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Perturbations in the Schwarzschild Metric*
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Exact solutions of the general-relativistic field equations are known only for very simple physical systems.
In order to obtain solutions of the field equations for more realistic systems, we consider an expansion of the
field equations about some known exact solution, keeping only terms linear in the perturbation. We then
choose the unperturbed metric to be the Schwarzschild metric, corresponding to the exterior of any spheric-
ally symmetric mass distribution, and consider the case where the perturbing matter is not located close to
the Schwarzschild radius. A discussion of the solution for a scalar Green's function in curved space leads
directly to an explicit expression for the perturbed metric in terms of the perturbing matter.

I. EN7RODUCTION

ECENT astronomical observations have generated
considerable interest in the broad category of

relativistic astrophysics. In particular, there is increas-
ing probability that astronomical bodies may be found
whose description requires the full framework of
general relativity. Since the field equations of general
relativity yield exact solutions only for oversimplified
physical systems, one is forced to consider approximate
solutions of the field equations if one wishes to solve
physically realistic models. Most approximation meth-
ods which have been formulated take the lowest order
metric to be that of flat space-time. ' This is, of course, a
reasonable approximation for most gravitational phe-
nomena. However, for the case of systems such as
gravitationally collapsed stars, this is a poor first
approximation. One approach to this problem is to
keep higher powers of the perturbations in the problem
and solve the resulting nonlinear equations. ' The
approach we will follow here is to choose the lowest
order metric to be some known exact solution of the
field equations which approximates the physical
system as closely as possible, and then consider the
perturbations about this metric which arise when we
replace the oversimplified physical model with a more
realistic one. '

In Sec. II, we consider the general problem of expand-
ing the field equations about a given metric. Equations
relating the perturbed metric to the perturbing matter
are derived. In Sec. III we specialize the equations to
the case where the unperturbed metric is the first-order
Schwarzschild metric. Section IV treats the solution of a
scalar wave equation in curved space. The results are

then applied in Sec. V to give an explicit expression for
the perturbed metric.

II. EXPANSION OF THE FIELD EQUATIONS

We wish to solve the field equations of general
relativity'

R„„,' g„ji!=———S~GT„„, (2.1)

with the boundary condition that g„„—+ b„„as r~~.
We assume that T„„can be written as the sum of two
terms

T„„=T„„(')+ST„„, (2.2)

where T„„"' is chosen so that the field equations for
g„„coupled only to T„,' ) have an exact explicit solution,
g„,=g„„'0).Therefore

R "'—-'g "'R"'=—Ss.GT„."&, (2.3)

where E„„(' is the Ricci tensor constructed only out of
the g„,(".bT„, is then taken to be a correction to the
T„„("which we assume gives rise to a small change in
g„,; i.e., T„„=T„,")+ST„,~ g„„=g„„("+bg„„, where
bg„„((g„„(0).The equation for bg„„ in terms of bT„„and
the unperturbed metric g„„("is found from considering
a variation of Eq. (2.1):
$g $g g(o) g (o)$g pg (o) &g (o)g p(o)$g

SrrGbT„. . (2.4)—
Since

P V,~ p A, y p V

(2 3)

*Supported in part by the U. S. Atomic Energy Commission.
' In particular, see Quasi-Stellar Sources and Gravitational

Collapse, edited by I. Robinson, A. Schild, and E. L. Schucking
(The University of Chicago Press, Chicago, 1965), and in Proceed-
ings of the Second Texas Conference on Relativistic Astrophysics
(to be published).

'See, for example, L. Landau and E. Lifshitz, The Classical
Theory fo' Fields (Addison-Wesley Publishing Company, Inc. ,
Reading, Massachusetts, 1962), Chap. 11.

3 In situations such as gravitational radiation from nonrelativ-
istic systems, one can obtain explicit solutions of these nonlinear
equations. See P. C. Peters, Phys. Rev. 136, B1224 (1964).

4 C. Lanczos, Z. Physik 31, 112 (1925).

where {p,) is the Christoffel symbol

g"Dam, ~j= kg—"(g~. , ~+g»—.~ g~~ -), (2 6)— .
P v

' Greek indices take values from 0 to 3; Latin indices are
restricted to spatial components 1 to 3. At any space-time point
we may choose g„„=8„„, where 5„„ is defined by 500 = 1, 5» =&22
=5» ———1, and 5„„=0for p, /v. We shall choose a system of units
in which c=i. Ordinary differentiation will be denoted by a
comma (,), covariant differentiation by a semicolon (;}.
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then

BR„,= —B ~ + B

P V —,a — P Q —;v
(2.7)

in a system of coordinates where the Christoffel symbols
vanish. However h{» ~} is a tensor and therefore we
can write (2.7) in covariant form immediately, valid
now for any coordinate system,

BR„v=—B

P V —;a —;v
(2 8)

The covariant differentiation, of course, is taken with
respect to the unperturbed metric g„„").The expression
for 8{&& „}in terms of hg„. can be found in a similar
manner. In a system of coordinates where the first
derivatives of the g„v vanish, we have

= 2g""&[(i&g&.),v+ (gg~.),&

—(bgu~), .j, (2 9)

which can be written in covariant form as

= lg-"'[(i&g .):.+ (hg .): —(~g .):.j (2 1o)

For notational convenience, we let h„,=—Bg„„h„=—g
""'

Xbg„„etc., and also drop the superscript (0) on the
unperturbed metric. Then BR„„becomes

bR„,= ', [h„, ' -h„;,' , —h„„' +—h, „.,„j. (2.11)

If (2.11) is now substituted in Eq. (2.4) and one uses
the relation

Bg'= —Bg C"g"
one finds the equation for h„„, the perturbed metric, in
terms of BT„„the perturbing stress-energy tensor, 4

h, ' —h„,'~ —h, . ' +h .+g „[h &,
' '"—h &,

'"]
h„++g„„h &&R

—s= —16~GST„„. (2.12)

If the unperturbed stress-energy tensor T„„(') is
taken to be zero, then g„„=h„„solves Eq. (2.3) and
Eq. (2.12) reduces to the usual linearized form of the
field equations. ' The linearized equations are a good
approximation to the full held equations only when the
space-time curvature is small and when nonlinear
gravitational effects can be ignored. If we wish to
consider gravitational perturbation effects near a
massive body, the nonlinear effects are important and
one cannot use the linearized equations. Rather than
adding to the linearized field equations the nonlinear
terms which arise in an expansion of Eq. (2.1) about
Rat space, we prefer to expand the field equations about
the metric corresponding to the massive body alone.
This allows us, in a simple case, to solve (2.12) for the

' R. Adler, M. Bazin, and M. Schiffer, Introduction to General
Relativity {McGraw-Hill Publishing Company, Inc. , New York,
1965), Chap. 8.

perturbation It,„„in terms of the arbitrary perturbing
stress-energy tensor of matter~ BT„„.

The system of coordinates which are used in the
expansion depends largely on the system of coordinates
one used in giving an explicit expression for the un-

perturbed metric g„,('). Thus a 6nite change of coor-
dinates cannot be made without changing the form of
the g„,'O'. However, an in6nitesimal change of coor-
dinates can still be made which keeps the form of g„,(0)

the same, but which changes the h„„.Therefore, under
a coordinate transformation

x"=x~+q~, (2.13)

where g1' is in6nitesimal, the metric becomes

g'"(*')=g"(x) g.-~-. g-n-, ' (2.14)

h„„(x')=h„„(x)—»„,.„—»„,.„. (2.16)

By choosing the p„appropriately, we can impose four
constraints on the h„„. In analogy with the linearized
theory, we de6ne

(2.17)h„v=h„v, g„vha .

Under the transformation (2.13), the quantity h„.'"
undergoes a transformation

h pv hyv gl&s; v ~ (2 Ig)

Since ., „'" is the generalized O'Alembertian operator, we
can choose»„so that in the new system h„„'"=0 (De
Donder's gauge) or, more generally,

h"'"=f. (2.19)

where f„ is an arbitrary infinitesimal vector function.
Equation (2.12) can be written, using (2.17), in

the form

' +g.ha ' ' —It B
+g„„h pR s= 167rGbT„, . (2.20—)

Since h„.„' =h„' .„+R „v h +R v h„, we have,
from (2.19), that

h„,„'~=f„„+R„„~h, R~„h„,. —(2.21)

' An analogous expansion of the field equations about a uniform,
isotropic, cosmological model has been carried out by W. M.
Irvine, Ann. Phys. {N. Y.) 32, 322 {1965).' A choice of f„must be made in any problem in order to define
the coordinate system one is using. We prefer to keep f„arbitrary
at this point so that we may simplify our equations later by a
convenient choice of f„.

If the form of the unperturbed metric is to remain the
same, we must have that g'„,(x') =g'„„"'(x')+h„„(x')
and g„„(x)=g'„„&0&(x)+h„,(x), where g'„„"'(x) is the
same function of x as g'„„&0&(x') is of x'. But since
g'„,"'(x)=g'„,"'(x'—»)=g'„„&0&(x') —g'„„&'&», we have
from (2.14) that the h„„ transform under the infinites-
imal coordinate change (2.13) like

h„,(x') =h„„(x) g„.» „—g„.»,„—g„,, » —(2.15)
or
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TR„'"=0 (2.23)

taking the variation of (2.23) yields the constraint on
5T„„

(bT„„)"=f T„'+h eT„,e+ ', h e.
, „T-e. .(2.24)

If the matter which composes 8T„„is spatially separated
from the unperturbed matter T„„,then bT„„satisfies

(bT„,) "=0' (2.25)

By the same arguments which are used to derive the
equations of motion of a particle in curved space' from
Eq. (2.23), one finds from (2.25) that the matter
making up bT„„ follows a geodesic path in the un-
perturbed metric g„„(').

III. EXPANSION ABOUT THE SCHWARZSCHILD
METRIC

Equations (2.22) and (2.24) are valid for an arbitrary
unperturbed metric. At this point we choose g„„(') to
be the Schwarzschild metric in isotropic coordinates:

goo"' ——e"=—[(1+4/2)/(1 —qh/2) j'
go. (o) —0

g;, o& = —8;,e"—= —b;;[1—4/2]',
where p is the gravitational potential,

4 = —GM/re'

(3.1)

(3.2)

and M is the mass of the Schwarzschild body. The
Schwarzschild solution is chosen because in the exterior
region (where T„„=O),any metric which is the solution
of (2.1) for a spherically symmetric mass distribution
can be reduced to the Schwarzschild metric. ' We choose
isotropic coordinates so that, at a point, angular
orientation does not affect the coordinate length of a
measuring rod or the magnitude of the velocity of light. "

If the perturbing matter consists of moving particles,
then the h„„will just be a sum over the solutions of
(2.22) for each individual perturbing particle, a result
of the linearity of the equations in the perturbations.
Thus we may consider the perturbing matter to be
only one particle of mass m (m«M) moving in the

' R. Adler, M. Bazin, and M. SchiBer, Ref. 6, p. 296.' G. BirkhoB, Rdativity and Modern Physics (Harvard Univers-
ity Press, Cambridge, Massachusetts, 1923), p. 253."A. S. Eddington, The j/Iathematical Theory of Relativity
(Cambridge University Press, London, 1960), p. 93.

Substituting (2.21) into the second, third, and fourth
terms of (2.20) we find

h»;a' fp;y fg;o+g»fa' 2haeR» +h oaR v

+h„R „h„Q—+g„P eR e= 1&x—GST», (2.22)

with f„chosen to simplify the equations as much as
possible once g„,(" has been chosen.

Equation (2.22) is consistent only if bT»obeys a
conservation law. Since Eq. (2.1) requires that T„„
satisfy

(m)
g g )TaP(m)

where bT &( ) is given by

ds ds&
hT e&"&=m ds 84(x,z(s))—

ds ds

(3.3)

(3.4)

Here 5'(x,z(s)) is a two-point scalar function" defined
to be 0 except when x&=z"(s) and to have the integral
property

b4(x, z)[+(—g)j d4r =1.

Equation (3.4) satisfies the condition (2.25) providing
the space-time position of the particle, z&(s), satisfies the

~ J. L. Synge, Relativity: Thfe Genera/ Theory (North-Holland
Publishing Company, Amsterdam, 1960), Chap. II.

metric of the background Schwarzschild solution, the
case of many particles or a Quid being a simple linear
superposition of one-particle solutions. Even though
the perturbing particle is assumed to be spatially
separated from the matter which gives rise to the
g„,('), we obtain, in general, contributions to the 5T„,
not only from the particle itself, but also from the
reaction of the original matter to the presence of the
particle. In our case the unperturbed matter is at rest
with respect to our coordinate system. When we
introduce the particle of mass m, the T00 and To;
components of the original stress-energy tensor pick. up
terms proportional to m, which therefore contribute to
bT„„.The T,, components, however, being quadratic in
the velocity of the large mass, give terms proportional
to nz', which can be neglected since we are considering
only perturbations linear in m. We will later need only
the spatial components of bT„„,so that the contributions
arising from the large mass need not be considered in
more detail.

This argument assumes, of course, that the large mass
is described by a stress-energy tensor appropriate for a
point mass. The assumption that the velocity of the
large mass be zero in the absence of a perturbing mass
is actually more restrictive then we need for the follow-
ing analysis. If the velocity of the large mass is neglig-
ible compared to the velocity of the perturbing mass,
then we may again ignore contributions arising from
the reaction of the large mass to the presence of the
perturbing mass. In the same manner, if the large
mass is described by an energy density e and pressure
p, then the condition that the reaction of the large
mass to the perturbing particle be negligible is that p
satisfy p«oo'/c', where o is the velocity of the perturb-
ing particle. In the particular case where we take the
lowest order metric to be given by the expansion of
Eq. (3.1) to order 4, we are assuming that the large
mass is a point mass initially at rest.

The part of 8T„„arising directly from the particle,
denoted by bT„„( ), can be written as
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geodesic equation

d2zP

with

p, dz" dzt'

+ --- =0
ds' Of P ds ds

(3.5)

and the only nonvanishing components of the Riemann
tensor are

&0'~0=4,.~, ~'~ki= ~~&,.I—&~~4,'a—&aA, ~)+&'4,~a,

R, = —b; Pop', Roo= —4,oo', R=2$,oo, (3.10)

dz~ dz"

g
ds ds

(3.6)

h„,(r, g) = rs„„(r,~)e- -' dp,

bT„.(r,t) = bT„.(r,(u)e '"' d(g-,

(3.7)

then Eqs. (2.19), (2.22), and (2.25) remain the same
for the Fourier components h„.(r,pp) and bT„.(r,co),
except that time derivatives 8/8$ are replaced by the
factor i op W—ith. a given choice of f„,Eq. (2.19) allows
us to express Aoo and Ao; in terms of the spatial compo-
nents h;;. Thus we need consider Eq. (2.22) only for p,
a=i, j.As noted before, this has the additional advan-
tage that the stress contributions 5T;; are easily given
in terms of the motion of the perturbing particle.

It is straightforward, but tedious, to write out
explicitly the equation for A;; using the full Schwarz-
schild metric. However, this appears to be too general
a procedure if one wishes to obtain explicit solutions
for the perturbed metric given an arbitrary motion of
the source. "Therefore we restrict ourselves to the case
where the perturbing particle is not close to the
Schwarzschild singularity (4 = —2). Neglecting powers
of @' in our expression for the metric, we approximate
(3.1) by

gpp~ ~=(1+2/) gp, ~ ~=0 g
~p~= —b;s(1—2y). (3.8)

The only nonvanishing Christoffel symbols are

00 =Q,k,k0
(3 9)

'3 The analysis of the perturbed metric into spherical harmonics
has been carried out for this case by T. Regge and J. A. %'heeler,
Phys. Rev. 108, 1063 (1957).This analysis was, however, applied
only to the case in which the perturbing matter vanishes. In the
presence of a perturbing mass one would expect that the perturbed
metric would be given as a sum over all harmonics with coefBcients
determined by the matter distribution, in analogy with the
similar flat-space decomposition of h~ into spherical harmonics
given by J. Mathews, J. Soc. Indian Appl. Math. 10, 768 (1962).

The equations which we have written are linear in
the perturbations. By our choice of the unperturbed
metric (3.1), the coefficients of the perturbations are
independent of time. Therefore, if h„, and 8T„, are
I'ourier-decomposed in time,

fg —2Q, [k/ ,p (3.12)

Equation (3.11), with (3.12), then simplifies to

&L(1+24)f;,]-4[47,;,op+4. ,1 p, ;+4,,7 p, , p

+ (4 „,—pb~g4, oo)hoo]= —16xGbT~s. (3.13)

The coordinate conditions (2.19) with (3.12) become

(1—24)&oo, o
—L(1+24)&ooj,a=0,

(1—24)ho', o L(1+24)rt'o],o= 24, ;hop.
(3.14)

Therefore, through the use of Eqs. (3.7) and (3.14), we
may express (3.13) in a form where only the spatial
components of h„. appear. From Eqs. (3.3) and (3.4),
we also have that

dz' dz&

bT,, =m(1 —+) ds b4(x, s(s))—,(3.15)
ds ds

where s"(s) is the equation of the path of the perturbing
particle. The perturbation in the metric, h„„, caused by
the perturbing stress-energy tensor bT„, is therefore
determined by Kqs. (3.13), (3.14), and (3.15).

It should be noted that Eq. (3.13) could also have
been obtained from an expansion of the Beld equations
of general relativity about the Rat-space metric. ' If
the deviation of the metric from that of Qat space is
given as the sum of h„„and a term linear in @ arising
from the large mass, then we 6nd nonlinear terms of
order p', ph, and h', ignoring terms of higher than second
order in the gravitational constant. The terms of order
P' can then be eliminated by including in the lowest
order metric the P' terms of the expansion of (3.1).
The terms of order pbh are identical to those of Eq. (3.13)
if one uses the coordinate condition (3.12). The terms
of order h', being proportional to m', are ignored since
we are looking only for perturbations in the metric
linear in the perturbing mass m.

IV. GREEN'S FUNCTIONS IN CURVED SPACE

The problem of finding the solution to (3.13) is made
much easier if we 6rst digress and consider the general

together with those components which can be obtained
from the above by a trivial permutation of indices.

Using Eqs. (3.8), (3.9), and (3.10), the field equation
for h,; can then be written, to order @, as

&roo+ 2 CI Ah, s
—4LAh;;, op+4, ,Ap;, o+0,;ho;,o+0,,;bool

+2(4@i,,),+2, (4(&h), ; 2, &—gP~« o~ .&o—p4, oo]
—f, ,& f'p,

—8;&f—p, p+ b,gfo,o= —'16''GST;& (3.11)

where CI=—8'/Bt' —V'. We now choose our coordinate
system so that
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problem of Green's functions in curved space. In
Rat space with Cartesian coordinates, the Green's
function for the scalar wave equation is defined by

gG(x, s) =b4(x—s). (4.1)

If we define Qp=—-', (x —s ) (x —s ), then

Gs+Gg = (1/4m. )b(Qp), (4.5)

where 00 is one-half the square of the proper time
between the points x and z, taken along the "straight"
line joining the two points. The Green s function (4.5)
has a disadvantage for most problems in that it contains
advanced contributions as well as the desired retarded
ones. However, if we consider the solution of the
scalar wave equation with a point source

If one specifies that G(x,s) ~0 for large spatial dis-
tances and that only contributions from the b4 function
at the earlier time are allowed, then one obtains the
retarded Green's function Gs(x,s):

G s(x,z) =b(s' t+—R)/4nR, . (4.2)

where x&= (t, r), s"= (s', z), and R= [(r—z) (r—z))"'.
We could, of course, have taken the advanced solution
to (4.1), Gg(x, s):

G~(x,s) =b(s' t R)/—4'—R, (4.3)

except that this can usually be ruled out through
causality arguments. 'P Linear combinations of (4.2) and
(4.3) are also solutions of (4.1). If we take the sum of
(4.2) and (4.3)& we obtain"

Gs+Gz= (1/2m. )b(() sP)2 R2)
= (1/2x)b((x. —s.) (x~—s~)). (4.4)

where b4(x, s(s)) is a two-point scalar function" defined

as in Eq. (3.4). If we now define" Q(x,s) to be one-half

the square of the proper time along the geodesic joining
x" and s", then Q(x,s) is also two-point scalar function
which reduces to Qp(x, s) when Cartesian coordinates are
chosen. Therefore, in Hat space with general coordinates,
the solution of the cova, riant wave equation (4.8) can
be given covariantly as

1
P(x) =— b(Q[x,z(s)])j(s) ds.

4m
(4 9)

y. 'a+aRQ= f(s)b4(x, s(s)) ds, (4.10)

where R is the curvature scalar and a is an arbitrary
constant. '7 We shall choose to work with the more
general wave equation (4.10). The covariant fiat-space
solution (4.7) does not satisfy (4.10) for any value of a.
In fact, the definition of Q(x,s(s)) becomes ambiguous
in a general curved space since there may be more than
one geodesic path joining the points x& and z&. Therefore,
as a covariant trial solution to (4.10) we take

1
0"'(x)=—Z b(Q;[x,s(s)j)f(s) ds, (4.11)

If we now generalize our analysis to be valid also in
curved space, one possible scalar wave equation" is
given by Eq. (4.8), where the metric is now determined

by the field equations (2.1) with nonvanishing T„„.
However, another equally valid generalization of the
wave equation to curved space is

P(x) = f(s)b'(x, s(s)) ds, (4.6)

where sp is chosen so that s&(sp) is outside the light cone
centered on x~.

Equation (4.6) is written explicitly in Cartesian
coordinates. In order to study the solutions to wave
equations in curved space, we first write (4.6) in terms
of general coordinates

f(s)b'(x, s(s)) ds, (4 8)

"A counter-example is provided by J. A. Wheeler and R. P.
Feynman, Rev. Mod. Phys. 17, 157 (1945}."P.A, M. Dirac, Proc. Roy. Soc. (I.ondon) A167, 148 (1938).

where s"(s) is the parametric equation of the path of
the source and f(s) is its strength, then we may ensure
that only retarded contributions are obtained in the
solution of (4.6) by letting

ep

P(x) =— b(Qp[x, s(s)j)f(s) ds, (4.7)
4m.

+ UPUv=o
du Py

(4.12)

where U =d$ (u)/du. In terms of the parameter u,

"One approach for 6nding a Green's function for this equation
as well as for a vector wave equation has been given by B. S.
deWitt and R. W. Brehme, Ann. Phys. (¹Y.) 9, 220 (1960). An
extension of their method to the case of the tensor potential was
given by D. Robaschik, Acta. Phys. Polon. 24, 299 (1963).' If one requires that the wave equation be conformally
invariant in analogy with electromagnetism, then a is determined
to be ~~. See R. Penrose, in Relativity, Groups, and Topology,
edited by B.deWitt (Gordon and Breach Science Publishers, Inc. ,
New York, 1961).

where the sum over i indicates a sum over all geodesic
paths connecting the points x& and z&. In order to find
to what extent this is a good approximation to the
solution of (4.10), we next find PiP&,

' .
The properties of Q(x,s) have been studied extensively

by Synge. " If P(u) is the parametric equation of a
geodesic path, then m is a special parameter along the
geodesic path if

dU
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~(„s);sgiven by

UaUP dl ) (4 13) (o .;-+aR4'" =
00

f(s)64(x,s(s)) ds+0( (4.20)

where the ~. obey

the second deriva
pbtains

the expression fprFrom
n e, one0(x s) given by 8yng '

(
1

801
&o). : =—Z; CC

4~ s —oo

$g, we next nee tp 6nd
( („)) th' P

1(~)o, where

dP

Letting

ds
11'(il[x,s(s)))

(d/ds) [11(x,s(s))$

arts wi'th respectand integrating by P
becomes

(4.17)

(4.22)ds=
, (dP/ds)geodesic Path

uatipn of the geodesic Path connect-where@(s) is t e q
des,'c equation (35)~ wh ". From the geo esicing s& wit

we Qnd that~t (11 )F4f(s) ds+O(W ' 4.18)

f(s)y(x, s(s)) ds(0);a—
;A

p Op

d,],/ds +2(d~/ds) (dP/
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Since

g, .(dk"/ds)(dh"/ds) =1,
we have that

(ds/de)'= (1/~') (1+44)= (1+24)—~(1—2&t), (4 24)

where v=dg/dP and v'= v. v. If we extend the geodesic
path passing through (x,t) and (z,s ) to large I)I, we

find that A-'= 1—e~', where eg is the asymptotic value
of v. To zeroth order in &t, v~ ——R/(t —s'), where R
= lx—zl. This gives M=[(t—s')' —R']&", in agree-
ment with the special relativistic result. To first order
in @, the path may still be considered straight, but with
v changing with position. From (4.24) we find that, to
order P, v'=vg'+44) or v=v~+2(t, where we replace v

by c in the terms of order P since deviations from this
will be of higher order in P. The condition that the path
go through (x,t) and (z,s') is

R= v(P) dP=vg(t s')+—2 &t'(P) dP.
gO

where I(r, z) is zero except along the line r z= —rlzl.
Aside from the term I(r, z) which arises from the second
term on the right of (4.18), this is identical to Eq. (4.21)
when one replaces

b(t —s'(s))b'(r —z(s))f(s) ds

b'(z, s)[v'(—g)]f(s) ds= b'(*,s)f(s)(1—
2&t) ds

h (x,s)f(s) ds —2&t)f, oo+2&bf, oo (4 28)

using the definition of b'(x, s).
In order to find the next order solution P&'&, we let

g be defined so that

hg= —I(r, z) .

Then b&t has the explicit solution

Solving for v~ gives
GM 8

g (r, t) =
2m' Bt

dS dN
0

t—s', o

We then substitute 1/2 = (1—v~')"' into Eq. (4.23) and
carry out the integrations over the (t) terms, assuming
again that the path is straight and that v—c.This yields
the expression for (M)'.

where

b(s (s) t+I+
I

—z(s) I+@(N))
X (4.29)

LN+ I*(s)l]t (I)

(M)'= [(t—s')' —R'—4GMR I'][1-(4GM/R) I'],
where R= r—z, R=

I
R I, and I'(r, z) is

rR+r R
I"(r, z) =ln

I
zlR+z Rl

(4.25)

(lLS)' is factorable into retarded and advanced parts, so
that b(Q) becomes a sum of retarded and advanced
parts. By our choice of so in (4.11), the only contribution
comes from the retarded part, and we can write"

P&o& (x)= b(Q[z, z(s)])f(s) ds

1 " h(s' —t+R+2GÃl')
f(s) ds. (4.26)

4x
By explicit calculation, one finds that O&t &o& is

Ig The argument of the 5 function differs from that of Rat space
by the term 2GMF. This gives rise to the time delay in the radar
reaction experiment proposed by I. I. Shapiro, Phys. Rev.

P&t«& = h(t —zo(s))b'(r —z(s))f(s) ds

&&g(o&

+I(r,z), (4.2't)
BP

Therefore P&'&—=&(t &'&+hp is the solution to order P of
the scalar wave equation (4.21).

V. SOLUTION OF THE PERTMkSED
FIELD EQUATIONS

Having found the solution of the scalar wave equa-
tion, we now proceed to solve Eq. (3.13) for the fi;;.
En analogy with the scalar equation, we choose our
trial solution for ft,; to be the same as (4.26) and (4.29)
with f(s) replaced by —16&rGm(1 —2(t))(ds'/ds)(ds'/ds).
The resulting function, which we call li&o&;;(1+2&b),
satisfies the equation

g[h&o&,;(1+2(t))]—4(t)&i&o&,;„=—16'GbT;;. (5.1)

This only gives some of the terms of Eq. (3.13) if
h(');; is taken to be equal to h;;. We note that the terms
which are missing in (5.1) involve components of the
perturbed metric other than h;;. This problem, of course,
did not arise in the discussion of the scalar equation
since in that case there was only one component.

We can see, at least qualitatively, the reason why
components of h„„are present in Eq. (3.13) which are
not present in (5.1).The solution to the scalar equation,
upon which (5.1) is ba.sed, took into account only the

Letters 13, 789 (1964).Also see the analysis of this experiment byI. I. Shapiro, Phys. Rev. 141, 1219 (1966), and by D. K. Ross
and L. I. Schiff, iNd. 141, 1215 (1966).
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fact that the signal from the source was received at a
time determined by the zero of the 8 function of Kq.
(4.26) rather than the zero of the ti function of Eq. (4.2).
If the source has a direction associated with it, e.g., a
velocity component, the components of the potential
generated by this source will not be simply related to
the components of the source because the signal will

have been deQected in its propagation from the source
to receiver. Thus we may expect terms in the equation
for the perturbed metric which mix diferent velocity
components. %e will not, however, analyze this bending
phenomenon quantitatively in order to obtain a better
approximation to h;;. Rather, the solution of the scalar
wave equation will be used to generate an expression
for fi,, which satisfies Eq. (3.13).

Since Eq. (4.21) is linear in it with coeKcients
independent of time, we may Fourier transform (4.21)
with respect to time and consider P(r, oo) rather than

f(r, t). Equation (4.26) then becomes

|t &o&(r,~)=-
4m

eicos t z0+8+2 O'M F]

eicos(tto+R)

f(s) ds

[1+2icoGMI']f(s) ds. (5.2)
R

Comparison of (5.2) with the Fourier transforms of
(4.27) and (4.29) shows that the quantity

with p(r, z,rt) given by Eq. (4.30), satis6es the equation

GJI/li -e~" rE+r R
G(r, z,oo) = ln

2io R lzlR+z R

oo dg eire(, u+l st+ p)-

(5.3)
o (~+ I

z l)t

(5.6) and (5.7) together with (5.3) to be suf5cient to
solve the problem of the extra terms in (3.13).

To lowest order in p, h, ; is given by the trial solution
h(');;, which is approximately

5(s'—t+R) ds' dz'
ho(r, t) = —4Gm ds (5.8)

ds ds

Taking the Fourier transform of (5.8) and changing
the variable of integration to s, we obtain

e~&"+s~ ds' ds' ds')
l't;, (r,io) =—4Gm ds'

R ds' ds dsI

From (3.14) It,;,,=—iioh, o, and (5.9) then implies that

eirai~o+s) dsi dso)
Ao, g

= iioh;o=—+4Giiem ds — l, (5.10)
R ds' dsi

where terms of order P s,rising from dos'/ds o and dso/ds
have been ignored. One can similarly express ho;, , in
terms of io and ds'/ds. Since (3.13) differs from (5.1)
only in terms proportional to ph, we may use the
relations (3.14) and (5.10) to give the h„„ in the qhh

terms explicitly in terms of the velocity components
s'=—dz'/dz'.

If we now take the Fourier transform of Eq. (3.13),
we obtain

a[(1+2')h,,j+4 'yh;;+4N [y„h„+y,;li„]
—4(ii, ;;—-'b, ,Q, )tto,

dz ds
8(t—s')8'(r —z)si', (5.11)

1+2/ ds

~G(r z io) = (ioo+Vo)G(r zoo) =y(r)e'~&/R (5 4) where we have used Eq. (4.28) for 5'(x,s). From Eqs.
(5.4)—(5.10) we then have the solution for h;;(r, io),

From Eq. (5.3) we may generate other useful rela- valid to order p,
tions. If we operate on Eq. (5.4) with the operator

then, since

Vo=—8/Bx"+8/Bs", (5 5) i;;(r,~)=—4Gm dso
t

dso ei~i*'+»
'V 82

(1+2/) 1+2' k ds R

we 6nd that
(8/8x"+it/Bs') f(R) =0, (ds'

+16Gm ds'
l

e'~*' d'r' P(r' —z(so))
(ds

HVAR'(r,

io) —=0 (8/ojx"+8/Bso) G(r, z,io)

=4 o(r)e'""/R. (5.6)

Operating on (5.6) with Vi gives

0 (VoViG(r, z,oo)) =@,oie'""/R. (5.7)

Therefore, by operating on the function G(r, z,io) with
various combinations of V';, we generate solutions to
diGerent wave equations. %e shall 6nd the expressions

X(io s'v' —zM(s'V +s'V, )—i (1+so)

X (V,V;——,'iI;;V'))G(r, r', io), (5.12)

where V;=8/Bx, +8/Bx, ' and G(r, r', co) is given explicitly
by Eq. (5.3). The components ho, and boo may be found
through Eq. (3.14).

In particular cases (5.12) reduces considerably. If we
consider the case where r»

l zl, then the only part of
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G(r, r', ~e) which contributes in order 1/r is

GMi -e'"t~n. r )

G(r, r',co)—
2' r

o0 eQiS u

dl f, (5.13)
r'+n r' i

where n= r/r. Operating on (5.13) with V'q gives an
especially simple result

GMi e'""
V'iLG(r, r', re)7 o'» r 2(g

xi,'/r'+rli
X f

e
—ken r' euler'7 (5 14)

r'+n r'

If we now consider the case cur'))1 (quadrupole approx-
imation) as well as r))r', only the first and last term on
the right side of (5.12) survive and we obtain

dominates the expression for small R, some eGects, such
as gravitational radiation reaction, depend on parts of
the h„„which remain finite at the position of the particle,
and the contributions of (5.17) and (5.18) cannot be
neglected in such problems.

The last limiting case we shall consider is that near
the region of the heavy mass M. The behavior of
G(r, r', cv) for r&(r' is found to be

G~i e " rr'+r r')
G(r, r',~) — ln

&r' 2', r'

o0 eire(u+r'+p) dl-

(I+r') p

Although this looks divergent at r=0, if we let dv
=L1/p(N) 7du in the second term and integrate by parts,
we find

GMi e' "'
G (r, r', ce) — ln (2r")

2o) r'

li„;(r,~&) r))r', cu r'« l

4Gm
esca r d~o 00 d reim(2u+r')

dl ln(2u) —f, (5.19)
0 dl& (r'+I)

GMs, z,)
X "f s*v+ f. (5.15)

fzf' )

which agrees with the Fourier transform of the usual
expression for h„ in the large r, small car' limit in terms
of time derivatives of the mass quadrupole tensor of
the system. '

In the limit E -+ 0, keeping
f
z

f
finite, we obtain an

expression for h;; which is valid near the particle m. In
this limit, G(r,r', ce) and ViG(r, r', &v) become

GMi r 1 "du e'~"
G(r, r', &a) = +O(R),

2~ kr'

GMirx&'~
V'iG(r, r', (o) = —

f

—
f
(1—em' "')+O(E) .

2~ &r'3)

(5.17)

If we now consider err' small as well as R&(r', then

7&(r, r', co) GcVxk'/r". —
e«~, ~"«i (5.18)

Although the first term on the right side of (5.12)

Since de'/ds~ —GMs, /f zf' and s,——s', Eq. (5.15)
becomes

2G d'
7i;, (r,~) — e'"" dz' e~*'- Lmz*z&J, (5.16)r»r' ~F'«1 r ds

which is finite. More generally, we find that G(r, r'co) is
finite along the line r r'= —rr', even though each term
of (5.3) diverges for r r'= rr'. —

VI. CONCLUSION

In summary, we have found that the expanded field
equations (5.11) have an explicit solution (5.12) in
terms of the Green's function (5.3). This Green's
function has the property that the effect at x of a source
at y is not only felt when x and y are joined by a null
geodesic, but also when x is joined by a null geodesic to
any point s which is itself joined to y by a null geodesic
which passes through a region of nonzero stress-energy.
These equations serve to give the gravitational analog
of the I ienard-Wiechert potentials in the presence of a
massive body. Unlike the solutions of the linearized
field equations, this solution takes into account the
nonlinear terms Ph, which represent the important fact
that gravity is itself a source of gravity. From the
approximation (5.13) one can show that these nonlinear
terms yield a 1/r contribution at large distances which
contribute to the radiation problem in the same order of
magnitude as that arising directly from the perturbing
matter. Also from the approximation (5.17) we see that
the nonlinear terms give a finite contribution at the
position of the perturbing particles, and therefore the
effects of such terms should be included in any discus-
sion of the gravitational radiation reaction problem.


