R AND R* SYSTEM

In this section we attempt a calculation of the self-
consistent terms contributing to the electromagnetic
mass differences of the ™0-™and ~ - ~ baryons in a
manner very similar to that of the previous section.
We consider the and * to be strong interaction
bound states and resonances in pseudoscalar meson-
baryon scattering amplitudes. Both the " and * have
been obtained as bound states (resonances) in bootstrap
calculations of the whole baryon octet and decuplet. ' ~
However, detailed bootstrap calculations of the and

* which take into account the breaking of SU(3)
symmetry are in a much poorer state than those for
the E and S*orZ and Y~*.The work of Dashenet uk
on coupling constants in broken SU(3) indicates that
one must take account of at least the two-body m and
EZ channels for a bootstrap, and the m, E'A, and
EZ channels for a "~ bootstrap in broken SU(3). In our
calculation, we shall rely heavily on the SU(3) sym-
metric bootstraps of the octet and decuplet, but shaH
break the SU(3) by noting the changes in masses and
coupling constants of the baryons and mesons and in
particular by nelgecting the q channel present in the
SU(3) svmmetric bootstrap of the and "*.We then
consider the ™and ™*to be bound states or resonances
in the three pseudoscalar meson-baryon channels with
the lowest thresholds, namely, the s " channel (threshold
1460 MeV), the EA channel (threshold 1610 MeV),
and the EZ channel (threshold 1690 MeV). We shall
thus assume that the can be obtained as a J~= (—',)+,
I= 2, x™,EA, and XZ bound state with a mass of 1320
MeV, and similarly the Z* as a J~= (a)+ I=-'
KA, and EZ resonance with a mass of 1530 MeV.

We now proceed to calculate the contribution of
self-consistent terms to the ™and * mass diAerences

'0 Y. Hara, Phys. Rev. 135, 81079 (f964).

arising from the presence of the and * in the recip-
rocal bootstrap. It should be noticed from the outset
that here we are not dealing with a closed - ~ reciprocal
bootstrap subsystem as was the case for the Z-F&*

system. In fact, the most important x channel is
EZ in which the and "~ are neither exchanged nor
external particles. First, however, let us address our-
selves to the question of whether the and * self-
consistent terms are su6icient alone to provide an
enhancement of the ™and ~ electromagnetic mass
difI'ere nces.

The partial-wave-scattering matrices we deal with in
this section will then be 3X3, with channel one being

scattering, channel two EA scattering, and channel
three XZ scattering. The A is an isotopic spin singlet
and the m+, x, m and Z+, Z, Z make up isospin
triplets which we deane as in Sec. III. The, ™*,and
E are all isodoublets. Writing them in the form of
isospinors, we deine

0 /~~40 ( +0)
(35)&E-)

%ith the above de6nitions, we label the partial-wave
amplitudes by the bound state which occurs in that
partial wave, e.g. , the unperturbed (by electromagnet-
ism) partial-wave amplitudes in the J~= (a)+, I= &,

I,=+a' and —
2 channels are denoted by T"'(W) and

T= (W). In the absence of electromagnetism, we
assume that both T~ (W) and T-' (W) have poles at
the unperturbed mass, M",

T-(W) = Rs/(W —M'=) (36)

with E.= related to the coupling constants dehned in
Appendix A by

3g @~2

1
+g~g ZgKAg

4n.

+~~gvRZgZL ~

gKA

3grg ggKX"

+~3gKA "gKZ

.—3g~=-ggKzZ +~3gKz=gKz"« 3gKz

(37)

Similarly, in the J~= (-', )+, I=a', I,=+a' and ——,
'

channels, the corresponding partial-wave amplitudes,
which are denoted by T"""(W)and T-' (W) have poles
at the unperturbed * mass, M-', of the form

RN*
Rll R12 R18

T=""(W) = = Egg="*
S"—M-"* O' —M""'

R32""'

R23=' .

(3g)

The "*can only decay strongly into vr . The width for
*—+ x™is related to R»™'by"

I'(.*~ s. )= —
2pu (M=') Ru='.
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The magnitude of off-diagonal residues is fixed by
~R;,

~

= (R;;&,;)'~2, and the relative signs of the " and
* coupling constants needed to determine the signs

of oR-diagonal residues will be taken from SU(3)
predictions.

When the electromagnetic interaction is turned on,
T""'(W) and T= (W) will no longer have a common pole
at W=M=", but will have poles at the ' and ™masses,
M="' and M=, respectively. We write bM""'=M"' —M-""

and bM=" =M™—M"" as the ™'and mass shifts,
respectively. Similarly, T="(1V) and T=' (W) will have
poles at M="*' and M""* when the electromagnetic
interaction is turned on, and we define the * mass
shifts: bM-""*'=M="*'—M-""' 5M""' =M="* —M=*.

Since both the and * are isodoublets, there is only
one mass difference to be measured in each multiplet.
We define

SM=-=M=-'-M=- = &M=-'-bM=-

m =-*=M=-*'—M™'=m =-*'—m=-* (40)

where the A's have the same meaning as in Sec. III
with a suitable transposition of superscripts, and the
d's again represent driving terms. "We then define the

If we wrote the and ™*mass operators in isospin
space as sums of parts transforming according to
irreducible representations of the group of isospin
rotations, then we would find that 8M=" and 8M-""* are
the coefIicients of the AI = 1 parts of the mass operators.

As we have mass differences transforming according
to only one irreducible representation of the isospin

group in this case, we may define

5M-=A "-8M=+A =-" bM- +A ==5M-"+d-"

6M='=A, =.*=-bM=-+A;"*=-"bM="*+A,=."=-8M=.+d=', (4l)

A matrix for the ™-™~subsystem as

A ="=

A
M$&

A ™~~w* A ="="+A,==

A =*="' A,=*=+A,""'="

A =="*

(42)

As in Sec. III we shall use the approximation of
keeping only the singularities of the I-channel ™and
"* exchange amplitudes which are close to 8'=M=".
Taking the static limit, we approximate these short
cuts near 8'=M=" by poles. For the purpose of calculat-
ing the A matrix, we shall also neglect differences in
the external baryon masses, setting them all equal to
M"". The use of the static approximation is, of course,
less justifiable here than in Sec. III since the pseudo-
scalar mesons involved in some channels are K mesons
whose mass is an appreciable fraction of the baryon
masses. However, in spite of our rather rough model,
we still expect to obtain at least a good qualitative
indication of the effect of the self-consistent terms on
the mass differences.

We take for the D functions an approximation
similar to that used in the previous section, namely, in
a representation where D(W) is diagonal at the bound
state or resonance mass, we assume

and
D=(W) = D=(M=)+D=(W)1

D='(W) = D-"*(M=*)+D='(W)1

(43a)

(43b)

where 1 is the 3)&3 unit matrix and

D=(W) =D"'(M=") (W M=")—
X (M-""—Wg)/(W —Wg), (44a)

D="(W) =D=" (M-""') (W M=')—
X (M="—W2)/(W —W2) . (44b)

Equation (8) written for the . and .* mass differences
then simplifies to

8M=' = =

1
Tr R=—

d8"
fm[(D=-)'r T=' =--](W')

„„W'—M=

[D='(M=)]' Tr[R=R=]
(45a)

i dw/"
Tr R= — Im[(D=")'bT=*' =' ](W')

,„~, W' —M=*

[D="(M=')]' Tr[R='R="]

Using the above approximations, exchange of a particle of mass M then leads to a pole in the partial-wave
amplitude T(W) at W=2M=" —M*. Because of conservation of strangeness, . and "~ exchange can only occur in
the channel m ~ ~ . Using the Lagrangian density in Appendix A and the static crossing relations to compute the
contribution of exchange of the various and "*charge states to T="', T=, T=", and T=-*,"we find for the A

"VVe have, however, put terms from shifts in the masses of barons other than the " and ~ e.g. external Z mass shifts into
the d's. y

~ ~ y
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matrix elements defined in Eq. (41),

1 (5/9)(~ =)' [D=(W)]'
"Z—

g

3 Tr[R=R=] [D-"(M=)]'(W—M") Rr=RR[=- )MR

4 (5/9)R ~R "-"' [D-(W)]'
Z~

3 Tr[RaRa] [D='(M-)]'(W —M-) w-R)]r=. -R[=.*

(5/9)R[~='E(("" [D"""(W)]'

Tr[R="R="] ([ D=" (M')]''( W—M=')

(46)

A"Md w$
(5/9) (~ =*)' LD='(W)]'

Tr[R="R-"]([D-"(M=")]'(W—M"))-
Turning to the calculation of A, ™~w and 3,="*-", our method is again very similar to that in Sec. III. Ke erst

approximate T(W) on the left-hand cut by a sum of pseudopoles as in Eq. (29). There is then a change in T on

both the right- and left-hand cuts due to a change in the external baryon masses, but again the contribution of the
right-hand cut turns out to be negligible. " We then derive the analogs of Eq. (34) for the shift in the .or"
masses due to a change in the external masses. These are

2 0 0'

—Tr R="B="(p) 0 0 0

.0 0 0- p [D=(W)]'

\ [D ()M]' (W""M=))—+Tr[R=R=]

2 0 0

—Tr R-'B="(p) 0 0 0

I 0 0 0) ~ [D=-*(W)]'

k[D" '(M=')]R(W —M=')) )r=Ry= ~r~

(47)

The number of possible Born poles due to exchange of
particles in the u channel makes the computation of the
B(p)'s and A matrix elements somewhat more com-
plicated then in the previous section. There the A, Z,
and I'~* were the only members of the octet and
decuplet which could be exchanged. Here the
A, Z, I'&*, E, and E* may be exchanged. The various
Born residue matrices are tabulated in Appendix C.

Ke have numerically evaluated our expressions for
the 3 matrix elements 6rst in Table IV using the
SU(3) symmetric coupling constants with F/D=-,',
g,R[R['/4n-, and I'("*~R. )=7.5&1.7 MeV assumed
given, and secondly in Table V using the broken SU(3)
coupling constants of Dashen et al. ' In both cases„we
have used linear D functions.

There is clearly no enhancement of the mass diGer-

TABLE IV. Values of the residue and A matrix elements for the
and "* mass differences using a linear D function, I'/D=~

and SU(3) symmetric coupling constants.

TA&LE V. Values of the residue and A matrix elements for the
and "~ mass differences using a linear D function and the

broken SU(3) coupling constants of Dashen et al. (Ref. 6).

R11-""

R22="

R33="

R12="

R13""

R23=

= —4,8
= —0.5
= —44.4
= —1.5
= —14.5
= —4.7

A ="-"
x

x

=+0.00
= —0.01
= —0.03
= —0.02

Rll
MQ

R22-" =
R33- =

gd(R12- =
R13=" =
R23-"

A ™=
d

—7.4
—7.4
—7.4
—7.4
+7.4
+7.4
+0.09
+0.05

det(1 —A) =+0.93

R11-"———3 4
R22™= —0.1
R3g=" ———9.6
R12- = —0.6
R13-" ———5 7
R23-"= —1.0

A, ==" = +0.02
A, ==*= —0.16
A, ="*== —0.05

A "-"*-""*= —0.05

R
R22='
R33="*

R

—74
—11.4
—3.7
—9.2
+5.2
+6.5
+0.22

+0.01

det(1 —A) =+0.80



1108 F REDERI CK J. GI LMAN

ences due to self-consistent terms from a -™*reciprocal
bootstrap. Changing the Ii/D ratio has only a small
e6'ect on the A matrix elements and on det(1 —A), and
using a curved D function only makes the elements of
the A matrix even smaller than they are in Tables IV
and V.

A glance at the residue matrices R"" and R""* in
Tables IV and V shows immediately why there is no
enhancement. If the values of the coupling constants
given there are at all correct, then the x component of
the and * is not the largest component. For the in
particular, it is the XZ channel which overshadows all
the rest of the two-body channels. Thus, since changes
in exchanged or external ™or * masses eGect only the
small m component of the or *, the self-consistent

terms have only a small eGect on the or ™*masses.
This conclusion is very general and could only be
changed by a very drastic departure from the predic-
tions of SU(3) or the results of Ref. 6 in broken SU(3)
for the coupling constants.

However, as already noted in Sec. II, we find that the
'- —mass diGerence can be quite large even though

it is not enhanced by self-consistent terms from a ™-*
reciprocal bootstrap. This is precisely because of the large
EZ component of the " which both makes the possible

-"*self-consistent terms small, as shown above, and the
possible efFects of external Z mass shifts large. Proceed-
ing just as in the calculation above of the eGects of
external mass shifts, we find with our approximations
that the contribution to bM=" of external Z mass shifts is

0 0 0'

—Tr R=S=(P) 0 0 0

5M==M"-"' —M-"" =Q
p

—',(Ms —Ms ) . (48)

Using the experimental value for M~ —M~, linear D
functions, and SU(3) symmetric coupling constants, we
find a contribution to 3E~ —M-" of —6 MeV. A
moderately curved D function reduces this to about
—5 Mev. Using the broken SU(3) coupling constants
of Dashen et al. , slightly increases this contribution to
—6 to —8 MeV, depending on the D functions used.

Stated in terms of the A matrix defined in Sec. II,
we have just shown that A-~ 1 due to external Z
mass shifts. Calculations of the eGects of other external
mass shifts and of the effects of shifts in exchanged Ã,
A, Z, E*, and F~* masses give contributions to M-"'
—M=" of the order of 1 MeV."Thus our rough model
calculations indicate that most of the observed -™
mass diGerence of —6.5~1.0 MeV is explained by
external Z mass shifts in the EZ channel of a boot-
strap. A calculation of the *-™~mass diGerence
where the EZ channel is not dominant requires a more
extensive analysis of the driving terms, such as that
carried out by Kumar. '~

V. SUMMARY AND CONCLUSION

In this paper we have considered the contributions of
the self-consistent terms arising from strong interaction
reciprocal bootstraps to the electromagnetic mass
diGerences of the Z, Yj*, , and ™*baryons. We have
particularly considered the eGects of the breaking of
SU (3) symmetry on the octet enhancement calculations
of Dashen and Frautschi. 4

In Sec. II we saw how the breaking of SU(3) sym-
metry is rejected in an important asymmetry of the A
matrix which summarizes the effects of the self-

"A. Kumar, Phys. Rev. 140, B202 (1965).

consistent terms arising from shifts in the masses of
members of the octet and decuplet when acting as
exchanged or external particles in the reciprocal
bootstrap. This asymmetry is directly connected with
the splitting off in broken SU(3) of the N and N~ and
Z and F~*, but not the ™and ™*,from the rest of the
octet and decuplet to form separate, closed reciprocal
bootstrap subsystems.

As a particular case, we considered in Sec. III the
Z-I'j~ reciprocal bootstrap subsystem, In contrast to
the X-X*subsystem where no enhancement is found in
broken SU(3),' we found that the self-consistent terms
arising from the strong interaction reciprocal bootstrap
of the Z and Y~* result in an enhancement by a factor
of 3 or more of the BI=1 over the AI=2 electro-
magnetic mass differences of the Z and I'i*.

If we take the experimental value of (Ms —Ms )/
(Ms++Ms —2Ms') as a measure of the enhancement,
then we find that the Z mass differences transforming
as AI= 1 are experimentally found to be enhanced by a
factor of 4 to 5. Also, from the direction of the enhanced
eigenvector, we predict Mr+ —M" =0.4(M~ —Ms )
=—3 MeV. It is, in fact, very dificult to explain
theoretically the large magnitude of M~+ —M~ = —8
MeV without some sort of dynamical enhancement
mechanism, since typical driving terms are on the
order of 1 or 2 MeV. We regard the enhancement
prediction as a major success of the calculation, although
we are unable to predict the exact value of the enhance-
ment due to a lack of knowledge of the strong interac-
tion physics of the Z and Fj*.

In Sec. IV we attempted much the same type of
calculation for the " and ™*electromagnetic mass
diGerences. Here, however, we were not dealing with a
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closed subsystem split off from the rest of the octet
and decuplet. The m component of either the or ™~
is not the largest component, and ee found that the
self-consistent contributions to the mass differences
arising from changes in the masses of the and
acting as exchanged and external particles did not lead
to an enhancement of the mass differences, However,
we found that there is an important contribution to the

mass difI'erences from changes in the mass of external
Z's in the EZ channel, so that the ~- mass difI'erence
follows the enhanced eigenvector of the Z+-Z mass
difference. This leads to a contribution of both the right

sign and magnitude to explain the observed large
mass difference.
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APPENDIX A

The rationalized, renormalized coupling constants for the interactions of the members of the pseudoscalar
meson octet with the baryon octet are defined by the interaction Lagrangian density (the space-time dependence
is suppressed),

&r =g.are (&ys~N) ~+sg.~z(XysA) +ssg. z(Xzy XsX) ~+sgxxz(Xys~ &)&+&gi's= (ZVs~--) ss

+Zgxzg(Z'rs's'+)Jf +&gxsz(~~rsA)Jf +&gxNh(XrsA)K+I c q (A1)
where

X=(
I

Z =(, etc.
&~i

'
I E

%'ithin the eightfold way, these coupling constants are related to one another as follows:

2 D 1 D—3F
g)rAZ gx VN ) gKA g)rNN )

VS F+D v3 F+D

g~ZZ= g~NN )
F+D

D—F
gKNZ g)rNN )

F+D

gKZZ= —g~NN )

1 D+3F
gKNA g~NN )

v3 F+D

(A2)

g-=-=-= DF D)/(F+D)3Z-»—
where g»'/4z = 14.8, and F/D is the ratio of F to D type couplings. ""

APPENDIX B

The residue matrices at the pseudopoles due to Z and Y1~ exchange in the Z and I'1* channels are given in terms
of the elements of the direct channel residue matrices defined in Eqs. (15) and (16) by

1. 0 0
Bz(A exch. ) =+

3 0 —R11~

R11" —R12
Bz(Z exch. ) =+

R12 2R22

4 R11~
Bz(I'i* exch. ) = ——

3 —R12~

2 0 08"(A exch. ) = ——
3 0 —R11~

Br(Z exch. ) =-
R12 2R22

1 R11~ —R12~
Br(Vi* exch. ) = ——

3 —R ~ -'R

(B1)

"P. Mcwamee and F. Chilton, Rev. Mod. Phys. 36, 1005 (1964).
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APPENDIX C

In this Appendix we write down the residue matrices of the Born pseudopoles needed in the calculations described
in Sec. IV. For compactness of the resulting expressions, we shall use the BBH coupling constants defined in
Appendix A and define the ABII coupling constants as follows: Writing E ~N' to denote the residue at the E*
pole in the J~= (-,)+ partial-wave amplitude for z.Ar scattering, R qr to denote the residue at the I'q* pole for ~A

scattering, etc., we define

R.~" —— 3h~.K—./4~,
RKz" = 3—h~ezK /4n, .

R =""'=—3hxex 2/47r,

RK~""*= —hzegK'/4s. ,

RKz 3h- +zK /4& y

R z"'= —hrg '/4~,

R zr"= —2hrz '/4z-

RK~r'= —2hr~K'/4s. ,

RK-. r'= —2h„.K2/4~

(C1)

In unbroken SU(3) syrmnetry, "
hg.g~'.hgezK' .bring~. hr*z, .hregK. hr~-. K.' h-. .-. ~:h-. *pK. h-. .zK =v2: —v2: —v3:+1:—1:—1:+1:—v3: —1. (C2)

Using this notation, our Born pseudopole residue matrices are as follows:

2~g

1 1
B=( exch. )=-— 0

34m
0

0 0

0 0, B='(" exch. )=—2B"-"(" exch. ),
0 0

((:3a)

i0
1 1

B=(1V exch. ) =-—0
34~ —3gzwzgzxx

3gKvzg—KÃJ B-""'(Xexch. ) = —2B=(X exch. ),
+gKlvz

(C3b)

1 1
B=(A exch. ) =——

34m

0

0

gxAzgKA

—g~azgzw"-

B"='(A exch. ) = —2B=(A exch. ), (C3c)

0

B-(Z exch. ) =-— 3g.gzgKz=3'
2g zzgKz=

3g~wzgzz=- —2g zzgzz=

B="'(Z exch. ) = —2B-""(Z exch. ), ((:3d)

h„-. -. ' 0 0'
4 1

B=("~exch. ) = ——— 0
3 4m-

0 0, B='("*exch. ) = 4B-""( * exch. ), (C3e)

0 0 0)

4 1
B=(V~* exch. ) = ———43hr J„hr-.K

34~ .—2hyz hy„-. g

v3hyg hy„-. g —2hyz~hy-. g

0 B='(Yq* exch. ) = 4B="(Vq* exch), (C3f)

0 0 0

.0 0 —4k~ ~zg

4 1
B=(Ã* exch. )= ———0 0

3 4m.
B"'(N~ exch. ) =-', B=(X~ exch. ) . ((-3g)


