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The principal object of the present work is the derivation oi a Lagrangian density Ie{rg,rP) which is a
function of only the fermion and antifermion fields and contains a boson state at mass p, . We also require
L~Q g) to be equivalent to a theory with a Yukawa coupling plus a Matthews term in the limit that the
wave-function renormalization constant ZI vanishes. We will first consider the case where the Matthews
term is neglected and show that Ly (~) is just the usual four-fermion theory. In the case where the Matthews
term is not neglected, we derive L~(~) in the case of strong coupling and weak coupling. The Lagrangian
density is a highly nonlinear function of the fermion fields which, in the weak-coupling limit, reduces to the
four-fermion theory as the Matthews term vanishes.INTRODUCE

TIOÃ

'HE understanding of the elementary particles and
their properties has been the object of much

research. With the development of large accelerators the
complexity of this task has multiplied manyfold because
of the increasing discoveries of new subatomic particles.

Most of these particles live such a short time that one
does not know whether to consider them as new ele-
mentary particles or composite states of other con-
stituents. If one considers the particles as composite then
one should, in principle at least, be able to calculate the
masses and coupling constants of the new particles. On
the other hand, if they are considered elementary then
one must supply the masses and coupling constants as
fundamental parameters which can only be determined

by experiments. This reason makes it more appealing
to construct a theory where the particles are considered
to be composite.

There are several and to some extent equivalent
schemes which attempt to realize a self-generating
mechanism which will create the composite particles.
The bootstrap mechanism of dispersion relations, ' the
vanishing renormalization constants in Geld theory, ' the
Heisenberg spinor theory, ' and the superconducting
theory of Natnbu and Jona-Lasinio' are four diji'erent
theories with a somewhat similar self-generating mecha-
nism. The advantage of these four theories is that the
particles can be considered to be composite states of
themselves. The forces producing the composite systems
are due to the exchange of themselves. Because of this
circular self-generating mechanism, it leads to a highly
nonlinear theory, namely, a theory similar to a four-
fermion interaction. As a consequence of the highly
nonlinear character of these theories their utility has
been somewhat hampered as far as actually seeing
whether or not the theories can achieve their goals. The
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most extensively studied system of elementary particles
has been the pion and nucleon. In particular, Jouvet'
and later, other authors' considered the problem of a
fermion Geld interacting with a boson Geld via a Yukawa
coupling in the limit that the wave-function renormali-
zation constant of the boson field vanished. It was
shown that this theory could be considered equivalent
to a fermion field interacting with itself via a four-
fermion coupling. The particle associated with the boson
field appears as a bound state of the four-fermion inter-
action. In this theory the pion is simply a bound state
of a nucleon with an antinucleon. This problem is much
too simple to be realistic, since the Yukawa interaction
does not take into account the self-interacting e6ects
of the boson field. This effect can be handled by adding,
in addition to the Yukawa coupling in the Lagrangian
the Matthews term, ' i.e., a X&4 interaction. The presence
of the Matthews term in the Lagrangian tremendously
increases the complexity of the problem. No longer can
this theory be considered equivalent to a four-fermion
interaction where the pion appears as a bound state of a
nucleon with an antinucleon. This result can be estab-
lished by observing that the Feynman diagrams of the
two theories are no longer in a one-to-one correspond-
ence in the limit of Z3=0 as was the case when the
Matthews term was neglected. The question arises as
to what fermion-interacting Lagrangian this theory is
equivalent to when the Matthews term is not neglected.

The purpose of this paper is to study the properties
of a fermion and boson Geld interacting via a Yukawa
coupling plus a Matthews' term in the limit of Z3 ——0
and to construct an equivalent theory with a self-
interacting fermion in which the particle associated with
the boson field appears as a bound state. To guess at
such a self-interacting-fermion Lagrangian and then try
to show a one-to-one correspondence between the Feyn-
man diagrams of the two theories, as was done in the
case of the simple Yukawa coupling and four-fermion
coupling, is ridiculous because of the many different
possibilities available, Therefore, in order to pursue this
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problem one must have a method for calculating such
an equivalent 6eld theory. Such a method has been
developed by the author' and will be used throughout
this paper.

The outline of the paper is as follows. In order to
illustrate the method developed by the author in Ref. 8
in constructing equivalent 6eld theories we will consider
in Sec. II the simple Yukawa coupling in the limit of
Z3=0. This is the same problem considered in Refs. 5
and 6 and, as to be expected, we will just reproduce their
results. In Sec. III we will consider the case of interest,
i.e., the case of a fermion 6eld and a pseudoscalar boson
field interacting via a Yukawa coupling plus a Matthews
term. An equation for the equivalent Lagrangian will be
obtained in terms of a functional integral. The highly
nonlinear character of the Matthews term will prohibit
one from solving the integral in closed form. The func-
tional integral will be solved by the method of stationary
phases where only the lowest order terms are kept. The
conclusion will be given in Sec. IV.

II. YvaAVfA COUPLING

We shall begin by considering the simplest example
of a scalar 6eld coupled to a fermion 6eld. Such a system

is described by the Lagrangian density

I.(P,f,f)=—,'y(x) [I:I—po'Q(x)

P-(x)[q„a„+mojo'(x) g-,P(x)rP(x)y(x), (1)

where F is either a scalar or pseudoscalar gamma matrix.
The equations of motion that satisfy Eq. (1) are

(V.~.+mo)4(x) = —gol'k(x)4(x),

(Z —„,)4(x)=gy(x)ry(x).

(2a)

(2b)

We now wish to construct a new Lagrangian which

will be a function of only the fermion 6eld and whose
matrix elements obtained from the new Lagrangian are
entirely equivalent to those obtained from Eq. (1).We
will also require that Z3=0. Let us denote this new

Lagrangian density by L&(f,P). The notation used here
is that of Ref. 8. The subscript refers to the 6eld that
has been eliminated and the quantities in the parentheses
denote the 6elds that the Lagrangian density is a func-
tion of. As was shown by the author, ' such a Lagrangian
density can be obtained by using Eq. (3) of Ref. 8:

f expLi fL(g,f,f) d4x]Q
exp i Lo(g,g) d'x

f exp[i fLo(y) d' ]x&

f expLoi fg(Cl —goo)P d'x igo f4—fFPP d4x]&=exp i f—(y„8„+mo)f d4*

f expLz fd (a —~.&)y d4x]~

Solving the functional integral in Eq. (3) will give us a relationship from which we can obtain L&(f,P). To
put the functional integral in more convenient form we will make the change of variable:

4 '(*)=~4(x)
and now Eq. (3) becomes

f emPi fy'(O—/I .' 1)y' d4x —i(g./—&,)fg ryy' d4x]~'
exp i Lo(iP,Q) d'x =exp i $(y„8„+mo)f d'x— . (S)f exp[o'i fP'(CI/po' 1)qV d —x]4&'

Now if we place the restraint on the system that Z3=0 and require that the renormalized mass p, of the boson
Geld be 6nite then as was shown in Ref. 8, this is equivalent to requiring

gp ~OO
in such a way that

go /Po ~gz+'I ~

So in Eq. (5) let us replace go/po by gz'~ and let po ~ oo. We get

f exp[ ,'i fy" d'x—
ig, »'f—P—rgb' d4x]a—y

exp i L,(P,g) d'x =exp i P(y„~„+mo)f d'x—
f expL ,'i fy" d4—x]—&'

This integral can be solved by making the change of variables

4 =y'+ ,' g&r1p,

' R. L. Zimmerman, Phys. Rev. 141, 1554 (1966).
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in the numerator of Eq. (8):

f exp[ —,'i —fg' d4x+i(g /2) fPI'~I'f d4x5hg
exp i Lo(P,P) d4x =exp —i P(y„B„+mo)P d4x

f e~[——,'o fy'o d4x]by'
(10)

The functional integrals in the numerator and denominator cancel giving us the following equation for L&(g,f)
L,(g,g) =—k(v„a„+,)y+ ',g,(NI-'y)(pre).

Equation (11) now gives us L&(~) whose matrix elements are equivalent to those obtained from Eq. (1). The
particle associated with the boson field will appear as a bound state of Eq. (11).This result is equivalent to those
obtained in Refs. 5 and 6, however, in this paper it was proved by nonperturbative methods.

In the next section we will do a similar calculation keeping the pion self-interacting effects.

HI. YUKAWA PLUS MATTHEWS TERM

The previous method was added to illustrate the method developed by the author in Ref. 8. %e will now proceed
to apply this procedure in the case of interest.

Let us consider a pseudoscalar boson interacting with a fermion by means of a Yukawa interaction plus a
Matthews term. The Lagrangian density for this system is

L(f,fA) = 4(V,&,+—~o)4 igo4'V A—+,'4 (O po'-)4 X—4'. — (12)

As in Sec. II, we will now find a new Lagrangian Lo(g,f) whose matrix elements are equivalent to those obtained
from L(PPp) in Eq. (12). We also require the wave-function renormalization constant Zo of the boson field to
vanish. Such a Lagrangian density can be obtained from Eq. (3) of Ref. 8 which gives

f exp[ ,'if'(O -&,')yd—'x+g, fy~ gad'x il, fy'—d' ]x~
exp i Lo(f,g) d4x =exp i f—(y„8„+ego)f d'x . (13)f e~[-',ify(a —&oo)y d4x]gy

Making the change of variables

Eq. (13) becomes

4'=uo4,

exp i Log,g) d'x =exp i $(—y„8„+mo)P d'x

f exp[-', ifp'(C3/po' 1)4' d—'x+ (go/po) fPyop' dox —(i&o/po') fp'4 d4x]Q'
X- (15)f exp[-,'if''((:j/&, o—1)y' dox]gy'

Requiring Z3=0 and the renormalized boson mass to be hnite is equivalent to the restrictions given in Kqs.
(6) and (f). Two separate cases appear in satisfying these restrictions:

(i) yo ~oo in such a way that Xo/po ~ 0,
(ii) po Xo ~oo in such a way that Xo/po' ~ go) 0.

If we consider case (i) then Eq. (15) reduces to

- f exp[ ',if&"d—'x-ig~'~'f/'—op&' d'x]&'
exp i Lo(f,f) d'x =exp i $(y„—8„+mo)f d'x

f exp[ ——,'i f@"d'x]b@'
(16)

This is exactly equivalent to Eq. (5) so our problem in case (i) has reduced to that of Sec. II. The Matthews
term is effectively absent in this case.

If we consider case (ii) Eq. (15) becomes

f exp[ ,'i fqV' d'x—+—g~fPyopp' d'x qigo fp'4 d4x]~—'
exp i Lo(f,g) d'x =exp i g(y„8—„+mo)f d'x

f exp[—ifp" d'x]by'
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1 PS(4.)
5($)=5($.)+— $(x)P(y) d4x d'y+ ~ . (21)

2 b@b@
f expL —f(k4'+igi4y544+lH') d'xj~4

I= (18)
f expL —f-,'4' d4xgb4i

In general there will be many fields that make 5(4) an
extremum, however, the one that will give the most
contribution will be the one that makes ReS($,) the
smallest.

Keeping only the 6rst two terms in the expansion of
5(4) and substituting this into Eq. (20), we get

The solution to this integral can be obtained by means
of a procedure analogous to the method of stationary
phases. ' However, because of the imaginary term
igi~544/ in the exponent of Eq. (18) this method should
more appropriately be called the method of steepest
descent. The highly nonlinear term 4ig+' in Eq. (18)
prohibits one from solving this integral in closed form.
En the following we will solve the functional integral
in Eq. (18) by the method of stationary phases, keeping
only the first few terms.

Before proceeding with the solution of Eq. (18), a few
remarks are appropriate concerning the meaning of the
functional integrals appearing in both Eq. (8) and (18).
They are of the form

1 O'5(g, )I=e ~(&' exp —— 4 (x)4 (y) /f'x /f'y
2 b@b@

(22)

Applying the method of stationary phase to Eq. (19),
we must first find the field 4,(x) that makes 5(4) an
extremum. These stationary fields are given by

~5/S4=0=4+g~'+/'g&, 4 . (23)

To obtain an expression for I.~(4/, 4/) defined by Eq . that field P, that makes 5(g) an extremum":
(17) we must solve the functional integral

I &
—is(y) by (19) Now this is a cubic equation and has three roots. The

three roots are'~

5(4)= Z(4) d4x.

This functional integral is just a generalization of the
Feynman path integral, ' whereas the Feynman path
integral is not an integral in the mathematical sense, "
but can properlybe dehned through the Wiener integral"
by a rotation of the time coordinate into the imaginary
axis. We 6nd ourselves forced to take a similar approach
here in giving the generalized Feynman functional
integral meaning. We de6ne the functional integral in
Eq. (19) to be related to the generalized Wiener integral
defined by Friedrichs and Shapiro" "by a rotation of
the time coordinate into the imaginary axis." Upon
rotating the time axis, Eq. (19) becomes

where

Pj =A+8,
4g= ,'(A+B—)+—i(,'(A+B))v-3,

Ps —— ,'(A+—B-) i(,'(A—B-))&3, —
(24)

gi -( g
2 1 )3-1/2 1/3

My54+
~

654
gp (2gg 3g~)

(25)

Mv 4 —(~v'/ l

—
( )

(i) Strong coupling

Depending on the values of the coupling, two cases of
interest exist:

I= e s(&)b (20)
(27/4) gi'g&(~gk) ') 1;

(ii) weak coupling

(26)

Equation (20) yields a well-defined integral and is
what will implicitly be implied when we write integrals
of the form given by Eq. (19). In solving Eq. (20) by
the method of stationary phase, we expand 5(@) about

9 S. F. Edwards, Proc. Roy. Soc. {London) A228, 411 (1954);
A232, 377 (1955)."R.P. Feynman, Rev. Mod. Phys. 20, 367 (1948).' R. H. Cameron, J. Math. Phys. 39, 126 (1960).

'~ N. %'iener, Ann. Math. 22, 66 (1920)."K. O. Friedrichs and H. N. Shapiro, Proc. Natl. Acad. Sci.
U.S. 43, 336 {1951).

'4 K. O. Friedrichs and H. N. Shapiro, seminar at New York
University Institute of Mathematical Sciences, 1957 (un-
published)."K.%. Symanzik, New York University Courant Institute of
Mathematical Sciences Report No. IMM-NYU 327, 1964
(unpublished).

(27/4)g 'g (47 4)'&1. (27)

"E. T. Copson (unpublished)."G. A. Korn and T. M. Korn, JI/lathematical Handbook for
Scientists and Engineers (McGraw-Hill Book Company, Inc. ,
New York, 1961).

The 4 and 4 do not represent operators but are
variables of integration that appear in the integrand of
the functional integrals Lc.f. Eq. (2) of Ref. 8g. We
see that the inequality in Eq. (26) is satisfied for most
values of f and 4/ if gisg& is sufficiently large. Likewise
the inequality in Eq. (27) is satisfied for most values of
4 and 4 if gPgq is small.

Let us first discuss the case of weak coupling. The
stationary points given by Eq. (24) can be put into the



146 EQUIVALENT LAGRANGIAN FOR I N TE RACTI N G F I ELD S 959

form

where

Pi —— —2i(1/3gi)'t' cos(-',a),

Pi ——+2i(1/3g i)
'~' cos(-',a+-', s.),

gg
——+2i(1/3gi) '~' cos(-,'a —-',ir),

cosa = (27g rig i/4) '"Pyif.

(28a)

(28b)

(28c)

Eq. (18). So, as before, we substitute Eq. (35b) into

Eq. (18) to give for L&Q,P) in the strong-coupling case

L,(4,4) = 4—(y„a„+m,)4

g
2 1/2

+ Py,f{csc(2a)+i%3cot(2a))
12g2

Now the stationary point that gives the maximum
contribution to the functional integral in Eq. (18) is

given by Eq. (28b). Expanding the exponent in the
numerator of Eq. (18) about p& and keeping only the
first two terms of the expansion as done in Eq. (22),
cancellation will occur and we get

I=exp i $—(g&'—/3gi) "Qyif c os(-,'a+ ', s)-

—(4/9g, ) cos4(-', a+-', ii)]d4x . (30)

cos(sa+ sir) (4g&'gi)4''mt'

and substituting Eq. (33) into Eq. (31) gives

(33)

L (A) = 4h.~—.+mo)0+kg '(4v 4)(4v 4) (34)

which is in agreement with Eq. (11).
Now let us consider the strong-coupling case. In this

case the stationary fields can be expressed as

Pi=+2i(3gi) '" csc(2a), (35a)

where

@i=—i(3gi) '"[csc(2a)+iv3 cot(2a)], (35b)

gi ———i(3gi)—'~'(csc(2a) —ivy cot(2a)], (35c)

tana = )tan(-,'P)]'~',

sinP =
2~g2gl P5

(36)

Equation (35b) gives the stationary field that gives the
maximum contribution to the functional integral in

Substituting Eq. (30) into Eq. (17) we obtain the desired
Lagrangian density in the weak-coupling limit:

L4(4A) = 4h.~.+mo)4 —(g —'/3g )"Vv 0
&(cos(-',a+isir) —(4/9gi) cos'(-', a+s s), (31)

where
a= cos '[(27grigi/4) "Qyif]. (32)

In the limit of g&~0, Eq. (31) should reduce to
Eq. (11).Indeed, this is true since, as gi —+ 0,

(csc(2a)+iv3 cot(2a) )4, (37)
36g2

where a is defined by Eq. (36).
The pion will appear as a bound state of Eqs. (31)

and (37).
IV. CONCLUSION

The evasiveness of elementary particles has led to the
speculation that no particle is any more elementary
than another. The problem then exists of finding the
Lagrangian density when various fields do not appear
in it but occur as bound states. A method for construct-
ing such Lagrangian densities was developed in Ref. 8.
This procedure was applied in Sec. II to the problem of
a pion and nucleon interacting by means of a Yukawa
coupling. For Z3=0 we established that an equivalent
theory can be constructed from L&QnP) defined by
Eq. (11). The pion appears as a bound state of this
Lagrangian density.

This example neglects the self-interaction of the pions.
This effect can be properly taken into account by con-
sidering Eq. (12). The construction of Lq(~) becomes
more dificult in this case. The exact solution is given
in terms of a functional integral defined by Eq. (17).
This functional integral is solved to give an expression
for L&Q,f) in two cases. The case of strong coupling is
given by Eq. (37) and the weak-coupling case by Eq.
(31). Both of these Lagrangian densities are highly
nonlinear and consequently much of their utility is lost
because of the ineffective methods available to solve
nonlinear problems.

Consideration of the Lagrangian density defined in
Eqs. (31) and (37) certainly imply that the four-fermion
interaction is an oversimplification of the pion-nucleon
interaction. Also the four-fermion interaction considered
in the superconducting theory of iVambu and Jona-
Lasinio and the spinor theory of Heisenberg may be
much too simple to achieve their aims.

The problem considered here still does not take into
account the interactions of the various other particles.
Including these interactions in Eq. (17) should certainly
give us a more realistic expression for L&(P,f) but it
has its obvious complications.


