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Nonrelativistic Motion of Particles in Strongly Bound 8 States~
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%e consider, for some different kinds of potentials, the mathematical question: Can particles in the
ground state be strongly bound and still move nonrelativisticallyP As is well known, this is possible for a
properly chosen square mell. %e show, however, that this is not possible for a Yukawa potential, nor for a
purely attractive superposition of Yukawa potentials, nor for a Coulomb potential. For an exponential
potential this is possible; however, the criterion for nonrelativistic motion of two particles of mass M in an
exponential potential of range m ' is (mM ')'~'&&1, rather than mM '&&1 as might be expected naively. The
arguments used are elementary, and rely on exact solutions to soluble problems.

1. INTRODUCTION

HE possibility that the strongly interacting
particles are composite objects whose constituents

are quarks or other triplets is worth considering as a
basis of the SU(3) and SU(6) symmetries which have
been helpful in correlating information about low-lying
states for baryons and mesons. If triplets exist they
are probably sufficiently massive so that they must be
strongly bound in baryons and mesons. For a two-body
bound state with constituents of mass M, we will take
strong binding to be a situation where the binding
energy 8 2M, so that the mass of the bound state is
much smaller than the mass of the constituents; how-
ever, the value 2M is not essential; 8 M would lead
to the same conclusions. The SU(6) symmetry seems
to be most helpful for static properties such as masses
and magnetic moments, and, on the theoretical side, it
seems to be dificult to combine the SU(6) symmetry
with I.orentz invariance, both of which may indicate
that the triplets move nonrelativistically.

These remarks lead us to the question: Is strong
binding compatible with nonrelativistic triplet motion? '
There seems to be some misunderstanding in the recent
literature' concerning this question, in particular for
a Vukawa potential, which is the type of potential which
one expects from the nonrelativistic limit of quantum
field theory. Because of this misunderstanding, and be-
cause the question is important, even though ele-
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'If there are strongly bound heavy triplets of mass M»m„

say, which move relativistically, then these triplets will be con-
6ned within a radius M '« the size of strongly interacting particles,

m, ', and thus would constitute only the core or nucleus of the
baryons and mesons. In any case, one can expect a "cloud" of the
known mesons to play some role at distances of ~m, '. The way
in which the triplet and meson cloud structures co-exist in baryons
and mesons is an important question mhich, however, we will not
consider in this article.

~ G. Morpurgo, Physics 2, 95 (1965), and unpublished reports
by other authors.

mentary, we will make some elementary remarks con-
cerning the mathematical question: Given certain
specific potentials, can particles in the ground state be
strongly bound and still move nonrelativistically? At
the end, we will say something about the relevance of
this mathematical question to possible strongly bound
states occurring in nature. For simplicity, we consider a
two-body bound state in the usual reduced one-body
form in the center-of-mass frame of reference, and
assume the particles are spinless. Because it is the
case of most interest, we let both particles have masses
3f and consider only the ground state, which is an
S state. We take h=c=1. The radial Schrodinger
equation for an S-wave bound state is

u" (r) —M V(r)u(r) =3'(r),
where the wave function P(x) = ~x~ 'u(~x ) for an S
state, V(r) is the (spherically symmetric) potential,
and B&0 is the binding energy.

2. SQUARE-WELL POTENTIAL

For a properly chosen attractive square-well potential

V(r) = —Vp8(R —r), Vp) 0,
8(x) = 1, x)0,
8(x) =0, x&0,

the bound particles will move nonrelativistically even
for strong binding, ' because if the binding is strong
enough, the wave function of the lowest state can be
taken, to a good approximation, as a sine wave,

u(r) = (const) sin(w r/E),
and the momentum will be approximately P=xE. '
which can be made to satisfy the nonrelativistic condi-
tion M 'p«1 provided R is chosen so that 3fR))1.
For the square-well potential, the uncertainty principle
leads to the same conclusion: For strong binding the
particle is known to be in a sphere of radius R, and m@h

3 Y. Nambu, in Symmetry Principles at Hig&s Energy, II, edited
by B. Kursunoglu, A. Perlmutter, and I. Sakmar (W. H. Freeman
and Company, San Francisco, California, 1965).
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good probability caN appear amy(ohere inside this sphere,
and thus, by the uncertainty principle has momentum

p B'.
The arguments just given for the possibility of

strongly bound nonrelativistic particles depend on the
shape of the potential and cannot be applied for an at-
tractive Yukawa potential, —Vor 'e ", Vo& 0, of
range m ', nor for any purely attractive superposition
of Yukawa potentials, nor for an attractive Coulomb
potential. Further, although for an exponential poten-
tial, —Voe™,Vo&0, the range m ' can be chosen so
that strongly bound particles still move nonrela-
tivistically; the condition for this is (mM ')"'«1,
rather than mM '&(1 as would be surmised from a naive
application of the arguments of the last paragraph.

3. COULOMB AND YUKAWA POTENTIALS

Since, according to the notion of range used for
Yukawa potentials, the Coulomb potential has in6nite
range then if strongly bound particles must be rela-
tivistic for a Coulomb potential, the same will be true
for the Yukawa potential and for attractive super-
positions of Yukawa potentials, as they have shorter
range and will bind particles in a smaller region than
the Coulomb potential. 4 Let the Coulomb potential
energy be

V(r) = —Gjr.
The ground-state wave function for equal-mass

particles is

where the binding energy and potential energy are equal
in absolute magnitude,

~
V(ro)

~

=B, since that is where

the radial wave function has its inQection and changes
from oscillatory to exponentially damped behavior.
For the Coulomb potential, strong binding, 8 23',
requires 6' 8, and gives r() V2M ', which agrees
qualitatively with the estimates found above. Another
rule of thumb for such potentials is that the particle is
located approximately at the position r where N(r)
has its maximum. For the Coulomb potential, this rule
leads to r =2(MB) '~' VZM ', for strong binding,
in qualitative agreement with the other estimates.

4. EXPONENTIAL POTENTIALS

The situation as concerns strong binding and non-
relativistic motion of constituents for an attractive
exponential potential differs from that for the Coulomb
and Yukawa potentials. Here, again, since we know
the exact wave function, it is simple to study what
happens. For

V(r) = —Voe "" Vo&0,

the ground-state wave function' is

(r~4MV, '('
Q(r) = (const) J(4)((s/ )'&

) (
e

&E mm

~here the eigenvalue condition relating 8 and Vo is

J(4sreg )'I~((4MVp/m ) I )=0.N(r) = (const)r exp) ——,'GMr j
= (const)r exp —(MB) ')2r

For the ground state, we want the erst zero of the
where B=x'O'M. For strong binding, B 2M, (MB)"' Bessel function. For strong binding and a long-range

KM, and potential, (4MBm ') '"»1, and we can use the formula'

0

M(r)'dr N(r)'r dr
xo—v+(1.86)v ~ +O(v 'I )

for the 6rst zero of J.(x) for large v. We use r as our
estimate of the position of the particle. This is found
using the formula ~

Neglecting numerical factors of order 1, p (r) '~M,
so that the particles are relativistic. The virial theorem,
which states that the kinetic energy equals one-half the
binding energy also leads to M 'p'=2B, or p

M' for
strong binding.

Why is the range m ' of a Yukawa or exponential
potential not relevant to the size of a strongly bound
stateP The answer is that although the bound particIe
is surely inside a sphere of radius m, ', for strong binding
it will remain, with good probability, inside a smaller
sphere of radius M ' (for M)m). The uncertainty-
principle estimate then leads to p M rather than
p m. A rule of thumb for monotonically increasing
attractive potentials is that the strongly bound particle
in its ground state remains inside the distance ro

See the Appendix for a demonstration of this.

x =v+(0.81)v"'+O(v '")

for the 6rst maximum of J.(x) for large v. Then, for
(4MBm-') 'I'»1,

~ E. Kamke, Digerentialgleichungen, Band I: Gm ohnliche
Digerentialglek hungen (Chelsea Publishing Company, New York,
1959), pp. 403, 422.

6 G. N. Watson, A Treatise on the Theory of Bessel Functions
(Cambridge University Press, Cambridge, 1944), 2nd ed. , p. 516.

7 Reference 6, p. 521.
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and

or
r„, '—(1.05)2(4mMB)

p
r res~ (mM )

M M

for strong binding. The estimate based on the inAection

ro is qualitatively the same, ro=(1.86)2(4mMB)
These considerations hold for any purely attractive
superposition of exponential functions, 4 with the lowest
mass playing the role of m above, for example, the
difference of two Yukawa potentials of equal strength,

Ere 1 r'e
K e

—ar

Vo&0, my&my.

This last example is a boundary situation, since for the
difference of two Yukawa potentials where the repulsive
one is stronger,

e m 2'r

V(r) = —Vg +V2—,V2& Vg& 0, m2& mg,
r r

the potential has a zero at Ro= (rm2 —m~) ' ln(V2Vq ').
A bound particle will be located at distances greater
than this; therefore pM '&(MRO) ', and since m~, m2,

(V2Vr ') can be chosen to make (MRO) ' small, the
bound particles can move nonrelativistically in this
potential, even for strong binding. This last example
shows that superpositions of Yukawa potentials which
are small or repulsive at the origin and have their
minima suf6ciently far from the origin can lead to non-
relativistic strong binding.

Finally, we mention that Eden and Goldstone'
considered a problem in the context of nuclear physics
which has some similarity to the problem we discussed
above. Their problem was to see how a charge form
factor F(r) which is a superposition of exponential or
Yukawa functions of range &m ' could lead to nuclei
whose size E0&&m ', as is the case for heavy nuclei.
They pointed out that such functions F(r) must have
oscillatory Laplace transforms P(a), and gave as ex-
amples r"e "which have maxima at r=nm '.

values can the parameters in this potential assume? Nor
did we ask the more dificult question: Under what con-

ditions, if any, can the interactions between strongly
bound particles be represented by a potential? We plan
to study these questions, using the.V-quantum approxi-
mation, ' in a separate article. We considered the
Yukawa and related potentials in the present article
because they seem likely to appear in the nonrelativistic
limit of field theory.

Note added in proof Prof.essor S. T. Epstein has

pointed out (private communication) that the virial
theorem for a central potential gives a simple demon-

stration that the kinetic energy is greater than the bind-

ing energy in a purely attractive superposition of
Yukawa potentials. This gives another argument that
the kinetic energy in such a potential is greater than
the kinetic energy in a Coulomb potential which gives
the same binding energy. The argument sta, rts from the
virial theorem

BV
2((2M)—'p') — r =0.—

Br

For a purely attractive superposition of Yukawa
potentials,

e—ar

V(r) = p(a) dn, p(n) &0.
0 r

Then

(
BV oo

r—= —(v) — p( )e "d ))—(v),
Br 0

and
((2M) 'p')&B.

We thank Professor Epstein for allowing us to quote
his argument.
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S. CONCLUDING REMARKS

We conclude with some remarks about the relevance
of the observations above to possible strongly bound
states occurring in nature. In this article we considered
a mathematical question: Given a potential of some
form, can, and if so under what conditions, pararne-
ters be chosen so that particles can be strongly bound
and still move nonrelativistically? We did not consider
the physical question: What is the form of the potential
which acts between strongly bound particles and what

R. J. Eden and J. Goldstone, Nucl. Phys. 49, 33 {1963).

APPENDIX

Here we will give a simple qualitative argument to
show that for given binding energy B&0 the ground
state in a Coulomb potential, V(r)= Gr ', has —a
larger size than the ground state in a Yukawa potential,
V'(r)= —G'r 'e ", of range m ' whose strength G'
is chosen so that the ground state has the same binding
energy B. We will use the inflection to characterize the
size of the state. Our argument will show that the in-

~ Q. W. Greenberg, Phys. Rev. 139,81038 (1965) and Bull. Am.
Phys. Soc. 10, 484 {1965).
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Rection ro for V(r) is greater than the inRection ro'

for V'(r). Consider a third potential

V"(r) = —G(exp(rNG/B) jr 'e

which has the same range m ' as V'(r), but a greater
strength so that it passes through the point (ro, B)—
where the binding energy plotted negatively intersects
V(r) Fo.r r(ro, V"(r)(V(r), so that the binding
energy B"of the ground state in V"(r) is greater than

B. Therefore the strength G' of V'(r) necessary to give

binding energy B is less than GLexp(mG/B)g and V'(ro )
= —8 occurs for ro'&ro as was to be shown. This same
argument shows that for given binding energy the size

of the ground state in a Yukawa potential of range m '
is larger than that in a Yukawa potential of range
(m') ' for m')m. A similar statement holds for any
family of monotonically increasing (attractive) poten-
tials characterized by a single range parameter.
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We consider here the masses, decay rates, and decay spectra of the octet of 0 mesons, the nonet of 1
mesons, the X(960) resonance, and a proposed q~(1620) resonance having the quantum numbers of q(550).
We use spin-unitary-spin symmetry and nonet symmetry, so that the mesons fall into 36 states, combining
an SU(6)1, with an SU(6)N. Further, we fix the strength of the couplings of the SU(3) octets in the 36
with respect to the SU(3) singlets by assuming that the form of the coupling remains unchanged when we
include the singlet states. We are then able —after making a particular choice of Hamiltonion —to predict
the masses (M;,M,+,jII,',M~'+,M& ) and the decay rates j. + —,F~ + —,F~ + —,using as input the
masses of the octet of 0 mesons and (M~,M„).These predictions are in reasonable agreement with presently
existing experimental data. We further discuss related meson decays using the above scheme to eliminate
the arbitrariness in the relative coupling strength of the singlet states. Specifically we consider V —+ P+P,
V ~ 3P, V —+ P+y, V ~P+P'+y t discussing C noninvariance and S-wave pion-pion resonances and
their effect in (cy,@)—+ m+m yj, V -+ l++/, P ~ 2y, P ~P'+P"+y, and P —+ l++l +y. We use the model
of Gell-Mann, Sharp, and Wagner and give invariant-mass spectra for the three-body decays.

INTRODUCTION
' "N the present work, we consider a theory in which
~ ~ the eight 0 mesons, the nine 1 mesons, and a
possible ninth 0—meson, are all equivalent in the
absence of symmetry-breaking forces. Ke thus begin
with 36 equivalent states. The particular form of the
symmetry breaking and the symmetry itself, are made
plausible by the assumption that the known particles
are built up out of three very heavy fractionally
charged objects, '~ schematically named (No, po,Ap).
Following Zweig, ' we call these objects "aces." It is to
be noted that the symmetry and the form of its breaking
are in no sense rigorously derivable from the ace as-
sumption. In fact, the aces could be considered merely

~This work was supported, in part, by the U. S. Atomic
Energy Commission.

t Submitted to the Department of Physics, The University of
Chicago, in partial fulfillment of the requirements for the Ph.D.
degree. Present address: 8rookhaven National Laboratory,
Upton, New York.' G. Zweig, CERN Report TH. 412, 1964 (unpublished);
lectures given at the Majorana Summer School, Erice, Sicily,
August 1964 {unpublished).' M. Gell-Mann, Phys. Letters 8, 214 (1964).'T. D. Lee, M. Nauenberg, and F. Giirsey, Phys. Rev. 135,
8467 (1964).

4 J. Schwinger, Phys. Rev. 135, 8816 (1964).

a mathematical convenience, and thus at this level are
a purely phenomenological construction. In order to
decide why nature seems to reQect certain properties of
our symmetry a more extensive theoretical investiga-
tion is required, dealing with the underlying dynamics.

In Sec. I we discuss the consequences of the assump-
tion that the mesons are bound states of ace-antiace
pairs. We assume that in the limit of perfect symmetry,
the ace-ace forces are unitary-spin, and spin, inde-
pendent. This will lead us to a symmetry between 36
meson states: 3)(9=27 vector-meson states, and 9
pseudoscalar-meson states. It should be emphasized
that we assume a coupling of the form Tr(VVP) and
thus fix the couplings of the SU(3) singlets with
respect to the SU(3) octets. There are not then two
arbitrary amplitudes for the VVP couplings, ' 7 and we
shall see the consequences of this assumption in detail

Experimentally, there are lower limits to the ace mass of a few
tens of BeV. For a detailed discussion of the implications of the
existence of real aces, fundamental triplets, etc. , see: Y. Nambu,
University of Chicago report, 1965 {unpublished); in Proceedings
of the INS Coral Gables Conference (W. H. Freeman and Company,
San Francisco, California, 1965), p. 274; Y. Nambu and S.
Fenster, Progr. Theoret. Phys. {Kyoto) (to be published).' S. Okubo, Phys. Letters 5, 165 {1965).

~ S. Glashow, Phys. Rev. Letters 11, 48 (1963).


