
PH YSI CAL REVj; ESV VOLUME 14/, NUMBER 4 29 J UL Y 1966

Systematic Study of the Balizs Bootstrap Method*

A. H. BoND

Department of Physics, Imperial College, London, England
and

Theoretical Studies Group, The Rutherford Laboratory, Chilton, Berkshire, England

(Received 24 September 1965)

The Balsas approach to ~x scattering has been systematically studied numerically. On increasing the
number of poles representing the unphysical cut, the solution changes drastically and disappears. We con-
clude that the single-channel calculations are so unstable as to be meaningless. We claim that such resonances
as occur using the Bal&s matching process to pole forms do so by accident for small numbers of poles, and
are not related to any exact solution. When several partial waves were included, it was very di6icult to Gnd
solutions because of false minima; however, the PI-Do calculation had at least two solutions. Although
agreeing with Mehta and Srivastava in the sensitivity to symmetry-point position, we do not agree with
their Gnding no solutions for vg (—1.5.

I. INTRODUCTION

'HE purpose of this paper is to report the results of
a systematic investigation of the properties of the

Balazs bootstrap method' and to attempt to draw
conclusions. It diGers from a recent note' in being much
more extensive, a6ording some interpretation and also
in actually disagreeing with the numerics of Mehta and
Srivastava. Although agreeing with them in the sensi-
tivity to symmetry-point position, we do not agree with
their finding no solutions for vp —1.5. The Balh, zs
method was initiated in BI and BII, BI explaining the
kernel approximation and BII carrying out the calcu-
lation for the I=1,J=1 xx state. BIII extended it to
the I=0 J= 2 and I=0, 2 S waves. The method has
also been used by several other authors. ' 4

We see the task of solution of the Mandelstam rep-
resentation as one of continuing from the physical
region of the t and u channels to the physical region of
the s channel, subject to the singularity structure
implied by the Mandelstam representation. %e do this
in three stages. First, we write a fixed s dispersion
relation for s&4, to give the value of the amplitude on
the left of the s channel, with

~
cos8 [ C 1, in terms of the

absorptive part on the right of the t channel.
Qa

A z(s, t) =— dt'A ~z(v', cos8')

Our notation is, v=q', cos8: center-of-mass variables
in the s channel; v', cos8': those in the t channel,

cos8' =1+2[(v+ 1)/v'],
cos8 = 1+2[(v'+ 1)/v] .

(1b)

Az(s, t) is the amplitude in the isospin eigenchannel I
of the t channel, A ~z(v', cos8') is the absorptive part in
the t channel.

For v in [0, —9] we can take

A~z(v', cos8')= P (2l'+1)Pi. (cos8') ImA~ z(v'), (1c)

+1

A, '(v) =-
2

d(cos8)Pi(cos8) P Pzz Az'(s, t)

which gives this function along the line of integration
in (1a), some of which lies outside the physical region
of the t channel, and is given by (1c) as a continuation
along a line of constant t or v' from the t-channel
physical region.

Next, we project out the partial-wave amplitude in
the s channel and take correct linear combinations to
give the amplitudes in the isospin eigenchannels in the
s channel.

~ The research reported in this article has been sponsored by
the Air Force OfBce of Scienti6c Research OAR through the
European OfBce Aerospace Research U. S. Air Force.
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7CP p

dv'Q~(cos8') P Pzz Q (2t'+1)
J'

XP& (cos8') ImAv'(v'). (2)

Finally, having got the amplitude on the left-hand side
of the s channel, we need to continue to the physical
region of the s channel, and it is at this step that there
are a variety of methods available.

II. THE BALLZS BOOTSTlVLP METHOD

Following Balazs, we take one term in the sum over
I' in (1c), viz.

(2t'+1)Pv(cos8') ImA~ z'(v').
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FIG. 1. The Born term. The e. The real and imaginary parts of the function C(v).

For Imd '~v'&'~v ~, we take a 5-function approxima, tion for
a Breit-Wigner form.

P'v"'Ev'/(v'+ ~)1'"
)I

(.,—.') +r .' 'L"/("+ I)j (3)

ImA v'(v') =2rI'v)2'b (v' —va) .
Putting these approximations into (2) we obtain the
unction

C(v)—=&(v) —=

' ImA (v')

I
V V

lt follows that if we take this re 1 dis rea an imaginary pa.rt
in near left, then the correct contribution from the far

the B
left for the whole amplitude must b 1 h
t e Born term, by an amount equal to the contribution
from the right-hand cut.

Some authors use

and the Zachariasen method' usesC„"()=—(2 +)1) 2( I' ')P, 1+2( ),
KV —' ImA (v')D(v')

C(v)—X(v) =— dv.
v vXQ, 1+2( ), (2)

Returning to the Balazs method
ri ht-hand si

o, we continue to the
rig t- an side, i.e. to the s-channel physical region, bwhich is an estimate for A((v) in Lo, —9), A2(v) C((v),

v+L, —9].The real an(l imaginary parts of C(v) are
plotted in Pig. 1 for /=i=I=I'=1, taking the values
of vg, F as the Balazs self-consistent values vg ——3.4,
I'=0.7, i.e., vg 585 MeV, full width I' 150 MeV.
Note that the real part v' near threshold and that it
has a logarithmic singularity at —vz —1. The cut
starts at v= —vg —1 but would be t — ie up o v= —1 d'or a
continuous Im A (v') function in (1).Note that although

t e whole amplitude, contributed to from left and right.
' ImA (v')

I
I

E(v)=A(vp)+(v —
v()) Q Ii'/(v v;), —

(v—vo) 21

D(.) = I—
) ~ P ~'rt(. ,„), (6)

v' 1
E(v')(fv'E(a,b) =

C(v)-A (v) = +
0

= IC(b,a) (7).
' F. Zachanasen,chariasen, Phys. Rev. Letters 7, 112 (1961).
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TABLE I. Balms pole positions. with F'=A (vp), then

(1) Basic result
n=2, v=05, vg, = —5, I =-1
v = —6.0, —25.0

(2) Variation with VL,

VL, = —10, v;= —12.3, —42.2
vL, = 2p v; = —2.48, —8.696
vI = —1~ v;= —1.25, —4.46

(3) Variation with p
p= 0.5, v; = —5.78, —12.3
p= 2.0, v;= —6.45, —39.8

(4} Variation with n
n=3, v;= —5.49, —9.62, —36.1
n=4, v;= —5.316, —7.194, —13.44, —50.8
n=5, v;= —5.13, —6.33, —9.62, —19.3, —64.5
n=6(1), v;= —5.07, —7.87, —8.13, —11.55, —47.6, +14.6
n=6(2), v;= —5.29, —6.94, —9.52, —13.89, —14.28,—19.23

(5) Variation with v

1.0,
v= 30,
v= 50,

10.0,
v= 250,
v= 500,
v= 100.0,
v= 500.0,
v = 1000.0,

{6) &2 optimization
n

3
4
5
6(1)
6(2)

Vp=
Vp=
Vs=
Vs =
Vs=
Vs =
Vs =
Vs=
Vs =

Initial x'
0-9X10-s
0.8X10 "
O.SX10 '4

03X10 '4

03X10 "

—6.135,—6.25,—6.29,—6.37,—6.49,—6.58,—6.67,—6.85,—6.80,

—22.5—22.6—23.4—25.5—28.41.—30.68—32.90—36.90—37.59

Final x'
0.3X10-s
0.1X10 "
0.8X10 's
02X10 "
03X10 "

If R(v') = 1, for all v' in LO, pp], then

IC(a,b) =
I 2/(a —b))(Lb/(b+1))'"

XinL( —b)«p+ (—b—1)'ip]—La/(a+1))ii
Xl L(—)"'+(——1)'")} (g)

The v; are the Balazs fixed pole positions obtained in an
auxiliary calculation (see Sec. III) and the residues F'
are to be determined. The form is, of course, unitary.
We match the X/D form to A (v) C(v) at a finite set
of "symmetry points" on the left-hand side by de-
manding

C(v»)=X(vv, )/D(vv, ), j=1, . &+1,

&(v) = (v —vo) 2 F'/(v —v~)

which gives linear algebraic equations for the (F'}.
The v p, are arbitrary, but must lie in the region where
C(v) is known, viz.

I 0, —9). In practice, since C(v) has
a singularity at v = —vz —1, we must avoid this point,
and as the behavior of C(v) in L0, —va —1] is thought
to be more relevant to the right-hand side than that in

L
—va —1, —9], we take the f vv, } in L

—va —1, 0), but
not too close to the singularity. Putting

(»,—vo) Z F'/(», —v*)

n

1—
I (v»—vp)/pr] P F'E(v, ,v»)

=C(v»), j=0, pp,

1.e.)
Q E~'F'= C~, C~'=—C(v»).

E"= (v»—vp)

The function

C&X(v, ,v»)-
+

vp&
—v;

I',„~ being defined by

v8 out VB in y

r.„,=r;„,
(9)

(10)

(rvip )nut= lVout(vip in)(vB in vp) q

this definition being more convenient than and very
close to

r.„,——E(v ir;.) /Re D'(v g;„)
and obtained from it by the linear approximation for D.

ReD'(v) = —1/(vp;. —vp) .

(9) is specified by

ReD.„,(va;n) = 0.

III. THE KERNEL APPROXIMATION

The significance of the Balazs method is in the pole
approximation which finds optimum positions for the
poles depending only upon the kernel in

v —vp
—' ImA (v')D (v') d v'

X(v) =A (v,)+ . (13)
v v v vo

The kernel is approximated by a pole form which
simultaneously expresses it as a sum of degenerate
kernels and gives E(v) a form which is easily integrable
to give D(v). Writing x= —1/v', we approximate

1 n G, (x)
Itu*«i(x, v)= =P =K vv(x, v), (14)

1+xv '=i 1+x,v
where the (G,(x)} are I.agrange interpolatory rational
functions having values unity at (x,}.One varies (x;}
to give the best agreement for v fixed at some point in
the range over which the approximation is to be used.
One also chooses a cutoff VL, for generality, taking the
integral from vt. to —~.

IniA iI (v) = —Lv/(v+1))~ I &/D I

'

in the s-channel physical region constitutes the output
to be compared with the ImA vr'(v') input from the t
channel, and one demands rough self-consistency by
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There is some freedom of interpretation of the re-
quirement of best Gt, and we minimized over a set of
points in the range LO,vI). The distribution of points
was determined by a power law

V&=vr, (j/m)v, j=1,
m being the number of points, usually kept at value 20,
and p an index which could be varied. The results of a
typical fit are shown in Fig. 2. Values of the pole
positions and an indication of dependence on vl„v, and

p are shown in Table I, also the change in X' during
optimization. The solution 6(1) has a pole on the right-
hand side and may be permissible, if we take the Ã
function to include the inelastic cut as well as the left-
hand cut, as explained in BII.The effects on the Balazs
calculation will be seen later. Note that the difterence
in X' produced by optimization is only of the same order
as that from increasing e by 1.

We wish to make three points about the kernel
approximation.

(1) It is valid if and only if the dispersion integral
converges.

For the exact integral

Ig(v) =
"& f(p')dp' "~ E, t(v', v)dv'f(p'), (15)

v

is replaced by

Ii'(v) =
"& dp E~vv(p ~ vt)dp CgI2(v2) C2I2(vl)

+ , (16)
vg —v

where
"& f(v') (v' a)dv'—

Ig(a) =
—Co v

for a two-pole approximation

vg 1
Cg=-

vm Xy—X2

V2 1
Cg=-

vy $2 xg

Now the conditions for convergence of Iz(v) and

Iq(a) are identical and, in practice, reduce to either (a)
f(v') ~ 0, v' ~ ~, or (b) f(v') = singv'. g (v'), I real )0,

g(v')/v'-p 0 steadily,
v ~00

for all finite v, a.
(2) The asymptotic behavior of the approximated

integral is not necessarily O(1/v).
For vrhat the kernel approximation asserts is that

f(')
dv

v —v
I

i~ a snag rarlge of v, where v is sufficiently far from the
cut. It does not attempt to be valid on the cut as

v ~ —~, v;~ —~. (1) and (2) indicate that it is not
a usual pole approximation and not equivalent to a
cut ofF.

(3) It is still a good approximation for oscillating
functions, i.e., conditionally convergent integraods.
For, from (1) it still converges and, in BI, Balazs gives
an estimate for the percent error for an oscillating
function. Now when the oscillations exactly cancel the
exact integral has a zero so the percent error is infinite;
however, this is merely due to the fact that the approxi-
mate integral has a zero slightly displaced. Numerical
estimates of the Balazs expression from BI for the
percent error, using the kernel approximation of Fig. 2,

E= f phDi'/Di —DD2'/D2)/

(D~/Di —D2'/D2)}X100%, (19)

if we take the oscillations to exactly cancel at v= —2,
E= ~, then when

v=+1,
v=+5,
v=0,

E=0.4%,
E=0.04%%uo,

E=0.3%%uo,

E=0% always.

Note from Pigs. 2 the percent error is zero for v= 0 and
5%as p~ —~.

The assertion is not that any kernel approximation
within 5% of the exact is accurate for oscillating func-
tions, for this is clearly untrue, but that this particular
approximation is. We have made it plausible that the
X(v) function can be well approximated by the pole
form in a certain finite range. For example, a two-pole
fit is accurate to 10%%uo, for v in L

—3, 6), for all v' in
LvI. , —&e), and a six-pole fit is accurate to 1%, for v

in L
—3, 15). However, to form the D(v) function we

need an estimate for X(p) for the entire range (0, a&).'
To see how the approximation varies in this range, we
did two studies. First, we found the optimum v; for
z= 2, for a series of values of v in the range. The results
are shown in Table I(5) and show that the optimum

change slowly and monotonically from v= 1.0,
v;=6.17, 21.6, to v=100.0, v, =6.80, 37.6, but that the
value of X' at the optimum value changes rapidly,
starting at 10 ', rising to 10 ' at v=50, and then de-
creasing to 10 ' for v=10'. Second, we evaluated

E pp for a series of values of v, the v, being
the optimum values for v=0.5. E, „&—E,pp~ was
roughly constant for v' in Lvr, , —ao), except that, for
large negative v', it rose by a factor of 10 or so. The
values for typical v' are plotted versus v in Fig. 2(c).
We see the following:

(a) The "asymptotic" value of IC, g, „ is-
roughly the same for all n and is 10 4, so the percent
error = 10%%uo.

t} I am grateful to B.Martin for discussion on this point.
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then we can first transform to a finite range by

s= (x—vr, )/x;

then s decreases from 0 to —1 as x decreases from
—vt, to —~. Further

so

and we have

x=vr, (1—s),

dx= »dz/(1 —z)',

ds f[x(s)].
-z (1—z)'

If we do this integration numerically, we take e inte-
gration points s' and weights m' and take the value of
the integral as

, f[x(«)j.
(1—z )'

Thus for a dispersion integral

h(x)
f(x) =

(*—v) (x—vo)
'

h(x)dx ~ vr,—Q rvi
(x—v) (x—vo) *'-~ (1—s, '

h[x(z~))
X

Lx(z )—vJ[x(z') —"j
a pole approxima. tion with poles at

x(z~) = vr, /(1 —z;) .

This is equivalent to approximation of the integrand
f[x(z)j/(1 —z)' by polynomials g"(s), so f(x)/(1 —s)'

(b) The error rises from very low values for v&10
to 10—' or so for v=50. For I=2, E, ~-E,» ——10—'
and the percent error(10%.

(c) As n increases the error gets very small for v in

[0,100j. Now, because we are evaluating D(v), the
very high v values in the integral will be damped by
the Cauchy denominators. Also, for large negative v',

the error rises by a factor of 10 for all v, however, the
contributions from this region are damped by the
(v' —vo) denominator in the $(v) integral.

Thus, our conclusion is that, for a sufBcient number of
poles, one can achieve suKciently accurate values of
X(v), to achieve an accurate value of D(v), provided
one has accurate values of Ii'.

%e should finally like to compare the pole positions
obtained by the Balazs optimization procedure with
those obtained by using a numerical integration
formula. If we wish to integrate

TABLE II. Pole distributions.

Gaussian integration pole positions

I'or vl, = 5
n=2 —6, —30
n=3 —5.6, —10.0,
n=4 —5.4, —7.5, —
n =5 —5.15 —6.0 —8.0

—50.0
15.0, —70.0
5, —13.1, —29.4, —143.0

Eyenly spaced integration pole positions
For vL, =5

n=2
n=3
n=4

—7.5, —15.0—6.5, —10.0, —20.0—6.25, —8.33, —12.5, —25.0
Bal&s pole positions

I'or vL, =5
n=2
n —3
n=4
n=5

—6, —25—5.49, —9.62, —36.1—5.32, —7.19, —13.44, —50.8—5.13, —6.33, —9.62, —19.3, —64.5

reordering

v'=
(n+1)vr,

1—i/(n+1) n+1—1

v~( +n1) /jvr; j=1,",n,

a harmonic series. The pole distributions are shown in
Table II.

The positions for Gaussian integration are remarkably
similar to the Bali,zs positions and agree much better
than those from equal spacing integration.

Now, Gaussian points can be generated by a best-fit
procedure~ and one wonders whether there is any
connection between this and the Balizs optimization
procedure.

Note that there is a simple connection between the
pole positions for different vL„viz.,

s ~vt, .
If we look at the vL, variation of the Balazs poles, shown
in Table I(a), we see a sinai&ar behavior. Of course, in
this treatment, there is no dependence on v. However,
one can see that, for v near the cut, some modification
of the v' to fit best might be necessary. Further, the
Ba15zs poles become very insensitive to v, when it is
reasonably far from the cut.

~ See, for example, Z. Kopal, ENmerkal Analysis (Chapman
and Hall Ltd. , London j.961), 2nd ed., p. 349 G.

is approximated by g"[(x—vt.)/xj and f(x) is approxi-
rnated by (1/x')g"[(x—vr, )/x). For Gaussian inte-
gration the g" (s) are Legendre functions E„(z) and z'
are its roots. Hence f(x) is approximated by poles of
various orders at the origin.

If we put in Gaussian points s' and calculate the
corresponding x(z;), the pole positions on the left-hand
cut, we obtain the results shown in Table II. If one
takes equally-spaced points, omitting the end points,
then

z'=i/(n+1), i= 1, ~ ., n
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Since the integral is

vr, ' h[x(s)]

vv0 g (a—s) (ao—s) (1+s)'
a= vr/v —1; ao= vz/vo —1; o, s0 real) 0,

then presumably, the best positions are given by the

roots of polynomials g"(s),

g"(s') =O,

where g"(z) are de6ned by the weight function

~(s)=[(a—s) (oo—s) (1+s)'?'
and interval [0, —1].
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TABLE III. Dynamic studies. Self-consistent values of (VR,I'VR}.

(i) Variation with

—1.9—1.9—1.0
203—1.0
202

—2.1
2.1—1.5
215—2.1—2.8

{vs)

0.0—0.1
0.0
0.0
0.0—1.6

3.308
3.436
1.88
3.82
2.568
5.02

1'VR

2.525
2.721
1.193
3.129
1.760
4.71

(ii} Variation with vp

Vp

—10—3—2
1—0.001

(iii} Variation with n
e

2

3
5
7
1
6(1)
6(2}

434
3.465
3.308
3.22
3.23

3.4
2.08

no solution

4.96
2.849
2.525
2.35
2.37

2.6
0.15

in general, display the function ReA(v) derived from
them. The result of a dynamic study is whether a self-
consistent acceptable solution was obtained and, if so,
the self-consistent values of vg and Fvg'.

We obtained self-consistency by minimizing the
function

F=LReD. t(vs; ))'+Ll'; vs;I ' —&, r, (vz )
X(va;I —VO)) .

Figure 3(b) is a contour plot of it. This contour plot
illustrates an important point in bootstrap calculations.
We see a long shallow valley roughly along the line

Fvg= vg.

Instead of finding the absolute minimum and taking
those values of (Pva, vs) as the solution, one ought to
deduce that only F is 6xed by the minimization process
to be =1 and that v& is a free parameter. In this way,
one can hope to determine the number of free parame-
ters that the model predicts. '

Looking first at the I=I, J=| channel, the static
results for variation of {vv,) and e are shown in Figs.
4. The variation of vo from —3 to 0 produced no de-

tectable change in ReA (v) to 1%%uz over the entire range

L
—9, +10). The dynamic studies show a similar

insensitivity to vo. The dynamic results are shown in
Table III. Sensitivity to (vv, ) is verymarked and makes
predictions by the Balazs method so unreliable as to be
meaningless. The significance of the (vv;) —2.8, —2.2,
—1.6 is that these are the positions used by Kanki and
Tubis4 in a Balazs xx calculation using a difterent
crossing continuation. Their result was (3.2, 3.0).

The pole positions were also varied to find what
effect they would have. The results are shown in Table
IV. This enabled the cutoft vt. in the kernel approxi-
mation to be varied and the effect seen. From Table
IV, the values of (vz, pvz) are fairly sensitive to the
pole positions but not as much as to the symmetry-
point positions. For the last two entries, the symmetry
points had also to be moved in, in proportion, to satisfy
the condition that (vv, ) not too close to vz or —vs —1.

Possibly more striking than the (vv, ) dependence is
the n dependence where the position and width change
drastically and the solution even disappears for some n.
In Fig. 4(b) the first six-pole fit has ReA (v) =0 when
v 4, because of a zero of ReX, so the phase shift is
zero, indicating that 6(1) pole positions do not belong
to the same approximation as the others. The seven-
pole fit has ReA(v) =0 at two points, the first being
due to a zero of ReÃ and the second to a zero of Rea,
which are very close together for both derivative and
distributed matching and are presumably striving to
cancel each other out. Whether it comes back for larger
e as one might expect is not clear. From the n de-
pendence it is suggested that the occurrence of reso-
nances is an accident of the details of approximation.
In the E& case, resonances only occur in n=2, n=4
because this form is a ratio of two cubics (quintics) the
denominator having its zeros to the left and the
numerator thus dominating the shape.

TABLE IV. Self-consistent values. Variation with {v~,},
the pole positions.

—6.0—6.0—10.0—6.25—12.3—1.25—2.480

—50.0—25.0—50.0—100.0—42.2—4.46—8.696

—10—1—2

3.33
3.06
4.17
3.55
4.41
0.08
0.93

7VR

2.525
2.788
3.00
2.29
3.22
0.3
1.17

IO

I am very grateful to Dr. R. F. Streater for information on
this point.

FIG. 5. S-wave self-consistent solution.
Two-pole Sp single channel.
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FIG. 6. The P~-ao calculation. For
P1, vg =5.76, Fvg =5.0; fOr Do,
vg=9.37, Vv+=4.58. (a) Reflections
into the P wave. (1) ReA, P+D —+ P.
(2) ReC, P+D —+ P. (3) ReA,
D P. (4) ReC, D P. (5) ReA,
P ~ P. {6)ReC, P —+ P. {b) ReQec-
tions into the D wave. (1) ReA,
P+a a. (2) Rec, P+a a.
(3) ReA, a~D. (4) ReC, D-+D.
(5) ReA, P a. (6) ReC, P a.

5 I

2"

2 ~

I ~

(b)

The dependence of the solution upon the parameters
of the kernel approximation is shown in Table IV. The
most suitable choice of vt. is presumably —vg —j.,
however there would then be a big jump in changing
to a distributed Imd (v') with cut starting at —1.

Mehta and Srivastava conclude that no solutions
exist for up& —1.5, our results show this is not the case.

V. OTHER SINGLE-CHANNEL BOOTSTRAPS

Table V shows the results of some searches for
resonances in other channels, taken singly. The 2-pole
S-wave is not really sensible as the N/D form has a cusp
at threshold, see Fig. 5.

The calculation gives values of vg and G=Fvg' and

TABLE V. Single-channel searches. Values of (vg, l'v~).

(VPs)
Channel

~0
52
P1
ao
D2
I'1

2

distributed

~ ~ ~

2.57, 1.76
~ ~ ~

2
derivative

2.048, 2.166
1.80, 1.79
3.4, 2.6

3
distributed

3
derivative distributed

~ ~ ~

1.86, 0.06
2.0, 0.1
1.7, 0.06

4
derivative

~ ~ ~

2.6, 0.26
~ ~ ~

a Dots indicate search done but no solution found.
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Fzo. 7. Variation of n for Dp —+ I'I ~ (1)
ReC. (2) m=2. (3) x=3. (4) m=4.

TABLE VI. I l—Dp self-consistent values.

(1) For different fvp;}

tv~') vR E'vR
—2.1 —2.05 —1.0 0.0 4.53 4.26—2.1 —2.05 —0.5 0.0 4.26 4.08—2.1 —2.05 —0.2 0.0 4.02 3.82—2.1 —2.05 —0.05 0.0 4.39 4.37—2.1 —2.05 —1.5 0.0 4.74 4.33—2.1 —2.05 —1.95 0.0 4.89 4.37

(2) Kith derivative configuration (vg;)
+1 vR ——5.76
Dp vR=9 37

which is near BaMzs's result

Dp
FVR2

4.817 1.378
3.74 0.84
3.09 0.58
3.40 0.75
5.90 2.007
6.90 2.66?

FvR=5.0
FvR =4.58

(3) Possible multiple solution with {v~;}= —2.05, —1.95, —0.05,
0.0 in both I'» and Dp waves
Solution 1

vR=6.663
Dp vR =6.691

Solution 2
vR =4.378 FvR =4.372

Dp vR =3.228 FvR' =0.693
both appeared to satisfy the self-consistency requirements

I'vR =6.548
I'vR' =2.766

the subsequent interpretation of the width F as G/vg'
is a matter of conjecture.

The comparison of a 8-function input with a con-
tinuous output must lead to a lot of uncertainty as to
the predicted value of the width. We did some dynamic
studies taking the input width to be multiplied by a
factor f, so, in the function C(v), F v fF In the sel.f-
consistency condition (10), I'.„=F;, of course, F;,
was taken as F. Self-consistent values were obtained
for several values of f, in the 2-pole I'i single-channel
calculations, and it was found that vs ~ f, FvR ~ f.

VI. COUPLED CHANNELS

Simultaneous self-consistency of two and three
channels was searched for in the cases So—S~, 2 pole;
So—P, 2 pole; Do—D2, 4 pole; Pi—Do—D2, 4 pole; SO-

S~-P, 2 pole. Only one search was done, i.e., mini-
mization of the discrepancy from given initial values,
and the only solutions found were for the case found by
Balazs in BIII, viz. Pi—D0, 3 pole. However, the
sensitivity of the calculation to the parameters and the
pathology of the discrepancy function lead one to
believe that the search is a dificult one. We even found
a possible multiple solution, i.e. two sets of values both
satisfying the self-consistency conditions. See Table VI.
A pictorial breakdown of the P j—Do calculation is shown
in Figs. 6. Note the smallness of the Do —+Do and
Do —+ P& interaction, so that the Do wave comes mainly
to P& exchange modiied by Do exchange and the P&

by self-stability modified numerically by Do exchange.
The effect of the Do upon the Pi channel for different rt

is shown in Fig. '? and P» upon Do for different I in
Fig. 8(c). Again we see the accidental nature of the
solutions in the Pj.—Do case, where only hz=3 can give a
Do resonance as seen from Fig. 8(c). Hence only v=3
can give P'i—Do self-consistent values. One expects on
intuitive grounds that the self-consistency will become
better resolved, i.e., there will be sharper minima for a
larger number of component systems but that, due to
complication, solutions will be harder to And.

An attempt was made to 6nd the effect of the p upon
other channels by taking the p pole only to give the
left-hand side and then solving by matching. The results
are shown in Figs. 8.
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FrG. 8. Effect of the p on other channels. I @=3.4, I vg=2 6. (a) &I ~ So; (b) P& —+ S2,' (c) PI ~ Dos (d) I'I ~ Dg.
In (a), (b), (c), (d), (&) ReC; (2) n= 2; (3) m=3; (4) n= 4.

VII. CONCLUSIONS

Clearly, the method as used by Balazs is very
sensitive to (vv;} and to n and is thus unreliable for
making predictions about the mr system.

The kernel approximation seems reasonable where v

is sufIj.ciently far from the cut. It is not obviously
equivalent to a cutoff. The pole positions are close to
those obtained by a Gaussian integration procedure.
The determination of the {F'}by matching points
f vr, }is justified provided we have a reasonable estimate
of the value of the integral and provided the (vv, } are
sufficiently far from the (v,}.Herein almost certainly
lies the source of instability and is strongly indicated
by the sensitivity of {F'}to (vv;}. In short, —vs —1
is too close to f vv;} and {vv;}are too close to f v,}.

As one must take vp;&0 and vt.&&vp,. one must have
a special treatment of the near left, if only in specifically
neglecting it, and use the approximation only for the
far left.

Other authors have abnost without exception used
the kernel approximation only as a part of a more
detailed treatment of the unphysical cuts. The method
is insensitive to variation of the normalization point vo.

The uncertainty of interpretation of the width can lead
to comparable uncertainties in both position and width
of the self-consistent solution.

Pote added in proof. In approximating (1a) by (4),
we have neglected contributions from the high-f part
of the integral. Two different ways of dealing with this
have been suggested, by Singh and Udgaonkar' and
Balazs (BV).' The present author has considered the
integral (2) with ImA&. r'(v') given by a Breit-Wigner
formula, so ImA~. r'(v') ~ constant. The integral con-
verges v' —+ for /& 1, since I'g. ~ constant and
Q~ -+ (v')-' ' and v' ~ ~. Thus, for a small number of
partial waves in the crossed channel, the high-energy
region can only make a small contribution to this
integral. The author has evaluated the integ rais
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numerically and found only a small change upon moving
a cutoB in the integral from v'= 10 to v'=30. For small
values of

~ v~, however, there will be accumulation of
partial waves of high t', producing the di6raction peak
in the t channel. In this case, one may well get a large
contribution from high-t' values. This will only apply
in the diffraction region, say 0)v& —2.

It has been pointed out to the author that the

extreme insensitivity of the static studies to variation
of vo is probably a rigorous result derivable from existing
theorems. In fact it does follow easily but not obviously.
Here we prove that a once subtracted N/D pole form,
with given left-hand pole positions v, , whose @+1
parameters are determined by matching to values C;
at points vp;, is independent of the choice of subtraction
point. For, given A =N/D,

v —vo)
" v' ) '" N (v')

N(v)=AD+(v —vo) P F'/(v v,), —D(v)=1—
~

dv'R(v')
7r ) p v +1) (v —v) (v vo)

one can construct an N', D' with the same form such that A'= N'/D'—=A, with different subtraction point
vo'. This can be verified by direct manipulation; N' and D' differ from N and D by a factor D(vo'). Then,
if A obeys the conditions A(vv;)=C;, j=1, , n+1 these will be linear equations for Ao, {F') and will
uniquely determine them, and hence A(v) at all points. Since A =A' at all points, in particular A'(vv;)=C;,
j=1, , I+1. Thus, we can construct explicitly an identical N/D amplitude with diferent subtraction
point and obeying the same matching conditions. This proves the desired result.

The small vo dependence of the dynamic studies is due to the vo dependence of the self-consistency cri-
terion given by Eq. (11).
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