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intermediate boson. In this case, the effect of (1) on

I,+e —+ v,+e depends on the ratio of the mass of
lV~' to that of the charged intermediate boson.

The original motivation for raising the present ques-
tion is as follows: Since the neutral lepton currents are
not coupled to the schizons of Lee and Yang, ' is it
possible that these currents are coupled to some other
intermediate bosonP It must be emphasized that we

have no cogent reason at all to believe in the existence
of the interaction (1);we are rather asking how we can
find out experimentally about the existence of this inter-
n.ction. If (1) is found to be present, then it becomes

tempting to speculate in numerous directions. For ex-

ample, if we think that all weak interactions are medi-

ated by bosons, then we may ask whether there is a
strong trilinear coupling involving W~ and the charged
intermediate bosons. Such a coupling may be used to
account for the large masses of the bosons, and may
have other desirable properties. In particular, this can
be 6tted into the schizon scheme of Lee and Yang' if we

assign t/t/'~' to be a singlet under isotopic spin rotation
and require this trilinear coupling to conserve isotopic
spin with the schizons treated as two doublets.

I am greatly indebted to Professor C. N. Yang for
the most helpful discussions. I would also like to thank
Professor M. A. B.Beg, Professor H. Y. Chiu, Professor
F. M. Pipkin, and Professor K. Strauch for informative
conversations.
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The previously developed "elementary-particle" treatment of nuclear beta decay, ¹-+Ny+e +v„is
combined with the Adler-Weisberger procedure, to obtain sum rules relating axial-vector coupling con-
stants for nuclear beta decays, Gz{¹~ Ny), to integrals over pion energy of pion-final-nucleus total cross
sections, s(v+, Ny) It is shown. that the ratio Ls(s+,Xy)/d(w+, p)]= —ps(rr+, Ny)/d(rr+, rr) j is just equal to
the difference between the number of protons and the number of neutrons in Nj, )Z—(A-Z)g, multiplied by
a factor which becomes unity in the approximation of neglect of meson-exchange corrections to G~ (N; —+ Nf).

I. INTRODUCTION
' 'N the present work the previously developed "ele-
~ - mentary-particle" ("E-P") treatment of nuclear
beta decay, X,~ jest't+e++v„' is combined with the
Adler-Weisberger (A-W) procedure, ' ' to obtain sum

rules relating axial-vector coupling constants for nuclear

beta decays, Gz(X; —+ Er), to integrals over pion energy
of pion-6nal nucleus total cross sections, tt(rr+, jt/r). It is
shown that the ratio

La(w+, X&)/S(x', p)]= —LS(w+,X&)/S(x', tt)]

is just equal to the difference between the number of
protons and the number of neutrons in X&, LZ —(A —Z)],
multiplied by a factor which becomes unity in the ap-
proximation of neglect of meson-exchange corrections
to G~($;~ jar). Experimental verification of this
relationship between "purely strong-interaction type"
nuclear properties will provide further confirmation of

* Supported in part by the National Science Foundation.
~ C. W. Kim and H. PrimakoG, Phys. Rev. 139, B1447 (1965);

140, B566 (1965).
~ S. L. Adler, Phys. Rev. Letters 14, 1051 (1965); Phys. Rev.

140, 8736 (1965).
~ W. Weisberger, Phys. Rev. Letters 14, 1047 (1965);Phys. Rev.

143, 1302 (1966).

the basic assumptions underlying the "E-P" treatment
and the A-% procedure.

II, CALCULATIONS

We start by writing down the equal-time commuta-
tion (ETC) relations

Q~'+'(t)Q~' '(t) —Q~' '(t)Q~'+'(t) =2I"',

Q~&+'(t) —= i (J~—, ,"&(x,t)+iJ„,,&'&(x,t) )dx, (1)

where J&.,„"'and I(" are, respectively, the axial-vector
strangeness-preserving weak current and the third com-
ponent of isospin; the assumption of the validity of this
ETC relation and also of the partially conserved-axial-
vector-current (PCAC) relation, ' i.e. of the pion-pole-
dorninated unsubtracted dispersion relation for the form
factor associated with any hadron —+ hadron matrix
element of (8/itx„)(Ja;„"'(x)&iJa „"'(x)),co., nstitutes
the basis of the A-W procedure. ' Equation (1) immedi-

4 M. Gell-Mann, Phys. Rev. 125, 1067 {1962);Physics 1, 63
(1964).' See J. Bernstein, S. Fubini, M. Gell-Mann, and K. Thirring,
Nuovo Cimento 17, 757 (1960) and also Ref. 4.

6 See Refs. 2 and 3 and also B. Renner, Phys. Letters 20, 72
{1965).
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a,tely gives

Jy I I&;
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IIi .Ji Mg)(H&:., Ji)M&, l
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I V; Jf,Mf)&
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= (2Jf+ 1) ' Q (Nf,. Jf,Mf

l
2I "lNf, Jf,Mf)

M J" J'f

=Z- (A-Z),

where
l Nf, Jf,Mf) is the final nuclear state in the beta decay,

l Hz, Jz,M&) is a member of a complete set
of hadron states, and where, because of selection rules on Qz&+', only the states

l
H&,' J&M&) with 8(H&) =N(Nf)

=A, Q (Hi) = Q (Nf )%1 =Z& 1, I(H &) =I (Nf) &1 or I(Nf), S(Ha) =S(Nf) =0 contribute to the Q i (8, Q, I, S
are baryon, charge, isospin, and strangeness quantum numbers). Then, for the case of neutron beta, decay:

JfMf)= l p; .—',,M~); contributing states l Hi, Ji„M&)= l n; . 2,M„), all
l (x+p); J&,M„) states,

; A = 1, Z= 1, and the A-W procedure applied to Eq. (2) yields the sum rule"'

LG~(e ~p)]'+ LG~(x ~ vacuum)]'8 (n.+,p) = 1; (3a)

S(s+,p) —=

"dE.(E.' m. ')"' r( &—ipr; E )—-o(~+ p E„)

(1/m. )'
(3b)

where a (r+,P; E ) is the n.+-P total cross section for ~+ of laboratory energy E,. The A-W sum rule in
Eqs. (3a), (3b) is in good agreement with experiment since with Gz(e ~ p) = 1.18+0.02 (from measured rate of
fi ~ p+e +p,), G~(m ~ vacuum) =0.95&0.01 (from measured rate of ir+ —+ @++v„), and 8(n.+,p) = —0 50~0.01
[from measured values of &r(m. +,p; E )], the left side of Eq. (3a) is 0.94&0.04.

We next discuss the A-W-type sum rule deduced from Eq. (2) for the case of nuclear beta decay. Here the con-
tributing states l Hi

', J&,Mz) = all nuclear ground and excited states
l N, ; I;,M,) with 8 (N;) =8(1Vf) =A,

Q(N;) =Q(Nf)%1 =Z&1, I(1V,) =I(1Vf)&1 or I(1Vf), S(N,) =S(Nf) =0, all
l (,Nf j'' ' ' I M ) states

A ~ 2, Z ~ 1, and the A-% procedure gives

LQ(N )—Q(N')]l (J',J )LG ( ~ ' & ))'+LG ( )7' ( ', -~ ) =Z—(A —Z);

S (m +,1Vf) =—

"dE (E '—fm ')"' &r(nYf E. )—o (ir+ Y E )

E.2 ir(1/I )' (4b)

where o (r+,Nf, E ) is the ir+ —Nf total cross section for x+ of laboratory energy E and rl(J;,Jf) is a numerical
coefficient which depends on I; and Jf and on the parities of

l
N, ;

. I;,M,) and l1Vf ', I;,M,). We list the values
of the p (J;,Jf) appropriate to allowed beta decays and for which, as a consequence, the corresponding il (J;,Jf)
G&(1V,~ 1Vf) make a dominant contribution to Eq. (4a), viz. ,

g(JJ) = (I+1)/J, (I)0),

g(J, J—1)=- g(J—1, J),
2(J—1)+1

n(0, 1)=k, v(28) = 1,

We further note that in the evaluation of Gz (N; ~ Nf) in beta-decay-allowed approximation with the states
l Nf ' ' ' Jf Mf) and lN;; ~ J;,M,) described by the nuclear wave functions +(1Vf, Jf Mfl . .r, 0,&&) r, &i). . .)
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=—4'(f) and 0'(X;; ~ ~ J,,M;I ~ ~ ~ r„a,'3&,r, &'& ~ )=0 (i), we have~

2Jf+1)
I G~&A" —~'f)]'= [G~(n ~ p)]' — & 2 I &+(f) I(a'"+a"'&)

I +(')& I'
2J.+] Ms Zi )Vf Zf 2J+1)

''
= [G~(n ~p)]' 2 I &+(f) I

(a"'+a'+'$)
I
q'(i)&

I
'l~(J', Jf); (6)

A

ai+ —= P r + a„a~+~$= P r, ao P &(a„ai„r,—r~),
a=1 b=l

where the $(a„ai„r, ri) d—escribe the correction to G~(X, —+ iVr) associated with meson (a, ~ ) exchange. As a

rough approximation we assume'

(+(f) la"'kl +(i)&=k&+I la"'I +(i)& (7)

with $ (1) more or less independent of J; and J~, (2) varying only slowly with A and Z, and (3) of order 0.05.
Then, using Eqs. (6), (7) and closure over the complete set of nuclear wave functions +(i), we get

Z [Q(~~f) Q('~ )]a J('ji)~f)[G&(i~i ~+f)]

= l[G~(n ~ p)]'(1+()'2 2 {I&+(f) la'+'I+(i)&l' —
I &+(f) la' 'I +(i)&l'}

i Ms J's

3[G=.(n ~p)]'(1+()'&+(f)I(a'+'a' ' a' —'a'+') I+(f)&

= l[G~(n ~ p))'(1+~)'&+(f) I3 Z r "'I+(f)&

= [Gg(n —+ p)]'(1+&)'{Z—(A —Z)}

so that, combining Eq. (8) and Eq. (4a), we obtain the sum rule

[G~(n ~p)]'(1+$)'{Z—(A —Z) }+[G~(n. —+ vacuum)]'8(a+Xf) =Z—(A —Z) .

Equations (9) and (3a) yield

(8)

or

a(~+, S',) = {Z—(1—Z) }~(a+,P)
1—LG.(n ~ p)]'(1+6)'

1—[G~(n ~ p)]'
(10)

1 [G~(n—+p) ]'(—1+g)'
a(~+, i',) = {Za(a+,p)+(A Z)if(a+—,n) }

1—[G,(n p)]'

whence, with neglect of the meson-exchange beta-decay correction factors $ relative to 1, i.e. in the impulse ap-
proximation for the calculation of G~(E,~Ef) in Eq. (6), we have

or
a(~+,1Vr)=-{Z—(A —Z) }a(a+,p)

s(~+,X,)=zs(~+,p)+ (A —Z) s(~+,n) .

III. DISCUSSION

(12)

The results in Eqs. (10)—(13) demonstrate that, as a consequence of aspects of hadron dynamics expressed by
the PCAC hypothesis and the ETC relation, 8(z.+,Sf), d(a+, p), and 8(~+,n) behave as additive-type quantum
numbers in the approximation g«1; thus, from the point of view of the calculation of d(~+,1Vr) in this approxi-
mation, the nucleus Ãf can be considered as a collection of noninteracting nucleons each on its own mass shell.
We emphasize that the impulse approximation for the calculation of G~(X, —+ Xr), i.e. &&&1, is not in general

J. S. Bell and R. J. Blin-Stoyle, Nucl. Phys. 6, 87 (1958}; R. J. Blin-Stoyle, V. Gupta, and H. PrimakoE, ibid. 11, 444
(1959};R. J. Blin-Stoyle and S. Papageorgiou, ibid. 64, 1 (1965}; Phys. Letters 14, 343 {1965).
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equivalent to the impulse approximation for the calculation of n.+—Xf forward elastic scattering, i.e., a(rr+, lV~,

F )«1 [see Eq. (15) below]. In fact

where

g (w+, 1Vr) =Zg (w+,p)+ (A —Z)g (rr+,n)+
4m '

dE [Ima(rr, Er, E ) Im—a(rr+)1Vf, E,)],
2

(14)

a(rr+PTr, E,)= g(w+—+Sr-+ w++Xr,.E, 8=0)
—[ZII,( ++ p ~ ++p E e=o)+(A Z) a—(~++ n ~ w++n; E., e=o)], (1&)

a(w+, Xr, E )=a(w, Xr, E,) for Z= (A —Z)

and where the optical theorem has been used; comparison of Eq. (14) with Eq. (11) yields

I
[G.(n p)]st(2+6

[Gg(n ~ p)]'—1

4m. 2

dE. [Ima(w-, .i, ; E.)—Ima(w+, .& f, E.)]
2

[Zg(w+, p)+(A —Z)g(w', n)]. (16)

Equation (16) shows that for ZA (A —Z) the condition $—0 implies the condition

4m' 4m '
dE [Ima(w, iY~, E )]— dE [Ima(rr+, N f )]

2

and not, in general, the much stronger condition

a(w, Xf, E )—0, a(rr+, itIr, E )—0.
As a numerical illustration we mention the case of Xf= C"[Z=(A —Z)] where'

[4rr/(E '—nr ')'I'] Ima(e+ iV E ) [4s/(E ' rn s)—'ls] Ima(w —Xr E )

[Z ( +,p;E )+(A Z) ( —+,n; E,)] [Zo(,p;E )+(A Z) (—rr, n;E )]
o(rr ,IVf, E.—)

i [Zo(vr-, p; E.)+(A )Z(on, —nE.)]
=0.47 for E —m =150 MeV,

=0.60 for I' —m =185 MeV,

=0.16 for E,—m, =300 MeV,

=0.05 for E„—m =485 MeV,
but where g may well be quite small.

We feel that experimental tests of Eqs. (10)—(13) would be of considerable interest not only in connection with
the con6rmation of the general validity of the "E-P"treatment and the A-% procedure but also as a possible source
of information about the meson-exchange beta-decay correction factors $. Finally, we wish to point out that an
"E-p",A-W treatment of hypernuclear beta decay yields relations connecting g (E+,Xf) with g (It+,p) and g (E+,n)
analogous to those given in Eqs. (11) and (13),and that, here again, experimental tests would be most welcome. 's

sA. E. Ignatenko A. I. Muklin, E. B. Ozerov, and B. M. Pontecorvo, Dokl. Akad. Nauk SSSR 103, 393 (1937); B. Amblard
er o/. , Phys. Letters 0, 138 (1964).

' It is to be noted that the quantity {1—LGg(n~ p)g'(I+()'}{1—LG&(n ~ p) js} ' varies rather sensitively with g having, e.g. ,
the values 1.18, 1.36, and 1.74 for &=0.025, 0.05, and 0.1, respectively. Ne may also mention that the relation between d(x+,Nf}
and 8(~~,p) in Eqs. (10)-(13)is invariant to the Goldberger-Treiman replacement in Eqs. (3a) and (9) of Gz(~-+ vacuum) = 0.9S&0.01
by Gz(N -+ p)(2m~/m )(Ng») =0.83&0.03, while the value of Gz(e ~ p) calculated from Eqs. (3a) and (3b) and measured values
of o(~~,p; E ) depends somewhat on whether this replacement is made.

'0 C. %'. Kim (to be published). An additional complication in this case arises from the fact that 5(K,Ny), a (K,P), and d(X,N)
receive contributions from the unphysical region below the K elastic-scattering threshold.


