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Measurements have been made of the total cross sections o(p-p) and o (p-d) over the laboratory mo-
mentum range 1.1 to 8 GeV/c, with relative errors of 0.1%. The absolute accuracies of these cross sections
are limited to 0.3% by lack of information which will allow the Coulomb-nuclear interference to be cal-
culated accurately. Values of the total cross sections o(p-n) and o(I=0) are deduced by assuming the
Glauber correction. Structure is observed in o (p-p) near a mass value of 2.75 GeV/¢?; its interpretation is
discussed. o (I =0) rises rapidly in the range 2.3 to 2.9 GeV/c?, and this is attributed to the onset of strong

inelastic scattering.

1. INTRODUCTION

HE aim of this experiment was to measure p-p and
$-d total cross sections, referred to here as o (p-p)
and ¢(p-d), with an absolute accuracy of about 0.1%,
and over as large a momentum range as was available
at Nimrod. The conventional transmission technique
was used. In previous experiments,'® o(p-p) has been
measured with an accuracy of a few percent, but
information on ¢(p-n) has been rather scanty. There
have been some measurements of o (p-d),"457 and a few
direct ones of ¢ (n-p) using neutron beams.?*® The situa-
tion has been confused by large systematic differences
between results obtained by different groups. Also, be-
cause most groups have covered only a small range of
momentum, it has been difficult to get an integrated
picture of the variation of o (p-#) with energy.

2. EXPERIMENTAL

The traditional transmission technique for measuring
total cross-sections is well known.!® The transmission is
measured with a number of closely spaced counters
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subtending a range of solid angles at the target, and the
total cross section is obtained by extrapolating the
partial cross sections so determined to zero solid angle.
The experimental layout used in this experiment is
shown diagrammatically in Fig. 1.

The sizes of the transmission counters are determined
by the requirements that (a) they should encompass all
of the unscattered beam, (b) losses due to single and
multiple Coulomb scattering should be small, and (c)
they should fall well within the angular range of nuclear
elastic and inelastic scattering, so that the extrapolation
to zero solid angle is approximately linear. To a first
approximation, nuclear and Coulomb scattering are
both functions of the transverse momentum, pro~pf,
only, and are independent of energy; here p is the beam
momentum and @ the scattering angle. Coulomb and
nuclear scattering are approximately equal when pr=40
MeV/c; the cross section for single Coulomb scattering
through values of pr larger than this is approximately
0.2 mb. The angular distribution for p-p elastic scat-
tering varies? approximately as exp(10f), where
iI~—pr? in (GeV/c)?; the angular distribution of
products from inelastic scattering is similar. Hence both
fall by about 109, between pr=0 and 100 MeV/c. It is
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Fi1c. 1. The experimental layout. M and Q denote bending and
quadrupole magnets. T3 are scintillation counters used to define
the beam. C;_¢ are the transmission counters and E the efficiency
counter.
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convenient, therefore, to cover the range pr=>50 to 150
MeV/c with the transmission counters. To achieve this
in the present experiment, they were mounted on a
trolley running parallel to the beam line, and their
distance from the target was made proportional to the
momentum, so that they always intercepted particles
over the same range of pr.

The total cross section is obtained from the ratio,
(t./t;) of the transmission through empty and full
targets according to the relation

o= (1/N0) In(t/ts). ¢))
Here ! is the length of the target and N the number of
atoms per unit volume in it. In this experiment three
identical target vessels were used; the first contained
liquid hydrogen, the second liquid deuterium, and the
third was evacuated. In a separate calibration run, the
transmission was measured through the three targets
empty, and was found to be the same for all three
within 0.01%,.

Most corrections are eliminated by taking the ratio
(2./ty) and extrapolating to zero solid angle. The latter
eliminates double scattering in the target, for example.
The former eliminates most instrumental defects, which
should be the same for target full and empty. For ex-
ample, the proton beam is attenuated appreciably by
p-n charge exchange in the transmission counters. How-
ever, this effect cancels out in the ratio (¢./t;), provided
that the energy loss in the full target causes only a
negligible change in the charge-exchange cross section.

Care is necessary in the design of the apparatus to
ensure that any instrumental effect, involving the effi-
ciency with which scattered particles are detected,
extrapolates to zero at zero solid angle. In this context,
we mention particularly conversion of neutrons in
successive transmission counters; for example, those
produced in the reaction pp — purt are peaked along
the beam direction, and many of them hit the trans-
mission counters. In a first approximation, the number
of neutrons counted is proportional to the weight of
material they have traversed. It is thus necessary to
arrange that the area of overlap of counters and light
guides on succeeding counters follows a progression

TO MANOMETER
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LIQUID HYDROGEN JACKET
Fi1G. 2. The liquid-deuterium target.
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which extrapolates to zero at counter zero. Essentially,
this means making the area of the ith counter pro-
portional to 7. This was done in the present experiment,
but appears to have been overlooked in most previous
ones.

(a) The Beam

The beam was that originally set up by Taylor et al.’®
for the study of Coulomb-nuclear interference in pp
elastic scattering. The internal proton beam of Nimrod
was scattered from a beryllium target located in one of
the magnet octants. Beams of different momenta were
obtained by varying the Nimrod internal energy. The
first collimator accepted protons scattered elastically at
67 mrad to the primary beam. Momentum separation
was provided by the bending magnet M1, which
deflected the beam through 50 mrad on to the second
collimator, a channel 2.5 cm high, 9 mm wide, and 150
cm long. The quadrupole doublet Q1 and Q2 focused the
beam on to this collimator, and Q3 and Q4 refocused it
on to the small counter E behind the transmission
counter array. The momentum of the beam was de-
termined by the two bending magnets M2 and M3, and
the telescope of scintillation counters T'1, T2, and T3.
The magnets were calibrated by floating-wire measure-
ments and with a rotating-coil magnetometer to an
absolute accuracy of +0.5%, and with relative errors
between momenta of +0.29,. The magnet currents
were stable to better than =£0.2%,.

Theoretically no pions should be able to get down the
beam line. A pion contamination of less than 1 per 10
protons was established by time-of-flight measurements
below 2.5 GeV/c, and at higher momenta using a
Cerenkov counter.* Beam intensities were typically
4% 10*/pulse at the highest momenta, falling to 1000/
pulse at the lowest.

(b) The Target

The target vessel is shown in Fig. 2. The cylindrical
body was made of stainless steel and was 55 cm long. A
jacket of liquid hydrogen was used to refrigerate the
target liquid, which was completely closed off and
quiescent. The target and jacket were suspended from
a hydrogen reservoir which was surrounded by a tank
of liquid nitrogen. Heat loss to the target was reduced
by two copper shields, the inner one attached to the
hydrogen jacket, and the outer one to the nitrogen
reservoir. The end windows were circular Melinex
sheets, 4 in. in diam and 0.005 in. thick at the entrance
end, and 7 in. in diam and 0.010 in. thick at the exit
end. Across the apertures in both heat shields six
separated sheets of 0.001.-in. thick Melinex, coated with
aluminium, were attached to act as a radiation shield.

The location of the target in the vacuum vessel was

3 A. E. Taylor, A. Ashmore, W. S. Chapman, D. F. Falla, W. H.
Range, D. B. Scott, A. Astbury, F. Capocci, and T. G. Walker,
Phys. Letters 14, 54 (1965).
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Fi1c. 3. A block diagram of the electronics.

checked by surveying the positions of crosses painted on
the target windows, and viewed through slits in the
radiation shields. The length was measured by viewing
the end windows with a traveling telescope through
small ports in the side of the vacuum tank. The curva-
ture of the windows was found from measurements with
a dial gauge, with the target pressurized with air to
produce the same bowing as when it was filled with
liquid hydrogen.

The vapor pressure above the liquid surface was
measured using a mercury manometer. The corre-
sponding density was deduced from tables compiled by
Tapper.!® A catalyst consisting of pellets of 6%, nickel on
alumina was put into the target to speed conversion to
the equilibrium state (largely para for hydrogen and
ortho for deuterium). Measurements were made on gas
samples drawn from the target of the ortho-para ratio,
using an apparatus similar to that of Grilly.¢ Five
carbon resistors placed around the periphery of the
target were used to measure the temperature distribu-
tion in the liquid. A paddle was provided for mechani-
cally stirring the target liquid. However, temperature
differences between the resistors were found to be
<0.01°C, and the paddle was not used.

The vacuum target was identical to the others apart
from the absence of liquid reservoirs. The jacket sur-
rounding this target was also evacuated.

The three targets were mounted on a framework
which could be moved perpendicular to the beam line to
bring each target into the beam in turn.

At each momentum, measurements were also made of
the attenuation of the beam by a cylinder of aluminum
of radius 2 in. and length 4 cm, which was placed in
front of the vacuum target. Any genuine small structure
in o (p-p) or o(p-n) should be smeared out by the Fermi
motion in the aluminum nucleus, and would not be
seen. This was intended largely as a check on the
apparatus.

18 R. J. Tapper, Rutherford Laboratory Report NIRL/R/95
(unpublished).
16 E. R. Grilly, Rev. Sci. Instr. 24, 72 (1953).
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TABLE I. The dimensions of the scintillators.

Counter Height Xwidth X thickness (cm)
To 5.0X2.5X1.25
T 7.0X2.5X0.2
Ty 7.0X4.0X0.2
Ts 5.0x3.2x0.2
Cy 20 diam X 1.25
Cs 204/2 diam X 1.25
Cs 204/3 diam X 1.25
Cy 204/4 diam X 1.25
Cs 204/5 diam X 1.25
Cs 55.9X46.0<1.25
E 5.0X2.5X0.3

(c) The Counters and Electronics

The electronic logic is outlined schematically in
Fig. 3; standard Rutherford Laboratory and Atomic
Energy Research Establishment 2000 Series equipment
was used. The dimensions of the scintillation counters
are given in Table I. A coincidence, which we call T,
between Ty, T, and T3 was used to define the incident
beam. The largest of the three beam-defining counters,
T, counted nearly all of the particles in the beam line
at all momenta. The dead time of the discriminator on
T, was set to 120 nsec and defined the over-all dead time
of the whole electronic system.

There were six transmission counters Ci_¢. The first
five were %-in. thick circles of scintillator of diameter
8y/i in., where i=1---5, embedded in rectangular
Perspex light guides. The sixth counter Cs; was a
rectangle of scintillator. To minimize the effect of
Cerenkov light produced in the light guides, successive
pairs of transmission counters were taken in threefold
coincidence 7C;Ciy1 with the beam pulse 7. This also
eliminated any troubles due to after-pulsing in the 56
AVP photomultipliers ; some after-pulsing was observed
in the largest three counters Cy_¢. The widths of the
TCC resolution curves were adjusted to be the same
within 0.1 nsec; this ensured that they all counted the
same spectrum of scattered particles.

The small counter E was used to monitor continuously
the efficiencies of the transmission counters. By putting
TE into coincidence with TCC, the efficiency of the
complete system, scintillator+photomultipliers+elec-
tronics, was monitored. A valuable running check on the
electronics was that the efficiency of one counter meas-
ured by TE in coincidence with TC; was the same for
both channels on which C; was present.

The only significant source of accidental coincidences
was due to two protons traversing the beam-line within
the resolving time of the TCC coincidences. We refer to
these as twofold accidentals. They were monitored by
delaying the T pulse by about 200 nsec (we refer to this
as the R pulse), and recording RC,C;;; coincidences.
With beam intensities of 5X10* per 300-msec pulse,
twofold accidentals could be as high as 19, of true
coincidences. Because there is always some uncertainty
in correcting for randoms, an arrangement similar to
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that of Citron et al.l” was used to eliminate them
electronically at all but the lowest momenta, where they
were negligible. Two systems (Fig. 4) were used in
parallel to veto the T' pulse whenever two beam par-
ticles were recorded in counter 7'y within 15 nsec of one
another. The first of these was a fast gate. The first
particle in T opened the gate, and a veto resulted from
a second anywhere within the time interval 3 to 15 nsec
afterwards. This device had a negligible dead time. The
second system used a fan-out to split the T photo-
multiplier pulse four ways. These four ways were
recombined in an analog adder with appropriate delays
between them, so as to generate an approximately
square output, 15 nsec long. The ripple on the square
wave was <109,. If a second particle traversed T
anywhere within these 15 nsec it produced a second
pulse which added on to the top of the square wave, and
triggered a discriminator set above the level of square
waves due to single particles. This device, unlike the
first, worked when two particles traversed T’y within
3 nsec, but it was more difficult to establish its efficiency.
Also, the discriminator had a dead time of about 40 nsec.
The two devices together are believed to have vetoed
twofold accidentals with an efficiency >98%, and the
loss of beam was less than 5%.

Two small counters T, and T,/ were used for meas-
uring beam profiles over the target entry window and
over the transmission array.

3. COLLECTION AND TREATMENT OF DATA

Data were taken at 40 momenta in the range between
1.1 and 7.8 GeV/c. Consistency checks were made at
several momenta over this range and results were
reproducible with an absolute accuracy of about
+0.19,. At each momentum, the data were collected in
five or six batches which were checked for statistical
consistency and then averaged. The momentum spread
in the beam was typically 40.59,. The statistical
accuracy on the cross sections was < =£0.19%, at most
momenta.

The efficiency of each pair of transmission counters
CiCiy1 was determined from the ratio TEC,Ciy1/TE.
Corrections were applied to the data for

(i) variations of efficiency over the areas of the
transmission counters,
(ii) Cerenkov counts,
(iii) randoms, where necessary,
(iv) single and multiple Coulomb scattering,
(v) Coulomb-nuclear interference.

Cross sections were determined by extrapolating the
data to zero solid angle, (vi), and were corrected for

(vii) changes in the density of the air between the
target and the counters in the time between target full
and empty runs, and

(viii) theortho-para ratio and purity of the deuterium.

' A. Citron, W. Galbraith, T. F. Kycia, B. A. Leonti¢, R. H.
Phillips, and A. Rousset, Phys. Rev. Letters 13, 205 (1964).
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F1G. 4. The electronic system used to eliminate
twofold accidentals.

Finally, o(p-n) and o(I=0) were deduced, taking
into account

(ix) the Glauber correction, and
(x) Fermi motion of the nucleons in the deuteron.

(i) Variations of Efficiency over Scintillator Areas

Scattered particles reaching the transmission counters
were recorded with different efficiencies from unscat-
tered particles, because of the variation of efficiency over
the areas of the counters. Correction was made for this
in a straightforward fashion. It was a small correction
since (a) few scattered particles hit the transmission
counters, and (b) the efficiency was always over 999,
for counting beam particles, and was higher still over the
remaining area.

EHT and discriminator levels were left constant
throughout the experiment, and it was observed that
the efficiency e for counting beam particles obeyed a
relation

In(1—e)=A+B/32, (2

where 4 and B were constants for any one counter, and
B was the velocity of beam particles. This is approxi-
mately what would be expected from a Poisson pulse-
height distribution and an energy loss proportional to
1/62 in the scintillator.

(ii) Cerenkov Counts

Scattered particles traversing the light guides of
transmission counters produced Cerenkov light, which
could be counted with low efficiency. This was mini-
mized by overlapping successive light guides as little as
possible, and taking triple coincidences T'C.C;.1, as
described in Sec. 2 above. Measurements were made at
7 GeV of the efficiency, e, for counting Cerenkov light,
where the guide of one counter overlapped the scintil-
lator of the next, and a correction was applied by
relating Ine. along the lines of Eq. (2), to the known
variation of the intensity of Cerenkov light with 8. The
quantity e, was immeasurably small for the first two
counters, and rose to 19, at 7 GeV in the case of the
largest counter.
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(iii) Randoms

The only accidental coincidences of any significance
were twofold accidentals. As mentioned in Sec. 2(c)
above, they were eliminated electronically at most
momenta.

Let a; be the probability that a particle traverses the
target and is recorded in the ith counter and let 7; be
the number of randoms recorded by the delayed coinci-
dence RC;Ciy1. Then, if the efficiency of the veto system
is e, the number of random coincidences, #,, is

n.=31—e)r;(1—a).

The factor of 3 comes from the fact that the first of two
particles in twofold accidental coincidence will produce
the T pulse, and the second one can lie only within the
second half of the coincidence resolution curve. At no
momentum did this correction exceed 0.019, when the
veto was used, or 0.19, when it was not used.

(iv) Single and Multiple Coulomb Scattering

Since the single Coulomb scattering cross-section
varies as 1/6* for small , the number of beam particles
scattered so as to miss a counter subtending an angle ¢
at the target varies as 1/6% This does not extrapolate to
zero as @ — 0, and correction has to be made for it before
the extrapolation is performed. Let the radius of counter
i be R;, and suppose the trajectory of a beam particle
intersects the counter at a distance 7; from its axis. Then

the Coulomb correction is
—4r(ahc)? { < (1 rl )—2>+ 2d X6
1026 R2 R2

(X @

Here « is the fine-structure constant, and p and 8 are the
laboratory momenta and velocities of beam particles.
Braces indicate averages over the beam profile at
counter surfaces. The first term is an exact correction
for finite beam size. The second one is a first-order
correction for the fact that particles which are single-
Coulomb-scattered are also subject to multiple Coulomb
scattering. In Eq. (3), (6?) is the mean-square angle of
multiple scattering, and d; is the distance from counter 2
to the center of the target. For hydrogen and deuterium,
the Coulomb correction to the cross section was always
less than 0.49, in the smallest counter, for which the
factor in curly brackets was typically 1.05. For alumi-
num, however, the Coulomb correction was an order of
magnitude larger, and the factor in curly brackets rose
to 1.4 for the smallest counter. No correction was
necessary for multiple Coulomb scattering alone, even
for aluminum.

do (Coulomb) =

(v) Coulomb-Nuclear Interference

The cross section for Coulomb scattering equals that
for nuclear elastic scattering when p8~40 MeV/c. In
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this experiment, the five transmission counters counted
particles over a range of pr roughly up to 70 MeV/c for
i=1 and 150 MeV/c for i=S5. Thus, although the cor-
rection for single Coulomb scattering was very small,
and could be made with confidence, that for Coulomb-
nuclear interference was much larger, and less certain.
This interference term is

do(CN)= / [Ref ®

+?I;—’ h(%:;) Imf(0>]0d0, @

where f(9) is the spin-averaged nuclear scattering
amplitude,  is the wave number of the incident beam,
and a the radius characteristic of the nucleon for elastic
scattering. Because of the factor a in it, the second term
in the bracket in (4) is negligibly small over the range
of 6 involved in this experiment, and it will not be
considered further. Imf(f) is well known from the
optical theorem, and experiments™!? on elastic scat-
tering. However, very little is known about Ref(6).
There have been experiments'®1#-22 on Coulomb-nuclear
interference in p-p scattering, and the results agree
fairly well with a calculation by Soéding® based on
dispersion relations. We have therefore used his calcu-
lated values for Ref,,(0) over our entire momentum
range. In the case of deuterium, there will be coherent
interference between Re f,, (8)+Re f,,(6) and the ampli-
tude for Coulomb scattering from the deuteron. Un-
fortunately, there are no data at all on Ref,,(6) in this
momentum region. Values of Ref,,(0) have been
calculated from forward dispersion relations.* These
values are used in correcting the deuterium results for
Coulomb interference. In the absence of any information
on the angular dependence of Ref(f) we have assumed

Ref(6) = Ref(0)et-o¢ (5)

in accord with the known angular dependence of

Imf,,(6).
It is convenient to break up the Coulomb-nuclear

18 E. Lohrmann, H. Meyer, and H. Winzeler, Phys. Letters 13,

78 (1964).

B K. J. Foley, R. S. Gilmore, R. S. Jones, S. J. Lindenbaum,
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Yuan, Phys. Rev. Letters 14, 74 (1965).

2 1. Kirillova, L. Khristov, V. Nikitin, M. Shafranova, L.
Strunov, V. Sviridov, Z. Korbel, L. Rob, P. Markov, Kh.
'(I‘I(gnér)nev, T. Todorov, and A. Zlateva, Phys. Letters 13, 93

2 J. D. Dowell, R. J. Homer, Q. H. Khan, W. K. McFarlane,
J. S. C. McKee, and A. W. O’'Dell, Proceedings of the Sienna
International Conference on Elementary Particles and High Energy
Physics, 1963, edited by G. Bernardini and G. P. Puppi (Societd
Ttaliana de Fxsma, Bologna, 1963), Vol. I, p. 683; Phys. Letters 12,
252 (1964).

2 . Bellettini, G. Cocconi, A. N. Diddens, E. Lillethun, J.
Pahl, J. P. Scanlon, J. Walters, A. M. Wetherell, and P. Zanella,
Phys. Letters 14, 164 (1965).

2 P, Séding, Phys. Letters 8, 285 (1964).

% A. A. Carter and D. V. Bugg, Phys. Letters 20, 203 (1966).
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interference correction (4) into two parts
05 0
da(CN)=/ +/ =do(CNy)+do(CNy).  (6)
03 65

0, is the angle subtended by the ith counter. In the first
term, @ is small enough for the angular dependence of
f(8) and the form factors for Coulomb scattering to be
expanded in a power series in £ Then

do(CNy) = (4ratic/pB) Ref(0) In(ts/t:)+ At+ B+ - - .

The terms linear and quadratic in £ may be taken into
the extrapolation to zero solid angle, and only the first
term of this correction needs to be made explicitly. Then
uncertainty in its magnitude arises only from uncer-
tainty in Ref(0). Uncertainty in the angular depend-
ence contributes only to the second term, which is
smaller. A form factor exp(5.5¢) has been used for the
p-p Coulomb amplitude,?s and exp(18.3¢) for the p-d
Coulomb form factor.2® The second term of (6) then
becomes

do (CNy) = (—4mahc/pB8) Ref(0) Ei(vf),

where y=10.1 and 29 for p-p and p-d scattering, re-
spectively, and Ei(—=x) is the exponential integral
function.

The corrections for Coulomb-nuclear interference are
large compared with our errors of measurement. They
are tabulated in columns 2 and 3 of Tables IT and IV.
However, at high energies, Ref(0) is governed largely
by the rate of change of the total cross section. In the
absence of pronounced structure in the total cross
sections, Ref(0) will change slowly and smoothly with
momentum, and is unlikely to affect seriously the shapes
of the cross sections deduced from our results.

(vi) Extrapolation to Zero Solid Angle

The partial cross section ¢; recorded by each trans-
mission counter 7 was determined from the ratio
(te/t7):, and the o; were fitted to a power series in the
solid angle Q;:

0i=A+BQU+CQ*+DQiH- - - .

Since the error on A4 increases sharply with the number
of free parameters in the power series, coefficients C, D,
etc., were fixed in various ways. For hydrogen, coeffi-
cients D and above were set to zero. For deuterium,
Kirillova® et al. report an angular distribution exp (26¢).
The value of D was determined from the power series

% R. Hofstadter, F. Bumiller, and M. Croissiaux, Phys. Rev.
Letters 5, 263 (1960).
(1;‘;%) A. McIntyre and G. R. Burleson, Phys. Rev. 112, 2077

7 L. F. Kirillova, V. A. Nikitin, V. S. Pantuev, V. A. Sviridov,
L. N. Strunov, M. N. Khachaturyan, L. G. Khristov, M. G.
Shafranova, Z. Korbel, L. Rob, S. Damyanov, A. Zlateva, Z.
Zlatanov, V. Iordanov, Kh. Kanazirski, P. Markov, T. Todorov,
Kh. Chernev, N. Dalkhazhav, and T. Tuvdendorzh, Yadern. Fiz.
1, 533 (1965) [English transl.: Soviet J. Nucl. Phys. 1, 379 (1965)].
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expansion of this exponential for small ¢, and a value
do/d2(0°) deduced from the optical theorem; higher
powers were negligible. This value of D was small, and
the final values obtained for o(p-d) are insensitive to its
precise value. The aluminum data presented special
problems since the extrapolation was very nonlinear.
This is discussed in Sec. 5(c).

Preliminary values of 4, B, and C were determined by
a least-squares fit to the experimental data. Values of
C/p* when plotted against momentum p, were sta-
tistically compatible with a smoothly varying function.
A smooth curve was drawn through them, and final
values of 4 and B were determined from a least-squares
fit using these smoothed values of C.

(vii) Air Density Variations

Straightforward corrections have been applied for
changes in the density of the air between target and
counters in the time between target full and empty runs.
Only at the highest momentum did they exceed 10 ub.

(viii) Ortho-Para Ratio and Purity of the Deuterium

The hydrogen in the target was completely converted
to the para state before the run began. However, in
deuterium, the conversion to the ortho state was slow,
even in the presence of a catalyst; it had a time constant
of about 100 h, and allowance had to be made for the
ortho-para ratio in the target liquid. The maximum
correction for para content in the deuterium was 30 ub.
Samples of the deuterium were analyzed in a mass
spectrometer and it was found to have an atomic
composition of 99.0040.029, deuterium and 1.00
+0.02%, hydrogen. Allowance was made for the hydro-
gen content in calculating o(p-d), assuming that the
hydrogen was all in the form of HD.

(ix) Glauber Correction

In deducing ¢(p-#) and o(I=0) from ¢(p-d), allow-
ance has to be made for shadowing of one nucleon by the
other in the deuteron. A formula for this effect has been
given by Glauber.?8

o (p-d) =0 (p-p)+o (p-n)— (1/4m)(r?)
X{o(p-p)o (p-n)— (4m/k)* Ref,5(0) Refpa(0)}. (7)

Experimental values of (»2) have been given by Baker
et al® as 0.0239 mb~!, and by Galbraith ef al.’ as
0.0424 mb. The systematic errors in the experimental
determinations are comparable with the difference be-
tween them. They yield corrections to o(p-d) of the
order of 3 and 6 mb, respectively. Franco and Glauber3®

28 R. J. Glauber, Phys. Rev. 100, 242 (1955).

» W. F. Baker, E. W. Jenkins, T. F. Kycia, R. H. Phillips, A. L.
Read, K. F. Riley, and H. Ruderman, Proceedings of the Sienna
Conference on Elementary Particles and High Energy Physics, 1963,
edited by G. Bernardini and G. P. Puppi (Societd Italiana di
Fisica, Bologna, 1963), Vol. I, p. 634.

#V. Franco and R. J. Glauber, Phys. Rev. 142, 1195 (1966).
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TastE II. Total cross sections for p-p scattering, o (p-p) and the corrections for Coulomb-nuclear interference.
The definitions of do(CN;) and do(CN3) are given in Eq. (6), Sec. 3(v).

Total center-of-

Laboratory
momentum do (CNy) do (CN2) a(pp) mass energy
(MeV/e) (mb) (mb) (mb) (MeV) Ref(0)/Imf(0)
1111 0.449 0.280 34.029+0.170 2119 0.55
1289 0.347 0.188 43.2344+0.113 2180 0.44
1408 0.206 0.102 46.48740.052 2222 0.21
1607 —0.026 —0.012 47.47640.058 2292 —0.03
1660 —0.050 —0.021 47.55340.058 2311 —0.05
1780 —0.099 —0.047 47.4904-0.046 2354 —0.08
1858 —-0.119 —0.058 47.45540.041 2382 —0.12
1940 —0.136 —0.065 47.35740.046 2410 —0.14
1952 —0.149 —0.068 47.4094-0.041 2415 —0.15
2079 —0.166 —0.081 47.224+0.041 2459 —0.18
2212 —0.183 —0.087 46.9854-0.046 2505 —0.20
2280 —0.195 —0.094 46.6691+0.041 2528 —0.21
2419 —-0.219 —0.102 46.130:0.041 2576 —0.24
2450 —0.220 —0.105 45.827+0.041 2586 —0.24
2592 —0.226 —0.107 45.5334:0.041 2634 —0.26
2680 —0.232 —0.109 45.3311+0.041 2663 —0.27
2704 —0.230 —0.111 45.17440.041 2671 —0.27
2819 —0.237 —0.112 45.0084-0.041 2710 —0.28
2857 —0.255 —0.115 44.9284-0.041 2721 —0.28
2958 —0.238 —0.109 44.6511+0.041 2755 —0.29
2994 —0.245 —0.117 44.4661-0.041 2766 —0.29
3054 —0.248 —0.107 44.4014-0.041 2786 —0.30
3110 —0.250 —0.107 44.188+-0.041 2804 —0.30
3131 —0.246 —0.119 44.1560.041 2816 —0.30
3142 —0.246 —0.119 44.1144-0.041 2820 —0.30
3217 —0.246 —0.121 43.61040.041 2857 —0.30
3303 —0.251 —0.120 43.669-+0.041 2866 —0.31
3444 —0.251 —0.121 43.1384-0.041 2909 —0.31
3546 —0.250 —0.123 42.978+0.037 2941 —0.31
3731 —0.254 —0.122 42.680+0.041 2998 —0.32
3908 —0.272 —0.121 42.3160.041 3051 —0.33
4037 —0.257 —0.122 42.1364-0.041 3090 —0.33
4265 —0.254 —0.122 41.7654-0.041 3157 —0.33
4552 —0.255 —0.120 41.4574+0.041 3239 —0.34
4783 —0.250 —0.119 41.377+0.037 3303 —0.33
4966 —0.251 —0.121 41.165+0.041 3354 —0.33
5221 —0.253 —0.119 41.1714+0.032 3425 —0.33
5526 —0.248 —0.117 40.87840.041 3505 —0.33
5824 —0.247 —0.117 40.848-+0.041 3584 —0.33
7835 —0.228 —0.105 40.0754-0.052 4072 —0.32

show, in the impulse approximation, that

()= f SO o 0) fyn®)/ F1n(0) f(0).

Here S(¢) is the form factor of the deuteron. We take
f(6) to go as exp(9.6¢) for both pp and pn scattering. We
have considered two wave functions for the deuteron,®
(a) a Hulthén wave function

Y(r)=Ne = (1—e?)/r,
where =0.232 Fand A\=1.21 F~1, and (b) a repulsive-
core wave function
Y (@)=Ner(1—e)/r
# .. Durand, III, Phys. Rev. 123, 1393 (1961).

with y=2.21 F-L They give values of (a) 0.0340 mb!
and (b) 0.0311 mb~ for {(»~2). McIntyre and Burleson?®
claim that (b) fits the electron-deuteron scattering
data better than (a). Therefore, we have settled on
the value

(r=0.0311 mb1.

It is unfortunate that there should be such a large
uncertainty in the absolute magnitude of the Glauber
correction, and it is clear that a determination of o (1-p)
at one energy to an accuracy better than 19, would be
valuable in fixing its magnitude. However, in the first
approximation, uncertainty in the value of (r—2) affects
only the absolute scale of ¢ (p-#), and does not introduce
any spurious structure into it.
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Fi1c. 5. The total cross section for p-p scattering, o (p-p) (a) from 1 to 2 GeV/c, (b) up to 8 GeV/c.

(x) Fermi Motion in the Deuteron

Any structure in o (p-p) or o(p-n) is smeared out in
o (p-d) by the Fermi motion of the nucleons. This effect
can be calculated if the wave function of the deuteron is
known. We have calculated it using the two wave
functions given in the previous section. Differences be-
tween (a) and (b) affect o(p-n) by less than 50 ub.
Values of ¢ (p-n) and ¢(I=0) in Table V have therefore
been calculated using (b), and column 3 of Table V
lists the difference between values of “o(p-p),” the

cross section averaged over the Fermi motion, calcu-
lated with (a) and (b).

4. THE ASSESSMENT OF ERRORS

Sources of error at any one momentum 2> #+0.019 are
listed below, with typical values in brackets:

(i) statistics of the number of particles scattered
(0.07%);

(i) uncertainties in the B and C coefficients used in
the extrapolation to zero solid angle (0.06%);

(iii) length of the target (0.03%,);

(iv) vapor pressure, and hence density of a target
0.01%);

(v) fluctuations in the density of the air between
target and transmission counters due to draughts
(0.03%) ;

(vi) uncertainties in randoms corrections (0.019,).

In addition, there are the following systematic errors,
which affect all momenta equally, or which vary only
slowly with momentum:

(vii) uncertainty in the relation between vapor pres-
sure and density for liquid hydrogen (0.04%,) and
deuterium (0.15%,);

(viii) uncertainty in the magnitude of the correction
for Coulomb-nuclear interference (0.3%);

(ix) uncertainty in the corrections applied in the
extrapolation to zero solid angle for cubic and higher
terms, due to small angle elastic scattering (<0.019,
for hydrogen and deuterium; 0.59%, for aluminum);

(x) uncertainty in the efficiencies with which trans-
mission counters detected scattered particles (0.05%);

(xi) uncertainty in the composition of the deuterium
target (0.029%,).

In deriving o (p-) and o (I =0) there are uncertainties
due to:

(xii) uncertainty about Ref,,(0) and Refa,(0). This
could affect o(p-n) and o(I=0) over fairly narrow
ranges of momentum by 0.5%, and 19, respectively;

(xiii) uncertainty in the absolute magnitude of the
Glauber correction produces a systematic error in
o(p-n) and o(I=0) of the order of 2.59, and 59,
respectively;

(xiv) uncertainty in the wave function of the deu-
teron to be used in correcting for Fermi motion. A
guide to this is the difference resulting from the two
wave functions we have tried. This difference varies
from zero to about 60 ub. Since it changes rapidly with
momentum where o(p-p) and o(I=0) are changing
rapidly, it has been added into the errors quoted on
a(p-n) and o (/=0) in columns 4 and 5 of Table V as
a systematic error; i.e., it has been added algebraically
to the rms statistical error. This probably results in a
slight overestimate of these errors.

5. RESULTS
(a) o(p-p)

Values of ¢ (p-p) are tabulated in column 4 of Table II.
The two contributions to the Coulomb-nuclear inter-
ference correction are listed in columns 2 and 3.
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TasLE III. Individual reaction cross sections in mb observed in bubble-chamber experiments on p-p scattering in the momentum range
1.6 to 3.7 GeV/c. (r mesons are denoted by their charges in the first column.)

%omentum (GeV/e) 1.66 2.23 2.81 3.68

Final state
) 249 +0.6 20.27£0.7 17.97 +£0.45 15.60 +£0.77
inelastic 22.6 +0.6 26.58+0.7 27.03 +0.45 27.11 £0.77
-+ 18.4 +0.7 17.574+0.6 15.02 +-0.41 11.65 +0.66
20 3.7 £0.3 4.0640.27 3.60 +0.21 295 +0.31
i+ 0.484-0.08 0. 13:}:0.05} 0.11 +0.06
d+0 0.01£0.01 0.44+0.08 0.16 0,04 -
nwn-+ -+ 0 0.264-0.06 0.58 +0.08
2500 0 0.42-0.08 0.86 +0.10
m+0 0 2.424-0.20 3.81 +0.20 cen
pp+— 0.0140.01 1.244+0.14 2.35 +0.14 2.72 +0.13
pp+—0 0 0.02::0.02 020 0.03 0.75 +0.07
nt+— 0 .- 0.38 +0.04 1.17 +0.09
a++— 0 0.05 +0.05 0.07 +0.02
multiple pion <0.1 4.80 8.23 +0.3 7.50 +0.52
strange particles 0 .- 0.018-+0.005 0.178+:0.032
NN*(1238) 22.1 ~18.9 16.3 +1.2 273
N (V*(1512) or N*(1688)) 0 ~2.7 33 x18 small
N*(1238) (N*(1512) or 0 0 ~1.7 oo

N*(1688))

ppm 0 e 0.55 e
pm+/pp0 497 4.33 417 3.95

The results are plotted in Fig. 5, together with results
from three previous experiments spanning the region. In
general, the agreement with other experiments is within
the errors. However, our lowest two momentum points
appear to be significantly higher than previous ones.
Part of the discrepancy arises from our results being
corrected (upwards) for Coulomb-nuclear interference.
After allowing for this however, some discrepancy re-
mains, and is probably due to a small disagreement in
momentum scale.

Some structure is evident in o (p-p) between momenta
of 2.5 and 3.3 GeV/c. The dashed curve, which is an
estimate made by eye of what a smooth background
might be, leaves a cross section of about 0.4 mb in a
peak centered at about 3 GeV/c. However, the back-
ground estimate is highly subjective, and the remaining
structure could differ in magnitude by a factor of two
either way.

We have suggested in an earlier letter® that this
structure could be due either to the rapid onset of an
inelastic process, such as N*(1688) production, or to the
existence of a di-baryon resonance at a mass of 2.75
GeV/ct. We wish to pursue these two possibilities a
little further here.

Mandelstam® and Ferrari and Selleri** have shown
that the rapid rise in ¢(p-p) between 1 and 1.5 GeV/¢

# R. F. George, K. F. Riley, R. J. Tapper, D. V. Bugg, D. C
Salter, and G. H. Stafford, Phys. Rev. Letters 15, 214 (1965).

8 S. Mandelstam, Proc. Roy. Soc. (London) A244, 491 (1958).
# E. Ferrari and F. Selleri, Nuovo Cimento 27, 1450 (1963).

may be explained by N*(1238) production via single-
pion exchange. It is remarkable that N*(1512) and
N*(1688) production do not similarly produce large
effects in the total cross section. However, because the
Clebsch-Gordan coefficients are small in the matrix
element for production of an /=% isobar, single-pion
exchange is responsible for cross sections of only about
1.5 and 1.2 mb for N*(1512) and N*(1688) production
just above threshold. The latter figure is rather bigger
than the peak we observe at 3 GeV/c. In Table III, we
collect individual reaction cross sections observed in
bubble chamber experiments spanning this range?—38;
they have all been normalized to the total cross sections
reported here. It is clear that N*(1238) production
dominates p-p inelastic scattering in this region, and
production of higher isobars is strongly suppressed. The
peak in o (p-p) at 3 GeV/c is so small that it cannot be
identified with any particular reaction in Table III; it
would certainly be compatible with N*(1688) produc-
tion. If so, one might look for evidence of N*(1512)
production at or near its threshold energy. There is
some sign of a shoulder in o(p-p) at about 2 GeV/c,

% G. A. Smith, H. Courant, E. C. Fowler, H. Kraybill, J.
Sandweiss, and H. Taft, Phys. Rev. 123, 2160 (1961).

3 W. J. Fickinger, E. Pickup, D. K. Robinson, and E. O.
Salant, Phys. Rev. 125, 2082 and 2091 (1962).

¥ D. V. Bugg, A. J. Oxley, J. A. Zoll, J. G. Rushbrooke, V. E.
Barnes, J. B. Kinson, W. P. Dodd, G. A. Doran, and L. Riddiford,
Phys. Rev. 133, B1017 (1964).

3 A. M. Eisner, E. L. Hart, R. I. Louttit and T. W. Morris,
Phys. Rev. 138, B670 (1965).
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although its interpretation depends heavily on what
cross section is attributed to N*(1238) production. Ac-
cording to Table III, the cross-section for double-pion
production rises rapidly in this region, offsetting the
decrease in the elastic cross section and keeping the
total cross section roughly constant. Either double
N*(1238) production or N*(1512) production with
subsequent decay into N could account for this.®

A second possibility is that the peak at 2.75 GeV/c?is
due to a di-baryon resonance. Then the smallest SU(3)
representation into which it could be fitted is the 27.
This representation would also contain two ¥ =1 states
with I=% and £, which should presumably appear as
AN or ZN resonances. There have been reports of V=1
resonances at 2.098 GeV/c24 and at 2.36 GeV/c2¥;
these were not observed in a recent experiment by
Melissinos ef al.,*? but there was instead a peak at 2.05
GeV/c? very close to the AN threshold. All these mass
values are well below the position of the 2.75 GeV/c?
peak observed here.

(b) e (p-n) and ¢ (I=0)

Values of o (p-d) after correction for Coulomb-nuclear
interference are tabulated in column 4 of Table IV. In
deducing o(p-n) and o(I=0), the following steps are
involved. First “o (p-p)” is calculated, namely the value
of o (p-p) averaged over the Fermi motion of the target
proton in the deuteron. Then o (p-d)—“‘a(p-p)” is de-
rived, and from that “o(p-n)” using the Glauber cor-
rection. Next “oc(I=0)"” is obtained as 2“c(p-n)”
—“a(p-p)”. o(I=0) is obtained by fitting a curve by
eye to “o(I=0)"” and unfolding from it the Fermi
motion. Then

o(p-n)=40(I=0)+30(p-p).

This value should, of course, agree with a value obtained
from “o (p-n)” by unfolding the Fermi motion. However,
such is the bias of the eye in fitting smooth curves that
we have found values determined in these two ways to
differ quite significantly. Since o(p-#) contains any
structure resulting from both /=1 and /=0 states, we
prefer the derivation outlined above.

Values of “o(p-n)” and “o(I=0)" are given in
Table V, and plotted in Figs. 6 and 7. The dashed curve
is obtained by fitting “o(/=0)” by eye, and the full
curves result from it by unfolding the Fermi motion.
The values of ¢(p-n) and o(I=0) obtained by this
unfolding process depend strongly on the dashed curves
which are fitted to the experimental results. This is
illustrated in Fig. 8, where two small inflections in the
experimental values of “o(I=0)" at 2.2 and 3.5 GeV/¢

3 E. Ferrari, Nuovo Cimento 30, 240 (1963).

“H. O. Cohn, K. H. Bhatt and W. M. Bugg, Phys. Rev.
Letters 13, 668 (1964).

4P, A. Piroué, Phys. Letters 11, 164 (1964).

2 A, C. Melissinos, N. W. Reay, J. T. Reed, T. Yamanouchi,
E. Sacharidis, S. J. Lindenbaum, S. Ozaki, and L. C. L. Yuan,
Phys. Rev. Letters 14, 604 (1965).
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TasLE IV. Total cross sections for p-d scattering, o (p-d).
Columns are as for Table II.

Labora-

tory mo-

mentum do (CNy) da (CNy) a(p-d) [Ref(0)/

(MeV/c)  (mb) (mb) (mb) Imf(0)1pn
1111 0.326 0.230 67.20940.090 —0.11
1289 0.162 0.135 76.9054-0.110 —0.25
1408 —0.034 0.048 80.490-+£0.057 —0.31
1607 —0.309 —0.066 82.4724-0.063 —0.38
1660 —0.324 —0.059 82.8894-0.063 —0.39
1780 —0.492 —0.119 83.3774+0.052 —0.41
1858 —0.423 —0.116 84.0394-0.047 —0.42
1940 —0.456 —0.121 84.26040.046 —0.44
1952 —0.468 —0.139 84.280+0.047 —0.44
2079 —0.485 —0.137 84.5260.047 —0.46
2212 —0.508 —0.142 84.5244-0.047 —0.47
2280 —0.533 —0.154 84.6244-0.047 —0.47
2450 —0.569 —0.165 84.2394+0.047 —0.48
2592 —0.572 —0.158 84.21240.047 —0.49
2680 —0.575 —0.164 84.085-:0.044 —0.50
2704 —0.572 —0.169 83.9124-0.047 —0.50
2819 —0.580 —0.165 83.8464-0.047 —0.50
2857 —0.609 —0.166 83.7904-0.047 —0.50
2958 —0.577 —0.160 83.6024-0.047 —0.51
2994 —0.593 —0.168 83.45240.047 —0.51
3054 —0.596 —0.153 83.2894-0.047 —0.51
3110 —0.600 —0.154 83.32840.047 —0.51
3142 —0.595 —0.178 83.166+0.047 —0.51
3277 —0.592 —0.180 82.4894-0.047 —0.51
3303 —0.599 —0.170 82.73040.047 —0.51
3444 —0.597 —0.178 81.960+0.047 —0.51
3546 —0.593 —0.182 81.71040.047 —0.51
3908 —0.632 —0.174 81.10740.033 —0.51
4037 —0.591 —0.176 80.93040.047 —0.51
4265 —0.585 —0.170 80.41740.047 —0.50
4552 —0.579 —0.169 80.1254-0.047 —0.50
4966 —0.566 —0.172 79.63240.047 —0.49
5221 —0.566 —0.166 79.578+40.037 —0.48
5526 —0.558 —0.168 79.31640.047 —0.48
5824 —0.548 —0.165 79.09140.047 —0.47
7835 —0.496 —0.145 77.858-+0.052 —0.43

are followed by the solid curve; this then generates the
pronounced bumps in the dashed curve, when the Fermi
motion is unfolded. It is clear that structure of this order
of magnitude in ¢(Z=0) could well escape detection in
total cross section experiments where deuterium is used
as a target. To determine o(p-#) and o(I=0) better
than has been done here, it seems necessary to eliminate
the Fermi motion. This might be achieved by ac-
celerating deuterons, scattering them in a hydrogen
target, and recording the momentum spectrum of
“spectator” protons stripped from the deuteron when
the neutron interacts. There would, of course, be the
further complication that sometimes the deuteron would
not break up, particularly in small-angle elastic scatter-
ing. It would be possible, and indeed desirable, to infer
Refnp(0) from Coulomb-nuclear interference in the
elastic d-p scattering.

Our experimental results do not establish structure in
o(I=0) other than the long rise from 1.6 to 3 GeV/¢
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TaBLE V. Total cross section for p-n scattering, and in the /=0 state. Columns headed “c” are cross sections averaged over the
Fermi motion of the target particle; those headed o have the Fermi motion unfolded. Column 3 lists the systematic error in “o(p-p)
arising from uncertainty in the deuteron wave function, as described in Sec. 4 (xiv) of the text. The errors quoted in subsequent columns
are random errors plus a systematic error propagated from column 3.

Laboratory AYa (p-p)” Total center-
momentum “a(p-p)” (systematic) “g(p-n)” “g(I=0)" a(I=0) a(p-n)  of-mass energy
(MeV/c) (mb) (mb) (mb) (mb) (mb) (mb) (MeV)
1111 34.684 0.058 35.72 +0.26 36.754+0.75 36.41 35.22 2119
1289 42.851 0.030 38.64 +0.20 34.424-0.52 34.29 38.76 2180
1408 45.886 0.052 39.44 +0.14 32.99-+0.38 32.74 39.61 2222
1607 47.327 0.039 39.77 +0.13 32.2240.36 31.75 39.61 2292
1660 47.422 0.033 40.09 +-0.13 32.76+0.35 32.38 39.97 2311
1780 47.438 0.024 40.5594-0.104 33.68+0.26 33.53 40.51 2354
1858 47.410 0.021 41.2244-0.090 35.04+0.23 34.95 41.20 2382
1940 47.298 0.019 41.530+0.090 35.76£0.24 35.72 41.54 2410
1952 47.347 0.018 41.4794-0.087 35.614+0.22 35.57 41.49 2415
2079 47.129 0.016 41.9054-0.085 36.68+0.22 36.67 41.95 2459
2212 46.809 0.024 42.1744-0.092 37.54+0.26 37.56 42.27 2505
2280 46.560 0.013 42.5004-0.081 38.44+0.21 38.47 42.57 2528
2450 45.847 0.009 42.684+0.077 39.52+0.20 39.56 42.69 2586
2592 45.539 0.008 42.890+0.076 40.24+0.19 40.28 4291 2634
2680 45.305 0.008 42.961+0.074 40.62+0.19 40.66 43.00 2663
2704 45.143 0,008 42.9334-0.076 40.724+0.19 40.76 42.97 2671
2819 44958 0.008 43.0174+0.076 41.08+0.19 41.12 43.06 2710
2857 44.863 0.008 43.037+0.076 41.21+0.19 41.25 43.09 2721
2958 44.565 0.008 43.1134-0.076 41.66+0.19 41.69 43.17 2755
2994 44383 0.008 43.1154+0.076 41.85+0.19 41.88 43.17 2766
3054 44.322 0.008 42.97940.076 41.64+0.19 41.67 43.04 2786
3110 44118 0.007 43.226+0.075 42.33+0.19 42.36 43.27 2804
3142 44.047 0.006 43.1184-0.074 42.19-+0.18 4222 43.17 2820
3277 43.570 0.004 42.812+0.072 42.03+0.18 42.06 42.84 2857
3303 43.667 0.004 42.9864-0.072 42.31+0.18 42.33 43.00 2866
3444 43.205 0.002 42.5824-0.070 41.96+0.18 41.98 42.56 2909
3546 42.996 0.001 42.5224-0.069 42.05+0.16 42.07 42.52 2941
3908 42.300 0 42.5254-0.057 42.754+0.15 42.77 42.56 3051
4037 42.128 0 42.49540.068 42.86+0.17 42.88 42.51 3090
4265 41.790 0.001 42.276+0.069 42.76+0.17 42.78 42.27 3157
4552 41.486 0.001 42.2554-0.069 43.0340.17 43.03 42.24 3239
4966 41.161 0 42.069+-0.068 42.984+0.17 42.99 42.08 3354
5221 41.161 0.001 42.01740.053 42.874+0.13 42.88 42.03 3425
5526 40.872 0.001 42.0344-0.069 43.19+0.17 43.20 42.04 3505
5824 40.842 0.001 41.8214-0.070 42.80+0.17 42.81 41.83 3584
7835 40.074 0 41.3284-0.080 42.58+0.20 42.59 41.33 4072

which is presumably due to the onset of strong inelastic
processes. It is interesting that ¢ (=0) and o (p-p) both
appear to flatten out between about 4 and 5 GeV/c.
Our values of o(p-d) are compared with those of
earlier experiments on Fig. 9. Our results appear to be
~2 mb systematically higher than those of Galbraith
et al. Even if our deuterium were 1009, pure, this would
reduce our cross sections only by 0.5 mb below those
shown on the figure. This disagreement in ¢(p-d) is
surprising in view of the good agreement on o (p-p), but
some of it may perhaps be traced to the different ranges
of transverse momentum intercepted by the transmis-
sion counters in the two experiments. In Ref. 5 the
smallest counter accepted particles with transverse
momenta up to 140 MeV/c, compared to 70 MeV/c in
the present experiment. Since the elastic p-d scattering
falls approximately as exp(26¢) at these energies, it may
be that a significant fraction of the elastically scattered

beam was detected by the transmission counters in
Ref. 5 resulting in a lower extrapolated cross section.
Calculation shows, however, that this does not explain
all of the discrepancy.

(¢) Aluminum Cross Sections

The aluminum nucleus is expected to have a radius of
about 4 F. If it scatters as a grey disk, the first diffrac-
tion minimum will occur at a transverse momentum of
about pr=180 MeV/c. In this experiment, the trans-
mission counters covered a range of about pr=>50 to
140 MeV/c; i.e., they straddled the angular region where
elastic (or quasielastic) scattering was important. The
consequences of this were that (i) the extrapolation to
zero solid angle was very nonlinear, (ii) it was possible
to get some idea of the elastic cross section from the
form of the extrapolation.
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In the small angular range covered by the transmis-
sion counters, debris from disintegration of the alumi-
num nucleus should be approximately isotropic. We
have therefore tried to fit the data with two forms:

do J1(kR sing)) 2
o R
dQ kR sinf
and
do
d_K; =q’ exp{§kR?sin?0}+p5'. (8b)

1

The value of R turned out to be quite well determined
and independent of momentum, namely R=4.1+0.1 F.
However, neither form fitted the experimental data
within several standard errors. We estimate that there
could be systematic errors in our determinations of the
total and elastic cross sections of 5 and 410 mb, re-
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F1c. 8. This figure illustrates the sensitivity of ¢ (7 =0) to small
bumps in the experimental data when the Fermi motion is
unfolded. The solid curve is fitted to the experimental data and
includes two small bumps at 2.2 and 3.5 GeV/c. The dashed curve
results from unfolding the Fermi motion.
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spectively. Furthermore, the systematic errors might
change gradually with momentum. With these reserva-
tions, we display our values for the total and elastic
cross sections in Fig. 10. Both follow the trend of the
nucleon-nucleon total cross sections, but show a much
smaller variation with momentum. Itisrather surprising
that most of the variation of the cross section seems to
occur in the quasielastic cross section.
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