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A theory is outlined in which Lorentz invariance is spontaneously violated, giving rise to a constant vector
field A%, The two quantities which are most simply related to A* are the gravitational constant G and the
decay rate of Ko — 2, assuming that the latter will eventually show an energy dependence. Using a method
suggested by Bjorken for electrodynamics, we conclude that the model may support a graviton, and deter-
mine the order of magnitude of G. A simple argument relates the K,° decay to G; the agreement with ex-

periment is good.

1. INTRODUCTION

N a recent paper,! it was suggested that Lorentz
invariance may be violated by the existence through-
out space of a constant unit-vector field M. The experi-
mental limits on the coupling constant g of such a vector
were examined, and it was shown that the decay?
K" — 2, especially in its lack of energy dependence,?
ensured that gh\°< 10719 eV. Some new experiments to
look for \* were suggested, and are now being carried
out. Since this vector is strikingly similar to an ‘“‘ether-
drift velocity,” we had to ask whether the Michelson-
Morley experiment was relevant. In spite of having no
very definite model in mind, we could point out that it
was difficult to couple M\ to 4, and preserve gauge in-
variance at the same time. We were left in the un-
comfortable position of having introduced an ether,
which coupled to massive particles and might even be
responsible for their rest mass, but which seemed to
demand that the electromagnetic field exist as a sepa-
rate, independent entity. This is completely contrary to
the original aim of ether theories.* The idea of an abso-
lute space was first clearly stated by Newton,® who
invoked it to help explain the difference between inertial
and noninertial frames. He felt also that a medium ot
some sort was necessary to support gravitational inter-
action. The investigation of electrostatics and magnetism
led to the invention of one or more additional “‘ethers”
to carry these forces, though there always remained a
hope that there was really only one ether, and that the
different forms of action at a distance were merely
different distortions of it.
In the present paper we will take this historical idea
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completely seriously. We will suppose that we have to
deal with a theory of the Nambu type,® so that ordinary
particles are regarded as quasiparticles in a background
of massless quanta, which are in a highly correlated
state similar to that of a superconductor. This vacuum
can then be thought of as a superposition of pair states,
and following Ref. 6, Eq. (3.17), it is written as

o =TT{[3(148,)]/*—[3(1—8,) ]2
' Xa©®1(p,s)b@t(—p, 5)}Q@. (1)

The product is continued to infinite energy, to preserve
Lorentz invariance. We shall make the simplest modifi-
cation of this scheme, and cut off the product at a
definite energy A. This immediately destroys the Lorentz
invariance, but to get a vector A* we have to assume
that the high-energy states are also unsymmetric under
charge conjugation. We will not have to be more specific
about the way in which these symmetries are broken.
If A is very large, then the background may be very
nearly Lorentz-invariant, and the effects of \* corre-
spondingly small. This intuitive feeling is strengthened
by the detailed considerations which follow.

Our task is to try to explain the gravitational and
electromagnetic interactions as collective oscillations of
this vacuum state. There is little difficulty with photons,
because a theory of this kind has already been worked
out by Bjorken.” He assumes that the electromagnetic
current has a nonzero vacuum expectation value,
Q*=(Q\*, where Q is fixed by a suitable self-consistency
relation. The photon then emerges as a kind of Gold-
stone boson. We shall follow his method closely, and
recapitulate it in Sec. 2. However, our emphasis is
somewhat different. Bjorken’s main objective is to show
that his theory is actually compatible with Lorentz
invariance, in spite of the existence of Q*. To ensure this
result, he is obliged to identify (p*+(Q*), not simply p*,
as the momentum operator for charged particles. He
also assumes that Q* is very large (proportional to the
cube of the cutoff energy). The theory does not depend
on either of these conjectures, and we will make the
opposite assumptions:

Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345 (1961).
7J. D. Bjorken, Ann. Phys. (N.Y.) 24, 174 (1963); G. S.
Guralnik, Phys. Rev. 136, B1404 (1964).
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(a) p* remains the observable momentum, so that
violations of Lorentz invariance can be detected, at
least in principle,

(b) Q* is a very small vector, so that most experi-
ments are compatible with Lorentz invariance.

Bjorken’s theory predicts the existence of photons
which travel with velocity ¢ in spite of being collective
oscillations in a medium which is not Lorentz invariant.
In Secs. 3 and 4 we show that the theory can be adapted
with little change to gravitation, with a similar
conclusion.

A characteristic of all ‘“‘superconductor” theories is
that physical quantities are intimately connected with
the cutoff energy. This is illustrated in Egs. (3.8)
and (3.9) of Ref. 6, for the fermion mass, and Eq. (2.5)
of Ref. 7, for the fine-structure constant. Since our aim
is to get an estimate of A in as many independent ways
as possible, it is tempting to invert these equations and
find A as a function of m and . Unfortunately, A
depends exponentially on «, and in an even more delicate
way on m, so that neither of these methods can be
considered reliable.

There are two quantities which seem likely to be
related in a much simpler way to A. One is the gravita-
tional coupling constant G, which emerges from our
discussion in Secs. 3 and 4. The other is the decay rate®
for K, — 2w, assuming that this will eventually show
an energy dependence. This argument is given in Sec. 5.
The agreement between the two estimates of A is good.
In Sec. 6 we summarize our conclusions and try to see
some implications of what we have done.

2. PHOTONS IN BJORKEN’S MODEL

The steps taken by Bjorken’ to derive an expression
for the photon propagator are outlined below. I have
nothing new to add to the argument, but it seems best
to set it out here so that we can see how much of it can
be taken over directly to gravitation, and what parts
must be changed. We will use M\ instead of his %*.

(a) A Lagrangian £ is written down?® for a spin-}
field; £ contains a vector self-interaction term, with a
coupling constant G;

L=9(x) ((V—m)(x)—FG[P (), v (x)]
X[y (@], (2)
(b) It is assumed that the fermion current has a

nonzero expectation value Q, and the necessary con-
sistency condition is worked out.

Qu=N0=GNF(0?) 3)
with
dk
)\FF(Q2)=TI/ (—2-—)—4')/,‘Spl(k+)\Q) . 4)

8 The theory put forward here bears no relation to previous dis-
cussions of K,? and gravitation, for example, by M. L. Good, Phys.
Rev. 121, 311 (1961).

9We set h=c=1.
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(c) The integral equation is given for the photon
self-energy II,.(g), and it is shown that I1,,(0) can be
related to the consistency condition for Q, by using
Ward’s identity.

d*k
Huv(Q) = 1/ (27‘_)4 Tr’YnSF/(k-*'Q)

XT(k+Q, k+q+Q)SF (k+g¢+0Q), (5)
o [ d%
Huv(o) = / Tr'YuSF,(k_*_Q)
oQ*J (2m)*
O F(0Y)=—(gm—Ao) (6)
30" (QY2 G B

where

0
f=1=20>—InF(Q?).
Q2

(d) The usual gauge-invariant form is used for
HI"’(Q) —1I1,,(0).
(e) The equation is given relating D,,(¢) and II,.(q):

D,(g)= —iGgu+GILMg)Dx(q) - )
This is inverted to give an expression for D,,(g):
i (@MtaN) g 7 1Ggugs
Dyu(g)= [gw— - et ]— .
¢*1I(g?) \-q g f(x-g)? ®

Only the term proportional to g,, has physical effects;
the other terms vanish when operating between con-
served currents.

(f) The theory is extended to all orders, and is
shown to be equivalent to electrodynamics.

A few comments on these steps may be helpful:

The form of £ has no deep significance, but is chosen
with an eye to simplicity. The constant G which appears
in it does not occur in the final expression for D,,(g),
though a divergent integral does. The general form for
11,,(0) is (aguw=+bA.\,); the chief merit of deducing this
by Ward’s identity is that we fix the value of a to be
1/G. If we take b to be zero, we regain ordinary electro-
dynamics. It is an intriguing feature that we still get
acceptable results with a nonzero value of b, but only
if a is set equal to 1/G, as the Ward identity requires. It
can also be checked that the gauge-invariant form for
I1,,(¢)—11,,(0) is essential for the inversion when 45£0.
If either of these two conditions is violated, we will
find terms proportional to A\, in D,,(g).

3. THE GRAVITON PROPAGATOR

Bjorken was able to start from a Lagrangian which
did not contain a photon field, and derived such a field
as a collective excitation. In dealing with gravitation
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we are not so fortunate, because we cannot begin to
work without using a metric and hence introducing the
gravitational field. This is not an essential difficulty, and
it turns out that a closely analogous deduction is possible.
We shall follow the bootstrap philosophy and identify
the collective oscillation we arrive at with the metric
field introduced at the beginning. This will allow us to
connect the gravitational constant with A.

The argument given in the previous section falls into
two distinct parts. The first is analytic, and takes us up
to Egs. (6) and (7). The second is algebraic, and is
concerned with the possibility of finding the inverse of
the matrix equation (7). We shall reverse the order here,
and tackle the algebraic part in this section. Once we
have assured ourselves that we can find a suitable analog
of (7), and that it inverts in the expected way, we can
start the more delicate task of formulating a self-
consistency condition and working from it to an expres-
sion for the graviton self-energy.

Equation (7) is the momentum-space version of an
integral equation in configuration space. The propaga-
tion functions which appear in it depend on the distance
between two points, and it becomes hard to see what
form the analogous equation might take in a space of
arbitrary curvature. We will avoid this difficulty by
working entirely in a space which is uniformly curved.
The theory should hold to a good approximation in the
real world provided that nonlinear effects are small.
Propagators in the fictitious space will depend on the
““great-circle distance” between two points, and we
write the analog of (7) as

iy
E,o*(q)= —E(g.."gv”+gv”gu")+7Ew""(q)Eaa"(q) . 9

Here E,,°*(g) is the graviton propagator which we hope
to find, and E,,%#(q) is the graviton self-energy. v is a
coupling constant, but is not directly related to G. The
dimensions of E,,°?, ,,%f and v are (energy)—*, (energy)*
and (energy)*, respectively. We have written the argu-
ments as ¢, but we should bear in mind that propagators
can be functions of ¢2, A\? and (g-)\). We use v/2 rather
than vy in the first term to ensure that the equation
iterates correctly; (g.°g,*+g.,°g.?) is the analog of 2g,,
in electrodynamics. Notice that there is no term in-
volving g,,g°?, because this would give an additional
contribution depending solely on the scalar part of the
gravitational interaction.

In what follows, we will frequently need fourth-order
tensors formed from g,,, ¢, and A,. There are 21 of these
which are symmetric in g, v and «, 8. They will be
denoted by (7;).*5, and are defined in Table I. We will
write Z,°f(¢) as the sum of a self-energy at zero
momentum transfer and a term which tends to zero as
g— 0; we assume the following form:

Ewf(g)=Eun**(0)+(dTs+eTo+ fT13) w*PE(¢?) . (10)
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TasLE I. The 21 tensors (T;),,*# which can be formed from
Zur, 4u and ), and are symmetric in u,» and in «,8.

Tensor Definition
Ty 8urg®?
T, g‘."g,’-{-g,.ﬁg,"
Ts 8ug°g?
T, g u,N")\a
Ts gur(g°NF+N2gh)
Ts 8400 +8-°0u0° +2,°0:0°+8,79.u0"
T, gua)\v)\ﬁ"'g'")‘u>‘ﬁ+g»ﬁ)‘r)‘a+g'ﬁ>‘u.)\"
Ts "GN+, N 2PN " +8,Pq N
Ty 8N+, ug?+8uPh g +8,PMug®
Ty qug-8°#
Tu Auh,gof
Tl2 (qn)\v+)\u4r)gﬂﬂ
T1s 9.9-9°¢*
T qug»(gNE+-N2gP)
T1s (gurrt2Nugr)geg?
T gugrANE
Tu (guhst+2ugy) (g*NP+Nagh)
T1s AN gogh
Ty Audy (AagP+-garf)
T20 (q;.er')\nq.))\"X’
Ta A AN

Here d, ¢, and f are functions of ¢, and Z is expected to
be a divergent integral. If a ‘‘gauge-invariance” con-
dition holds in the form

Q“[Envaﬂ(q )—E,*#(0)]=0,
then we must have

d=—q%, and 2e=—gq?f. (11)

We cannot yet be sure that such a relation should hold,
nor that other tensors, which involve A¥, or which pair
the indices in an abnormal way, do not appear in the
second term of (10). We shall see, however, that the
“natural” choice is, in fact, the one which works.
Whether this form can be deduced by the canonical
methods, using perturbation theory, will be left as an
open question.
For E,,%6(0), we assume the form

E“yaﬁ(o) = (A. T2+BT7+CT21)“,."'S . (12)

It will be essential in what follows that tensors like T’y
do not appear in (12); such a pairing of the indices is
unphysical, since it leads to abnormal scalar contribu-
tions, and (9) cannot be suitably inverted if terms of
this kind are present. E,3°° can be expressed as a linear
combination of the 7T, in which the leading term is
proportional to T, but in order for it to be acceptable
as a propagator, the following terms must not appear
in the sum: Ty, T4, T7, T11, To1. The first we reject be-
cause the indices are incorrectly paired, the rest because
they contain no factor of ¢. The conditions under which
an acceptable form for E,3°? may be found (when terms
in \* are present) are as follows:
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(a) v4A=4%. This will be recognized as the analog of
the condition derived by Bjorken on the basis of Ward’s
identity.

(b) B#0.

(¢) C can have any value except —4B/\2 In particu-
lar, it can be zero.

(d) The “gauge-invariance” conditions (11) must
hold between d, ¢, and f.

We now find that

Eq°°(q)=

2 5i(T5)ap’®, (13)

dE(q®)

where the coefficients s; are listed in Table II, and we
introduce the definitions

b=B/E(¢?),

All that is needed to obtain this result is patience and a
multiplication table of the 7'; among themselves. Some
equalities hold between the s;, with the result that E,z°°
is symmetric not only under u <> » and a <> 8, but also
under the simultaneous interchange u <> a, v <> 8. This
could have been anticipated, and means that we cannot
tell one end of the propagator from the other. Notice
that some of the s; are singular as & — 0. This implies
that, as in electrodynamics, the Lorentz-invariant
theory is not a uniform limit of the noninvariant one.
To make (13) correspond to (8) we must set d=¢2 [a
multiplicative constant can be absorbed into E(g?)].
This has two immediate consequences:

(a) The dimension of E(¢?) must be (energy)?, indi-
cating that it probably involves a quadratically-
divergent integral. The degree of divergence of the
lowest order self-energy integral is actually quartic, and
higher order integrals are worse. However, we know
that in electrodynamics the worst divergence can be
absorbed into I1,,(0), and we will assume that the same
can be done here. We will see in Sec. 6 how the gravi-
tational coupling constant G and the cutoff energy A
control the magnitude of integrals of arbitrary order.

So E(g?)=A? and the coupling constant G=1/A2
This is a very pleasing result. It has often been con-

and ¢=C/E(¢?).

TABLE II. The coefficients s; used in the expression (18)

for E,,28(g).
S2 %
Se (ON*+-2)/[4b(g-M)?]
3 —1/(4¢-N)
So Equal to sg
s13 N[2d+4bN+c(\)2]/[2(g-N)* (4b+cN) ]
su —[2d+-458+-c (\)2]/[2(g-N)3(4b+crd)]
S15 Equal to sy
Sie 1/[2(g-M*]
S17 (—dc+-4b2+-bcX?) /[4b(g-N)2 (4b+e)N?) ]
S18 Equal to s16

All other coefficients are zero.
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F1c. 1. The lowest order contribution to the graviton self-
energy. This is singular at ¢?=0 if the intermediate particles have
zero rest mass.

jectured!® that G sets a limit on measurements by forcing
an effective energy cutoff around 1/4/G=10% eV. We
have now shown how the converse may occur. A theory
with a built-in cutoff can provide a G which is of just
such a magnitude that no greater energies are physically
meaningful.

(b) Setting d=g?, we find from (10) and (11)

Ewt(q)—Ewf(0)= (¢2To— Te+2T15/¢)E(QD. (14)

The term involving T3, which is singular at ¢>=0, has
no analog in electrodynamics. It is associated with
diagrams of the type shown in Fig. 1, in which both
intermediate particles are massless. They can be simul-
taneously on the mass shell if the external graviton has
¢*=0, and this is bound to cause a singularity. This
behavior is not, of course, new in our theory, but will
appear in a more conventional theory as well.

4. THE GRAVITON SELF-ENERGY

Our aim in this section will be to derive the form (12)
(for the self-energy at zero momentum transfer) by
starting from a definite equation of motion and formu-
lating an appropriate consistency condition. Since the
quantization of the gravitational field is not well under-
stood, there are may ambiguities in what follows, and
we will do no more than present the simplest scheme
we have come across, without pretending that it is
unique or in some way favored among many alternatives,
Our starting point will be the Einstein equations,
coupled to a scalar matter field. A constant vector has
no place in Einstein’s theory, which is based on Rie-
mannian geometry. We will at first introduce terms
involving such a vector in a tentative way, but it will
turn out later that they may have a deeper meaning in
the context of a more general geometry originated by
Weyl. 1112

The vector will be denoted by S¥= S\« to differentiate
it from the g\* used in Ref. 1, and from the Q* of Sec. 2.
It is important to make this distinction, because the
magnitude and coupling of these vectors need not be
the same. If our later geometrical conception is correct,
then S* is very much smaller than gh#. All these vectors

10 For example, by L. D. Landau, in Niels Bohr and the Develop-
ment of Physics, edited by W. Pauli (McGraw-Hill Book Com-
pany, Inc., New York, 1955).

11 H, Weyl, Berliner Sitzungberichte, 465 (1918) ; Z. Math. Physik
2, 384 (1918); W. Pauli, Collected Papers, edited by R. Kronig
and V. Weisskopf (Interscience Publishers, Inc., New York,
1964), Vol. 2, No. 1.

2 A. S. Eddington, The Mathematical Theory of Relativity
(Cambridge University Press, New York, 1960), Chap. 7; H. Weyl,

Space-Time-Matter (Dover Publications, Inc., New York, 1922),
Chap. 35.
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are regarded as different manifestations of the same
ether, and so are proportional to the same unit vector
A& Our vector S*is like the vector D* introduced in some
steady-state cosmologies,’® and may indeed play a
similar role. In Gaussian coordinates it has the form
(1,0,0,0), just as in flat-space theories.

We have to be careful in handling covariant and con-
travariant quantities, and will make the following con-
vention: The independent variables and fields of our
theory will be defined as their contravariant components.
This means that we take x#, ¥, g# as fundamental,
though the momentum p,=1:9/9x*, is defined as a co-
variant operator. There is no physical reason behind
this choice; we adopt it simply because it leads directly
to the result we are after.

The field equations are taken to be

R —3Rgw4kTw = egi?— 6(SHS"— ngS,S7).  (15)

Here e is the cosmological constant, and the constant 5
is arbitrary. The factor of 6 in front of the terms in-
volving S* is included for later convenience. For 7 we
use the expression 7= grt*gfT 5, with

d¢p 0 <a¢ )

=TT ——28a8\

9z 9B gm_mw) - 16

dx* dx”
We divide this as

Tw=gregBl 5— Vgt an
where
dp 0¢ 170¢ 9¢
ap=—"—, and VE—( g”"—m2¢2) .
dx 9xf 2\9x° dx*

We rearrange (15), leaving on the right-hand side only
those terms which are scalar multiples of g# or S4S5*:

(RoptkUsp)gHog o= (e+3R+kV+61S5,5°)g"— 6545”
=ag+ BNV (18)

Taking the vacuum expectation value of both sides of
this equation, we see the right-hand side gives a nonzero
result. On the left-hand side we have terms of a much
more complicated structure, if the g» are quantized. In
momentum space we can get closed loops, made up of
both gravitons and scalar quanta; we represent all these

S OL O
(a) (b) ©

F1G. 2. (a) The “graviton tadpole” of Sec. 4; (b) the self-energy
at zero momentum transfer derived from 2(a); (c) the self-energy
diagram used in estimating the tensor-tensor coupling constant.

13 R. Adler, M. Bazin, and M. Schiffer, Introduction to General
g;latim'lt%/ (McGraw-Hill Book Company, Inc., New York, 1964),
ap. 12.
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possibilities in the single diagram, Fig. 2(a). In other
words, we regard our version of the Einstein equations
as being a direct expression of the Hartree self-con-
sistency condition. I do not know how to decide whether
this interpretation is justified, except by trying to
understand its consequences. Following the same line
of thought as in electrodynamics, we identify diagram
2(a) as a ‘““graviton tadpole.” We obtain the self-energy
at zero momentum transfer, Fig. 2(b), by differentiating
the left-hand side of (18) with respect to g¢f, and
dividing by «, since the addition of a zero-momentum
graviton is equivalent to the change g*f— g*f--xhb.
Variation of R,, gives a sum of covariant derivatives of
Christoffel symbols. These we will discard, according to
our assumption of uniform curvature. U,, does not
change when g°f is transformed. So we get for the
self-energy:

Eaﬁ“v(o) = (1/2") (Rap+Kva)
X[(ga"gs"+8a"26")8"*+ 84 (8’85 +8a"25") ]
=(1/2¢) (g +BAN) (T'2) ap*”
+ (1/2") (agp“'f'ﬂ)‘“)\n)(]‘?)aﬂ”
=(a/x)(ga"gs’+86"ga")
+(8/26) (AsNga*+NaN gs*+NNgga”+ AN ags’)
= (/) (T2) ap"+(B/26)(T7) ap” (19)

where we have used (18) and Table I. We now have to
estimate the coupling constant v in (9). Bjorken found
it easy to arrive at the analogous Eq. (7) because he
started from a Lagrangian which contained a quadratic
interaction; the iteration of this gave (7) immediately.
Our position is different. We did not arrive at our self-
consistency condition by linearizing a quadratic La-
grangian, but took a known set of equations as directly
expressing this condition. The next step, therefore, is
to reverse Bjorken’s procedure, and from the Hartree
condition to derive an equivalent quadratic interaction.
It may be!!'!2 that we ought to have started from a
Lagrangian which is quadratic in R and R,,, but we
will not go into this here.

Consider the mass of a scalar particle at rest. This is
proportional to the trace of the energy-momentum
tensor, and we have, using (18):

T=g“"T‘”= (1/2&)[(R”"+KU#"+6SuSy)
+(€+%R+KV+6TIS,S")g“"JTW_ (20)

This gives us the self-energy diagram 2(c); since U* and
Vgw are parts of 7+, the relevant tensor-tensor coupling
constant is clearly of order x/2a. The derivation of Sec. 3
can now be carried out, making the identifications

A=a/k, B=p/2k, C=0. (21)

Looking back at the conditions (a)-(d) derived in Sec. 3,
we see that we have chosen the right value of v, and
that (b) and (c) are satisfied. So the method works,
provided only that we use a gauge-invariant form for
Eas"(q)—Zaps*(0). The coupling constant « in Eq. (15)

y=«/2a,
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does not appear explicitly in our estimate of G, which
is dominated by the cutoff energy A. It is fixed solely by
the requirement that perturbation theory agree with
experiment, so that, up to factors of 2, it is identical
with G.

There remains the question of what role S* can play.
The most plausible suggestion I can make is that it is
connected with the ‘gauge vector” introduced by
Weyl!!12 in his conformal geometry. Because this
theory, in its original form, was abandoned soon after
its invention, and is now not widely known, it seems
best to give a brief description of it here. In Einstein’s
theory, the length / of a measuring rod does not change
if it is carried through a small distance dx* by parallel
displacement, although its direction will, in general, be
altered. In Weyl’s theory this restriction is lifted, and
the length is said to change according to the formula

d(Inl)=S,dx*, (22)

where .S, is a vector field which is a function of position.
Weyl pointed out that if S, is the gradient of a scalar
field, then there is no change in the length of a rod when
it is taken round a closed loop, so that .S, is ambiguous
in the same way as the electromagnetic potential. He
therefore identified the two, and constructed a theory
involving only quantities which are gauge-invariant
(which Einstein’s equations are not). But it seemed
unreasonable to suppose that measuring rods should be
permanently altered merely by passing them through
an electromagnetic field, nor is this field coupled to
matter in a universal way, so the theory was soon
rejected. Before its demise, however, Pauli'! had shown
that the Weyl equations, with S,=0, could be satisfied
by any solution of Einstein’s equations, so that they
are not in conflict with any of the tests for general
relativity.

It may be suggested that if S* is not associated with
the electromagnetic potential, then it may instead be
connected with another long-range field B# which is so
weakly coupled that it has escaped detection. Such fields
have been suggested before,** but a classical gauge in-
variance demands a current which is exactly conserved.
We can, for example, use the baryon current, but any
such choice destroys the universality of coupling which
we need for a geometrical vector.

There is another, quite different, interpretation of S*,
but to understand it we must recall the type of theory
we have in mind here. The basic field of the Nambu
theory has spin 7 and is massless, so that the Lagrangian
of the field admits a v; transformation. As a result of the
peculiar vacuum state, the observable particles become
massive, and the Lagrangian, when written in terms of
the new fields, possesses no v; transformation, at least
of a simple kind. So far we have paid no attention to
this feature, because we were concerned with the vectors

“T. D. Lee and C. N. Yang, Phys. Rev. 98, 1501 (1955);
R. H. Dicke, ibid. 126, 1580 (1962).
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generated by the vacuum state. But it is very relevant
to the Weyl theory, because measuring rods are made
of massive particles, while a world containing only
massless particles contains no such internal scale. The
conjecture about S* follows at once: perhaps the basic
Lagrangian we should use is conformally invariant, as
Weyl would have wished, but the alteration of the
vacuum state which leads to massive particles eliminates
simultaneously both ;5 and conformal invariance. The
value of S* is then fixed, up to an arbitrary choice of
reference frame. In a similar way, the fermion mass is
fixed, up to an arbitrary choice of “y; angle” [see Ref. 6,
Eq. (3.26)]. This idea becomes more plausible when we
notice that our equation (15), with 7» omitted, and 7
set equal to 3, is the simplest Weyl equation, and is
invariant under the transformation: x* — x*, ds — \ds,
Zuw = N, Su— S,+9(In\)/dx*, e— X2, Here N is a
function of position; the factor of 6 in (15) was included
to give this simple form to the gauge transformation.

It is essential for this paper that S* becomes fixed at
a nonzero value, and we will now try to understand what
this means. We assume, as in Ref. 1, that A\# is timelike,
so that in the “preferred” frames of reference it has the
form (1,0,0,0). This implies spatial isotropy; in a given
plane, ¢=constant, the clocks and scales will agree.
However, in a theory such as Weyl’s they will change
with time, according to (22). We must interpret this as
saying that the vacuum is slowly changing, so that A is
not constant. Other physical quantities related to A will
vary as well. We will describe some consequences of
this in another paper.

5. CONNECTION OF THE CUTOFF ENERGY
WITH OTHER EXPERIMENTAL RESULTS

In Ref. 1 the simplest couplings of \* to matter were
considered. The decay K2 — 27 was shown to be one of
the strongest limitations on the magnitude of such
terms. It seems possible that only by specially designed
experiments will we be able to learn more, because few
measurements made so far are capable of the energy
resolution available in the K°-K° system. These experi-
ments are in progress, but results are not yet available.
Our task is, then, to try to find some connection between
the decay rate of K,° — 2 and the cutoff energy A, with
its resulting constant four-vector. It was the observation
of a simple numerical relation which led me to write
this paper; however, as the work progressed it became
clear that we could say more interesting things about
gravitation than about K%s. Consequently, the argu-
ment which follows is scarcely advanced beyond the
form in which it first presented itself. There are serious
weaknesses in it, which I cannot remedy, but will simply
indicate as we come to them.

When A appears in the Lagrangian in the form g\#j,,
where g is a coupling constant, and j, a current, it
results in a splitting of the masses of particle and anti-
particle. This statement needs some explanation, since
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A¢ is assumed in Ref. 7 to have no such effect. We can
invoke a gauge principle to get rid of g\* only if j, is
conserved; this is not necessarily the case, and if the K°
is involved, then j, certainly cannot be the electro-
magnetic current. Even if j, is conserved, we saw in
Sec. 1 that we are still not justified in assuming that
put g\, is the physical momentum, rather than just p,.
It is solely the requirement of Lorentz invariance which
makes us prefer one over the other, and it is just this
invariance which is in question here.

The presence of a coupling term gh*j, will result in a
v? dependence of the decay rate for K3° — 2, providing
we work at sufficiently high energy. At low energies we
may run into trouble because of other, more familiar
interactions which cause the decay, and the experi-
mental data??® shows that this does indeed happen. If
we assume that gh* causes a mass splitting of Am/m for
a K3? at rest, then we can set an upper limit of about
10~ for this ratio. It is quite possible that Am/m=0,
and the whole theory is wrong, but we will be optimistic
and use 1079 in what follows.

The argument would be greatly strengthened if we
could show that additional interactions of the correct
magnitude could be expected on the basis of our model.
It is a serious flaw that I have so far been unable to
demonstrate this. There is also the requirement that the
phase of this additional term must be almost pure
imaginary, and not real, as would be the case for a mass
splitting. There is, of course, no reason why extra inter-
actions should not exist, but they do not seem to be
demanded.

We must expect marked changes in the mass of a
particle, measured in its own rest frame, as we accelerate
it towards the limiting energy A. Two possibilities im-
mediately suggest themselves: (a) A particle which has
energy greater than A should behave as if it were free,
and hence have m=0, or (b) energies greater than A can
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F16. 3. Possible behavior of the masses of K° and K° with in-
creasing energy. Solid curves show the masses tending to zero at
energies above a certain upper limit. Broken lines show the
extrapolation of the maximum permissible low-energy mass
variation. The point at which the lower broken line cuts the hori-
zontal axis gives our estimate of A.
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never be attained, and particles become very massive
as we try to approach this limit. I will not try to decide
whether either of these alternatives makes more sense
than anything else we might suggest, although I find
(b) more satisfying philosophically. All that we need to
realize is that we approach A, the mass splitting of K°
and K° should become comparable to the mass of a K°
at rest. This idea is sketched in Fig. 3. We take A as
given approximately by the point at which the lower
broken line cuts the horizontal axis. This gives

2m/A=Am/m, A=2m?/Am=10%¢V.

The agreement between this value and the one obtained
from the gravitational constant is very striking, con-
sidering the crude methods used. If we take it seriously,
then we must anticipate that we are on the verge of
detecting the energy dependence of the K,° decay rate
in the experiments at 10 BeV/c.

6. CONCLUSION

The value of G which we have obtained has a straight-
forward connection with the renormalization problem.
Consider an arbitrary diagram involving only gravita-
tional interactions; each corner introduces one more
power of the momentum than we would have had with
a dimensionless coupling constant, and also one power
of 4/G, or equivalently 1/A. But integrals over internal
momenta are to be cut off at A, so the contribution of
the diagram should be no larger than we would have
obtained using “electrodynamic” coupling. In particu-
lar, the higher order integrals in the graviton self-energy
(Sec. 3) are of the same general magnitude as the basic
lowest order ones. Of course we still have the task of
summing families of diagrams, but this too may prove
feasible once the divergence problem is seen to be not
serious.

The question of the existence of an ether is one of the
most protracted that physics has ever faced.* After the
time of Newton, belief in it persisted for two centuries.
The Michelson-Morley experiment and the theory of
Maxwell destroyed its relevance for electromagnetic
interactions, and with the advent of Einstein’s general
theory of relativity it seemed that it was not needed for
inertial effects either. In the present paper we have
reinstated an ether, and have re-examined its connection
with electromagnetism and gravitation. It is no longer
so obvious that, in their attitudes toward an absolute
space, Einstein was right and Newton wrong. Instead,
each man appears to have been partly right, Newton in
his insistence on the ultimate importance of an ether,
and Einstein in seeing that the metric field provides us
with an excellent means of avoiding the introduction of
an ether in all problems encountered so far. Indeed,
since the graviton, like the photon, is a collective oscil-
lation in spite of traveling with velocity ¢, we will
probably have to approach the energy A before the
graviton concept breaks down.
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The main function of the ether in the present theory
is to prove a scale of length and time, through the de-
pendence of particle masses on A. If the Weyl theory is
true in some sense, then we can even hope to understand
changes in the units of length and time as the universe
evolves. Mach’s principle, as originally stated, is un-
necessary in any theory involving an ether. However,
this is not the same as saying that distant matter is
completely irrelevant. The development of the universe
is a most delicate affair, because various self-consistency
conditions have to be maintained at every instant.
It seems reasonable that one of these should be
GNm?/R=m, where R is the radius of the universe and
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N the number of particles in it. This relation is true at
the present time and is often assumed to have some
connection with Mach’s principle. We are now trying
to find suitable cosmological models which are solutions
of the Weyl equation (15); this work may clarify the
meaning of the self-consistency conditions.
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Measurements of the ratio of the total inelastic electron-deuteron cross section to the elastic electron-
proton cross section have been made to an accuracy of about 3% for values of the square of the four-momen-
tum transfer ¢? in the range 1.5 to 7.5 F-2, These ratios have been analyzed in terms of the form factors of the
neutron using the “area method,” and it is concluded that the corrections necessary to the simple sum rule
given by Jankus are approximately equal in magnitude to those encountered in the use of the more familiar
‘“peak method.” A detailed comparison has been made between the shapes of the observed inelastic electron-
deuteron cross sections as a function of the scattered electron momentum and the shapes expected according

to a theoretical treatment due to Durand.

I. INTRODUCTION

T was first suggested by Hofstadter! that experiments
on the inelastic scattering of high-energy electrons
from the deuteron might provide information on the
electromagnetic structure of the neutron. Subsequent
experiments by Yearian and Hofstadter? confirmed this
idea and showed the radius of the magnetic moment
distribution in the neutron to be approximately equal
to the corresponding radius in the proton. These results
were obtained by what is now known as the area method
in which the electron-neutron cross section is obtained
from the total inelastic electron-deuteron cross section.
The area method was quickly superseded, for sound
theoretical and experimental reasons, by the so-called
peak method in which information about the neutron
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tion, Grant NSF-GP9:

t Present address: Pnnceton—Pennsylvama. Accelerator, Prince-
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! R. Hofstadter, Rev. Mod. Phys. 28, 214 (1956).

# M. R. Yearian and R. Hofstadter, Phys. Rev. 110, 552 (1958).

is obtained from the electron-deuteron cross section at
the maximum of the broad inelastic peak (the quasi-
elastic region) with the help of a theoretical treatment
to allow for the scattering from the proton and the
internal motion of the nucleons in the deuteron. The
peak method has since been used to measure the
variation of both the charge and magnetic form factors
of the neutron with the square of the four-momentum
transfer, ¢2, for values of ¢% up to about 35 F~2

The most precise experimental information on quasi-
elastic electron-deuteron scattering has come from the
recent experiments of Hughes et al.? at Stanford. These
data were analyzed by the peak method making use of
the most recent theoretical treatment of the inelastic
scattering process. The neutron form factors were given
for a series of values of ¢? in the range 1.0 to 30.0 F2.
The results suggested that for values of g2 greater than
about 6.0 F~2 the square of the neutron’s charge form
factor (Ggn)? was consistent with zero to within an error
of the order of 59, in the theoretical cross section. On
the other hand for values of ¢? less than 6.0 F—2 in

® E. B. Hughes, T. A. Griffy, M. R. Yearian, and R. Hofstadter,
Phys. Rev. 139 B458 (1965).



