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Electromagnetic Mass Splittings of the N and N*(1238 Mev)

GoRDow L. SHAw*

t~niversity of California, Irvine, Californi~

AND

DAUZD Y. WONGtf

University of California, San Diego, I.a Jolla, California

(Received 6 December 1965)

We examine the Dashen-Frautschi calculation of the neutron-proton mass difference 8,„.Their SU(2)
calculation considers the nucleon to be a ~$ bound state with the dominant forces due to nucleon and E*
(1238-MeV) exchange. B,~ then depends linearly on b, ++ (the mass difference between the E*'s with
charges —and ++) and the one-photon-exchange driving term F. )We note that this SU(2) model predicts
Bp + 38 ++ 7 The E* is calculated as a 2rX resonance with E and 1V* exchange as the forces. This gives
another relation among B,~, 8„,„,and j. . Now in the static Chew-Low theory with a linear D function,
the E-E reciprocal bootstrap conditions on the residues are exactly satisfied. In this case we show that B,~
(and 8,++) is infinite. (Following Gerstein and Whippman, this divergence is seen to be a general conse-
quence of the static, linear-D, reciprocal bootstrap conditions. ) Thus it is only the deviations from the
static Chew-Low theory with linear D which give a finite b, ~. Dashen and Frautschi consider two such
effects: (a} They show that the E*exchange force is suppressed (by a factor of 0.6) because of the detailed
shape of the resonance. (b) The physical D function must approach a constant at high energy, and they
choose the simple rational form D ~ (8 —3E)/(8' —7M/3) for the P11 partial wave which simulates the D
function calculated by Balkzs. This choice for D leads to an additional suppression of the Ã* exchange force.
We concentrate our criticism on the nature of the D function. We note that the Baldzs D function corresponds
to a P» partial wave with a negative definite phase shift, in contradiction to experiment. Using results of
~E phase-shift analyses, we calculate the D functions and find that the S~ exchange contribution to the
binding of the nucleon is enhanced relative to the linear form for D. Depending on the high-energy behavior
of these phase shifts, not only can the calculated 8 .„have the wrong magnitude, but also the wrong sign.
We conclude that the calculation of B„,~ depends critically on the details of the strong interactions. On the
other hand, the ratio 0,++/8, „is insensitive to these details and is predicted to be 3.Thus a less ambitious
point of view is to use the experimental value of 5,++(=7.9~6.8 MeV) to get a rough value of B„,~ (or
vice versa).

HERE have been many theoretical attempts
following that of Feynman and Speisman' to cal-

culate the mass splitting 8„,~ between the neutron and
the proton which experimentally is 1.3 MeV. This
electromagnetic splitting is calculated from self-energy
diagrams (usually keeping only the nucleon-photon
intermediate state) with the form factors providing the
high-energy cutoG to the integrals. However, the
integrals are sensitive to the high-energy behavior of the
form factors, ' i.e., they are sensitive to the details of the
strong-interaction dynamics.

Recently, Dashen and Frautschi' —' (DF) have intro-
duced a new approach to the problem of determining
5„„from the one-photon-exchange diagrams and the
shift in the position of the strong-interaction poles due
to the electromagnetic splitting of the exchanged and
external masses. The A/D equations are used to describe
the partial-wave amplitudes. They suggested that their
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result is insensitive to the exact details of the strong-
interaction dynamics. The purpose of this paper is to
examine this statement. Following the work of DF very
closely, we will make the same approximations to their
general equations that they employ except for the
nature of the D functions. Here we make use of experi-
mental values of the phase shifts to construct D. We
find that 8„,„ is sensitive to the details of the strong
interactions: not only is the magnitude uncertain, but
also the sign. The result, as we shall see, is not surprising
but is due primarily to the fact that the "lowest order
approximation" to the problem yields a divergent 8„,„.

DF consider the exchange of the nucleon and the
iU*(1238 MeU) to give the dominant forces producing
the nucleon as a bound state in the J=-'„ I=-', partial
wave and the 1V*(1238MeU) as a resonance with J= 2,I= —,'. With this SU(2) modeP for the X (and lV~), DF
treat the electromagnetic splittings of the external and
exchanged particles as perturbations with the elastic
n.iV one-photon-exchange diagram (infrared contribu-
tions appear in the form of a nonzero-mass photon in
the propagator) providing the driving term 1'. Let M*
be the mass of the iV* (and M the mass of the nucleon)
and dehne

' The neglect of E-hyperon channels seems reasonable.
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Then the SU(2) model predicts

b,++=380,+.
Now following DF' we evaluate their Eqs. (21) of

Ref. 5 by approximating the short X and .V* exchange
cuts by poles, evaluating the mass shifts due to the
external nucleon using mass scale invariance of the un-

perturbed. (by electromagnetic eBects) solution, ' ignor-

ing the e6'ects due to the electromagnetic splittings of
the coupling constants, and inelastic channels. Ke
obtain

b,„=—(1/27)(5+8pgs)b„, r+(40/81)pggb, +++I' (3)

for the shift in the nucleon pole in the J=-,' amplitude
due to electromagnetic sects. Similarly from the shift
in the S*position in the J= ~ amplitude,

,++= -'9(9+16p31+p33)&S,y+ (1/27) p»& ,+~+-I", (4)

where

(D»'(lid) ~~) ',

with D~~ and D33 the D functions for the unperturbed
J= -'„I= -'„and J= ~, I= ~ partial waves, y~~ the residue
of the nucleon pole, and F33 the residue of the Ã* reso-
nance. DF introduce the factor C because the detailed
shape of the E~ resonance reduces the effective X*
exchange force. They evaluate the cancellation of the
positive and negative portions of the E* exchange cut
and quote a value of

C=0.6.
More compactly we can write (4) and (5) as

(7)

where the matrix A depends only on the strong-
interaction dynamics.

The crucial point is that the simplest model for the
strong interactions leads to an A which has zero deter-
minant and hence divergent 5's: The static Chew-Low
theory' in the narrow resonance approximation (C= 1)
and the linear approximation for the D functions yields
a solution to the E-S* reciprocal bootstrap equations
(and predicts y»/y» ———,', in agreement with experi-
ment). In this model (setting C= 1) all the 8;; in (5)

8 See, e.g., Eqs. (43'} and (44) of Ref. 5. Note that terms of
order {M*—M)iM are neglected. Strictly speaking, mass scale
invariance is valid only if all allowed channels are explicitly
included.

9 G. Chew, Phys. Rev. Letters 9, 23 (1962); F. Low, ibid. 9,
279 (1962).

are 1 which immediately leads to an A with zero deter-
minant. ' The same result for A follows in the static
Chew-Low model with linear D and C= 1 regardless of
the spin, parity, and isospin of the A', Ã*, and m, as
long as the reciprocal bootstrap equations have a solu-
tion. Following Gerstein and Khippman, "we show this
in the Appendix.

Thus it is the deviations from the static Chew-Low
iV-~V* reciprocal bootstrap theory with linear D func-
tion which give a finite b, ~. DF consider two such
deviations: (1) Their factor C due to the detailed shape
of the E* reduces the X* exchange contribution. (The
E-E~ reciprocal bootstrap does not then have a solu-
tion. Contributions from other forces could presumably
remedy this. ) (2) The second feature they consider is the
nonlinearity of the unperturbed D function. DF use a
D function similar to one determined by Balazs. ~ This
has the e8ect of further diminishing the contribution
from alt* exchange factor p~a to 0.23. (par and p» are
also reduced by a "Balazs" D function. )

%e will concentrate our criticism on the nature of D
functions used by DF: %e will discuss the reasons why
the parametrized form they chose is inadequate. Then
we use experimental values for the phase shifts to
calculate the D functions and solve (7) for the mass
splittings. The calculated splittings are very sensitive to
the high-energy behavior of the phase shifts.

DF chose the simplest phenomenological form for
the D function which had the desired characteristics
that it approaches a constant as 8'~~ and goes
through zero at the bound state or resonance. For the
unperturbed I= » J=-,' D function they used

D»= (ll' —3f) (3f—3f')/(& —3f'), (8)

with M' taken equal to 7M/3 to simulate the D function
calculated by Balazs. D» as given by (8) has the feature
that its slope continually decreases for W'(M which
leads to the suppression of the X* exchange factor /~3.
Thus the form (8) completely prejudices the issue of the
nonlinearity of the D function. To discuss this quantita-
tively, we consider the form in which D is written as the
exponential of an integral over the phase shift. Ke write
the J=~x I=—', 5 matrix as

~ii.=nxi' ",
where g&~ is the inelastic factor and n~~ is the real-part
phase shift. The results of the extensive energy-
dependent complex phase-shift analyses'~'5 determine

'0 %e note that in Ref. 6, p. B1346,a statement was made to the
contrary. It follows, however, from Tables XI—XX of Ref. 6 that
this statement is erroneous."I.Gerstein and M. %hippman, Ann. Phys. (N. Q.) 34, 488
(1965).

» L. Bal6zs, Phys. Rev. 128, 1935 (1962)."L.Roper, Phys. Rev. Letters 12, 340 (1964); L. Roper and
R. %'right, Phys. Rev. 138, 8921 (1965)."P. Auvil, A. Donnachi, A. Lea, and C. Lovelace, Phys. Letters
12, 76 {1964).

» P. Bareyre, C. Brickman, A. Stirling, and G. Villet, Phys,
Letters 18, 342 (1965).
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Xexp
egg(lV')dW'

r+y (W W) (W M)
(10)

with cx»(oc) = —s.. On the other hand, if the "Roper
resonance" is mainly due to inelastic channels as sug-
gested by the small value of p», then a pair of apparent
"Castillejo-Dalitz-Dyson" (CDD) zeros in S» at
W'= 5"g~~IVz appear on the physical sheet, "Then "
u»(~) =0 and we replace (10) by the form

(M Wg)2+—Wz' "
D»=(&V—M')

(W—Wg)'+ Wr'

t:V—N
Xexp

ups(W')dW'

~+, (W' W) (lV' M—)—
Note that this form (as well as (10)j approaches a con-
stant as tV —+~.

The I-'~~ phase shift calculated by Halazs" is always
negative and as a result the exponential factor in (10)
would be less than one for 8'(M. Thus we see that the
large suppression of the X* exchange term in (3) found
by DF is a result of using a negative definite P~& phase
shift in contradiction with experiment.

The existing phase-shift analyses" —"extend up to
EI. 1 BeV."Ke employ these results to determine the
D functions: Above this energy we let n» go smoothly
to —s and 0 as W —+~ when evaluating forms (10) and
(11), respectively. Explicitly, we use

n» (W) = —8~q'(8' —8 5) (W —1VO)/(lV —2.0) ' (12)

the behavior of both o,» and g». u» starts o6 negative
and small (& —2') but quickly turns over and becomes
large and positive, going through m-/2 at incident pion
laboratory kinetic energy Ez 600 MeV ("Roper
resonance"). Now let D, q be free of left-hand cuts and
D» /D» have the phase of 5»."Then, assuming that
the "Roper resonance" as well as the nucleon bound
state are predominately due to forces in the x.V channel,
we find" "
Dgg=(W —M)

A cutoK form of (11) is also considered with u~~ set
equal to zero for 8') 15. In all the above cases, we find
that the nonlinearity of D» enhanced the X* exchange
term in (3) instead of reducing it as the DF form (8)
did. To calculate the D function for the P33 amplitude
(in order to calculate 83~ and P33) we use the form

1
D33= exp

7r

n33 (W') dW'

(W' —W)
(15)

with +33(~ ) =0. (There seems to be no CDD ambiguity
for this state. ) A good fit to the experimental phase shift
is given by

n33(W) = W2q'/(W —3.8) ', (16)

with W2 adjusted to give a»=s/2 at W=M*=8.8.
Thus we calculate D&~ and D33 using (10)—(16) and

hence determine the .4 matrix, Eq. (7), from (3)—(5).

2

0

-2

for Eq. (10) and

nag(lV) = —lVgq'(W —8.5)/(1V —2.0)' (l3)
for Eq. (11).Here, q is the center-of-mass momenta, Wo
and W& are adjusted so that a» ——s /2 at W= 10.7 (Roper
resonance) in (12) and (13), respectively. The above
expressions give a good fit to the experimental phase
shift below 1 BeV. When using (11), we choose as an
example a CDD zero near the pole of the DF D»
function:

'6 This leads to the Fry e-Warnock. t Phys. Rev. 130, 478 {1963}j
formalism for the N/D equations.

7%'e ignore the —0 contribution from the S11 phase shift.
Similarly the —8' contribution from the D33 phase shift is
neglected in (16)."%'e use units ti=c=—w =1.

'9 M. Bander, P. Coulter, and G. Shaw, Phys. IZev. Letters 14,
270 (1965).

~R. %arnock, Phys. Rev. 131, 1320 (1963); J. Hartle and
C. Jones, ibid. 140, B90 (1965); Ann. Phys. (N. Y.) (to be
published). The presence of the CDD zeros in 511 implies that
inelastic channels are important. However, the present treatment,
following that of DF, neglects explicit inelastic contributions to
the right-hand branch cut. Note that expression (11) contains a
pair of complex CDD poles in D&P which could be considered as an
extra driving term. This is also neglected. A multichannel calcula-
tion would eliminate these poles.

~' They are well determined up to ~700 MeV.
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W

I''ro, 1. Plots of the D11 function versus 5' corresponding
to the cases 2-5 described in Table I.
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TABLE I. Calculated values of mass shifts using different approximations for the D functions.

Case Type of D function

D11= (IV—M), D33= (8' —M*)

~

~

~

D11= (8'—M) (M —15.5)/(g —15.5)
D33= (8'—.V*) (M*—15.5)/(5' —15.5)
Form (10) of present paper for D11 and

(15) for D33. Expressions (12) for P11
and (16) for P33 phase shifts with no
cutoff.

From (11) for D11 and (15) for D33.
Expressions (13) P11 and {16}for P33
phase shifts with no cutoff.

Same as case 4 but with cutoff at
5'= l5.

0.6

0.6

0.6

0.6

(MeV)

+1.8

—1.9

+6.4

{MeV)

+7.0

—47

+22.9

2.5

2.9

3.6

The photon exchange driving terms F and F* depend
not only on the ~x isovector form factor and the ~V¹iso-
scalar form factor, ' but on D~~ and D33, respectively.
Since the major variation of the mass shifts with respect
to the nonlinearity of D originates from the A matrix
rather than the driving term, we evaluate I' and F~ using
linear D functions. Following Dashen4 we have

—,'r*= r=1.4 MeV.

The results of all the cases discussed above are pre-
sented in Table I. In order to illustrate the sensitivity
of these results, we plot the D~~ functions and the
quantity p(W) =pD, p(W)/(W —M)]' in Figs. 1 and 2,
respectively. Although P(~) vanishes in all the cases
2-5, solutions 3 and 4 will enhance higher mass exchange

contributions. Ef these solutions correspond to physical
D functions, then higher mass exchange effects are
necessarily important. We note that there can also be
cases like solution (5) where 8(W) peaks in the neigh-
borhood of the iV* exchange pole (W= 2M—HE*=4.6).
In this case the mass shift results are also very diBerent
from those given by DF. Although the magnitude and
the sign of the mass differences are strongly model-
dependent, their ratio

.++l &-,n= -3

for all cases considered.
A less ambitious point of view (as considered by DF)

is to abandon the attempt to calculate both b„,„and
fL,++. Experimentally~

IL,++=7.9&6.8 MeV. (19)
12

10

8

7 8

6

Using this deterlnination of IL,++ to calculate 8„,~ from
(3), our models for D give the correct sign for 8,~ but
an uncertainty of a factor 3 in the magnitude.

One of the interesting features of the DF formalism is
that not only does it allow one to calculate electro-
magnetic mass splittings but also splittings of the
coupling constants. Although their sects on the mass
splittings appear to be small if the determinant of A is
not near zero, the e6ect of the mass splittings on the
coupling-constant shifts will again be sensitive to the
nonlinearity of the D functions.

2

5
~f
3

APPENDIX

Consider the Chew-Low static model with a linear D
function and the narrow-resonance approximation for
the reciprocal bootstrap of E and E*.Here we demon-
strate that a generalization of this situation in which
the meson M, baryon 8, and resonance B~ have any
particular spin, parity, and isospin leads to electro-
magnetic mass splittings~ b3 for 8 and b3* for 8*which

0 I 2 5 4 5 6 7 8

W

FIG. 2. Plots of the quantity LD11'/(O' —M)g' versus tV
corresponding to the cases 2-5 described in Table I.

"G. Gidal, A. Kernan, and S.Kim, Phys. Rev. 141, 1261 {1966).~ Following Ref. 6 we use the subscript 3 to denote mass-
splitting terms which are proportional to the charge and the
subscript 1 to denote mass-splitting terms which are the same for
each member of the multiplet,
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are in6nite. Let p be the residue of the baryon pole and
y* the residue of 8*.Then the static model which con-
siders 8 and 8* exchange forces to produce the 8 and
8*gives

there is a uniform over-all mass shift of the 8 (and 8*
multiplet) which is infinite. More important, however,
are the 83 and 83* splittings. "Let IB, IB», and I~
denote the isospins of the particles and de6ne

v=~v+N*,
v*=~v+~v*

In order that a solution exist, it is necessary that

1—a —b
=0

(A1)
and

8=Ia(I—a+1), 8*=IB»—(IB»+1),

M= I~(—I~+1).
The ratios of the E3 to the E& coefficients are given by
Gerstein and Whippman PEq. (A7) of Ref. 11j as

and thus

—C

R=y*/y= (1—a)/b=c/(1 —d). (A2)

Now from the Dashen-Frautschi formalism, using the
approximations described in the sentence preceding
Kq. (3) of the present paper, we have""

(E BB ext+E 88 exch)b+E BB» exch' x+p
A3

(E B»B ext+E B»B exoh)b+E B»B» cxchb x+Px

with

EBBexch/EBBexch (8 M)/8
g BB» exch/g BB» exch

B»B exch/E B»B exch —(8 Pf)/[BBe j/I/2

EBBext/EBBext 1 M/28

E B»B» exch/E B»B» exch —(8 M)/Be

E B»B ext/E B»B ext (8—+Be M)/2(BBx) 1/2

(A6)

Then from (A2), (A4), and (A6) we obtain the A
matrix:

g BB exch

Etss '*'= (1+b+bR),
P B»B» exch—

Writing (A3) in form

g BB» exch bg

E s's '*'h= c/R-
Ets's ' '= (1+c/R+d).

(A4)

1+a —2 1— (1—u)
(BBx)1/2

(A5)

we immediately have, using the bootstrap conditions
(A2) that A1 has zero determinant. This means that

(o—1)(8—M) (1—a)(8—M)

8 (BBx)1/2

d(8 M)+8" d(B—M)+Bx—
(BBx)1/2

(A7)

~ The superscript notation ext and exch denote external and ~ ~

exchange so that, e.g., g~e~ ~ 8 is the contribution to the shift Thus A has zero deteraunant and the mass sphttlngs
in position of the B~ due to a shift in the exchanged 8 mass. 83 and 83* are in6nite.


