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Perturbations in the Schwarzschild Metric*

P. C. PETERS
University of Washington, Seattle, W ashington
(Received 9 December 1965)

Exact solutions of the general-relativistic field equations are known only for very simple physical systems.
In order to obtain solutions of the field equations for more realistic systems, we consider an expansion of the
field equations about some known exact solution, keeping only terms linear in the perturbation. We then
choose the unperturbed metric to be the Schwarzschild metric, corresponding to the exterior of any spheric-
ally symmetric mass distribution, and consider the case where the perturbing matter is not located close to
the Schwarzschild radius. A discussion of the solution for a scalar Green’s function in curved space leads
directly to an explicit expression for the perturbed metric in terms of the perturbing matter.

1. INTRODUCTION

ECENT astronomical observations have generated
considerable interest in the broad category of
relativistic astrophysics.! In particular, there is increas-
ing probability that astronomical bodies may be found
whose description requires the full framework of
general relativity. Since the field equations of general
relativity yield exact solutions only for oversimplified
physical systems, one is forced to consider approximate
solutions of the field equations if one wishes to solve
physically realistic models. Most approximation meth-
ods which have been formulated take the lowest order
metric to be that of flat space-time.? This is, of course, a
reasonable approximation for most gravitational phe-
nomena. However, for the case of systems such as
gravitationally collapsed stars, this is a poor first
approximation. One approach to this problem is to
keep higher powers of the perturbations in the problem
and solve the resulting nonlinear equations.? The
approach we will follow here is to choose the lowest
order metric to be some known exact solution of the
field equations which approximates the physical
system as closely as possible, and then consider the
perturbations about this metric which arise when we
replace the oversimplified physical model with a more
realistic one.*

In Sec. I1, we consider the general problem of expand-
ing the field equations about a given metric. Equations
relating the perturbed metric to the perturbing matter
are derived. In Sec. III we specialize the equations to
the case where the unperturbed metric is the first-order
Schwarzschild metric. Section IV treats the solution of a
scalar wave equation in curved space. The results are

* Supported in part by the U. S. Atomic Energy Commission.

!In particular, see Quasi-Stellar Sources and Gravitational
Collapse, edited by I. Robinson, A. Schild, and E. L. Schucking
(The University of Chicago Press, Chicago, 1965), and in Proceed-
ings of the Second Texas Conference on Relativistic Astrophysics
(to be published).

2 See, for example, L. Landau and E. Lifshitz, The Classical
Theory of Fields (Addison-Wesley Publishing Company, Inc.,
Reading, Massachusetts, 1962), Chap. 11.

® In situations such as gravitational radiation from nonrelativ-
istic systems, one can obtain explicit solutions of these nonlinear
equations. See P. C. Peters, Phys. Rev. 136, B1224 (1964).

4 C. Lanczos, Z. Physik 31, 112 (1925).
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then applied in Sec. V to give an explicit expression for
the perturbed metric.

II. EXPANSION OF THE FIELD EQUATIONS

We wish to solve the field equations of general
relativity?®

Ruy—3guwR=—8rGT,, (2.1)

with the boundary condition that g, — 8,, as r —x.
We assume that 7', can be written as the sum of two
terms

Ty="Tu®+6T,,, (2.2)

where 7, is chosen so that the field equations for
gu coupled only to T, have an exact explicit solution,
2uw=guw'®. Therefore

R,©—1g,, QRO = _8+GT,,® (2.3)

where R,,® is the Ricci tensor constructed only out of
the g, ©@. 8T, is then taken to be a correction to the
T,»® which we assume gives rise to a small change in
gw; 1€, Tw=Tw®+0Tw= guw=_gw "+, where
08,:<<gw®. The equation for ég,, in terms of 67, and
the unperturbed metric g,, is found from considering
a variation of Eq. (2.1):

SR~ 38R — 32,/ V38" Rag® — 38, Vg=F O5R g
—8rGoT .

8 8 1
M) e

where {s¢,} is the Christoffel symbol

(2.4)

Since

Ry=—

a
{B 7] Egaﬂ[ﬁ%ﬂ']s%gatf(gﬂa,‘r‘}‘gw,ﬂ—g,s.,,,) , (2.6)

® Greek indices take values from 0 to 3; Latin indices are
restricted to spatial components 1 to 3. At any space-time point
we may choose g,,=8,, where §,, is defined by 8p=1, 5;1=5,2
=0833=—1, and §,, =0 for u5£v. We shall choose a system of units
in which ¢=1. Ordinary differentiation will be denoted by a
comma (,), covariant differentiation by a semicolon (;).
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then

e K I R

in a system of coordinates where the Christoffel symbols
vanish. However §{z%,} is a tensor and therefore we
can write (2.7) in covariant form immediately, valid
now for any coordinate system,

NIEE

The covariant differentiation, of course, is taken with
respect to the unperturbed metric g,,®. The expression
for §{s%,} in terms of 8g,, can be found in a similar
manner. In a system of coordinates where the first
derivatives of the g,, vanish, we have

(2.8)

a{ * ] = 1= O (8g50) -+ (5g>2) o (ogsn) ], (29)
8y

which can be written in covariant form as

6{ * }=%g“’(°)[(6gg,);7+(Bg.,,);g—- (sgﬂ'/):v]- (2.10)
B v

For notational convenience, we let k,,=dgu, h,2=g¥©®
Xogu, etc., and also drop the superscript (0) on the
unperturbed metric. Then §R,, becomes

6Ruv=%Ehuv;a;a—hua;v;a_hva;u;a'l_haa;n;v] . (2'11)

If (2.11) is now substituted in Eq. (2.4) and one uses
the relation

8gaf=—0gy087 g,

one finds the equation for 4,,, the perturbed metric, in
terms of 67, the perturbing stress-energy tensor,*

h/.w;a; u—hua;v;a_hva;u:a+haa;p;v+guv[ha)\;a;)‘_haa;)\:)‘]
— R+ guhagR®= —16xGST,,. (2.12)

If the unperturbed stress-energy tensor T,,® is
taken to be zero, then g,,=34,, solves Eq. (2.3) and
Eq. (2.12) reduces to the usual linearized form of the
field equations.® The linearized equations are a good
approximation to the full field equations only when the
space-time curvature is small and when nonlinear
gravitational effects can be ignored. If we wish to
consider gravitational perturbation effects near a
massive body, the nonlinear effects are important and
one cannot use the linearized equations. Rather than
adding to the linearized field equations the nonlinear
terms which arise in an expansion of Eq. (2.1) about
flat space, we prefer to expand the field equations about
the metric corresponding to the massive body alone.
This allows us, in a simple case, to solve (2.12) for the

SR. Adler, M. Bazin, and M. Schiffer, Introduction to General

Relativity (McGraw-Hill Publishing Company, Inc., New York,
1965), Chap. 8.
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perturbation k,, in terms of the arbitrary perturbing
stress-energy tensor of matter” 7 ,.

The system of coordinates which are used in the
expansion depends largely on the system of coordinates
one used in giving an explicit expression for the un-
perturbed metric g,@. Thus a finite change of coor-
dinates cannot be made without changing the form of
the g,,@. However, an infinitesimal change of coor-
dinates can still be made which keeps the form of g,,®
the same, but which changes the #,,. Therefore, under
a coordinate transformation

a'h=xrtk, (2.13)
where 7* is infinitesimal, the metric becomes
g,lﬂ’(x,)=guv(x)—gun7la,v—gvana,p~ (2.14)

If the form of the unperturbed metric is to remain the
same, we must have that g',,(x")=g @ ) +h.(x")
and g.(x)=g¢w® (x)+hu(x), where g,@(x) is the
same function of x as g, @ (x") is of «’. But since
gw®@®)=gw® @ —n)=gw® @) —g ..V we have
from (2.14) that the 4,, transform under the infinites-
imal coordinate change (2.13) like

huv (xl) = huv(x) _gua"la.v"‘gvana.u_guv,anu (215)

or
hlﬂ'(x/)=hw‘(x) “Nu;v— Mo;u- (2.16)

By choosing the 7, appropriately, we can impose four
constraints on the %,,. In analogy with the linearized
theory, we define

huw="hu—3guwha". (2.17)

Under the transformation (2.13), the quantity A,,”
undergoes a transformation

ﬁ,uv;y=ﬁuv;y_7’u;v;y- (218)

Since ;,*” is the generalized D’Alembertian operator, we
can choose 7, so that in the new system h,,*=0 (De
Donder’s gauge) or, more generally,

ﬁ,‘.,;"=f,,,

where f, is an arbitrary infinitesimal vector function.?
Equation (2.12) can be written, using (2.17), in
the form

(2.19)

ﬁl"’;a;a'—hua:v; a"'};va;u;a'i'g#vﬁaﬂ:a:ﬁ_huyR
+guhasR¥®= —167G8T,,. (2.20)

Since  Aua;v *=Rua'®,s+ R hoat Roahue, we have,
from (2.19), that
Puaiv = fuirt RO hoa— RO s (2.21)
7 An analogous expansion of the field equations about a uniform,
isotropic, cosmological model has been carried out by W. M.
Irvine, Ann. Phys. (N. Y.) 32, 322 (1965).
8 A choice of f, must be made in any problem in order to define
the coordinate system one is using. We prefer to keep f, arbitrary

at this point so that we may simplify our equations later by a
convenient choice of f,.
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Substituting (2.21) into the second, third, and fourth
terms of (2.20) we find

E‘w:a; a__fu;r"' friwtgufai®— ZﬁaﬂRawﬁ'*'ﬁuaRav
+heR%— By R+ guhagR*¥¥= —16wGOT,,, (2.22)

with f, chosen to simplify the equations as much as
possible once g,,® has been chosen.

Equation (2.22) is consistent only if 87, obeys a
conservation law. Since Eq. (2.1) requires that T,
satisfy

Tu*=0 (2.23)

taking the variation of (2.23) yields the constraint on
8T ) )
(aTl"’);v=fﬂTﬁa+haﬂTua:ﬁ+%haﬁ;uTaB- (2-24)

If the matter which composes 87, is spatially separated
from the unperturbed matter T,,, then 87T, satisfies

(8T,,)*=0. (2.25)

By the same arguments which are used to derive the
equations of motion of a particle in curved space® from
Eq. (2.23), one finds from (2.25) that the matter
making up 67, follows a geodesic path in the un-
perturbed metric g,,©.

III. EXPANSION ABOUT THE SCHWARZSCHILD
METRIC

Equations (2.22) and (2.24) are valid for an arbitrary
unperturbed metric. At this point we choose g, @ to
be the Schwarzschild metric in isotropic coordinates:

g V=e=[(1+¢/2)/(1—¢/2)T,

20:9=0, 3.1
8 V=—d,e'=—5,[1—¢/2]*,
where ¢ is the gravitational potential,
o=—GM/re, 3.2)

and M is the mass of the Schwarzschild body. The
Schwarzschild solution is chosen because in the exterior
region (where T,,=0), any metric which is the solution
of (2.1) for a spherically symmetric mass distribution
can be reduced to the Schwarzschild metric.® We choose
isotropic coordinates so that, at a point, angular
orientation does not affect the coordinate length of a
measuring rod or the magnitude of the velocity of light.!t

If the perturbing matter consists of moving particles,
then the %,, will just be a sum over the solutions of
(2.22) for each individual perturbing particle, a result
of the linearity of the equations in the perturbations.
Thus we may consider the perturbing matter to be
only one particle of mass m (m<&M) moving in the

®R. Adler, M. Bazin, and M. Schiffer, Ref. 6, p. 296.

0 G. Birkhoff, Relativity and Modern Physics (Harvard Univers-
ity Press, Cambridge, Massachusetts, 1923), p. 253.

A. S. Eddington, The Mathematical Theory of Relativity
(Cambridge University Press, London, 1960), p. 93.
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metric of the background Schwarzschild solution, the
case of many particles or a fluid being a simple linear
superposition of one-particle solutions. Even though
the perturbing particle is assumed to be spatially
separated from the matter which gives rise to the
gw®, we obtain, in general, contributions to the 67,
not only from the particle itself, but also from the
reaction of the original matter to the presence of the
particle. In our case the unperturbed matter is at rest
with respect to our coordinate system. When we
introduce the particle of mass m, the To and T
components of the original stress-energy tensor pick up
terms proportional to m, which therefore contribute to
6T . The T';; components, however, being quadratic in
the velocity of the large mass, give terms proportional
to m?, which can be neglected since we are considering
only perturbations linear in 7. We will later need only
the spatial components of 87, so that the contributions
arising from the large mass need not be considered in
more detail.

This argument assumes, of course, that the large mass
is described by a stress-energy tensor appropriate for a
point mass. The assumption that the velocity of the
large mass be zero in the absence of a perturbing mass
is actually more restrictive then we need for the follow-
ing analysis. If the velocity of the large mass is neglig-
ible compared to the velocity of the perturbing mass,
then we may again ignore contributions arising from
the reaction of the large mass to the presence of the
perturbing mass. In the same manner, if the large
mass is described by an energy density e and pressure
p, then the condition that the reaction of the large
mass to the perturbing particle be negligible is that p
satisfy p<<er?/c?%, where v is the velocity of the perturb-
ing particle. In the particular case where we take the
lowest order metric to be given by the expansion of
Eq. (3.1) to order ¢, we are assuming that the large
mass is a point mass initially at rest.

The part of 8T, arising directly from the particle,
denoted by 67,,(™, can be written as

0T '™ = giagup T 6 (™) | (3.3)
where §7#8(m) is given by
dz* dzf
T oB(m) = / ds 6*(x,2(s))— — (3.4)
ds ds

Here 6%(x,2(s)) is a two-point scalar function®? defined
to be 0 except when a#=2#(s) and to have the integral
property

/ By (—g)] d*r=1.

Equation (3.4) satisfies the condition (2.25) providing

the space-time position of the particle, z#(s), satisfies the

2 J. L. Synge, Relativity: The General Theory (North-Holland
Publishing Company, Amsterdam, 1960), Chap. II.
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geodesic equation

d?z+ u 1dz* dzf
l ]——=0, 3.5)
ds? l|la B)ds ds
with
dz* dz’ ) (3.6)
Su ds ds o '

The equations which we have written are linear in
the perturbations. By our choice of the unperturbed
metric (3.1), the coefficients of the perturbations are
independent of time. Therefore, if k,, and 6T,, are
Fourier-decomposed in time,

h,,,(r,t)=fh,,,(r,w)e““"dw,
3.7
8T (r,0) = f 8T (r,0)e= doo

then Egs. (2.19), (2.22), and (2.25) remain the same
for the Fourier components #,,(r,w) and 87 ,,(rw),
except that time derivatives 9/d¢ are replaced by the
factor —iw. With a given choice of f,, Eq. (2.19) allows
us to express fgo and hy; in terms of the spatial compo-
nents h;;. Thus we need consider Eq. (2.22) only for g,
v=1, j. As noted before, this has the additional advan-
tage that the stress contributions 87';; are easily given
in terms of the motion of the perturbing particle.

It is straightforward, but tedious, to write out
explicitly the equation for h;; using the full Schwarz-
schild metric. However, this appears to be too general
a procedure if one wishes to obtain explicit solutions
for the perturbed metric given an arbitrary motion of
the source.!® Therefore we restrict ourselves to the case
where the perturbing particle is not close to the
Schwarzschild singularity (¢= —2). Neglecting powers
of ¢? in our expression for the metric, we approximate
(3.1) by

800 =(14+29), g0 ®=0, g;;®=—8;;(1—2¢). (3.8)

The only nonvanishing Christoffel symbols are

ol 1ol =2

k
{ . ] =0ijpx—0u,i—0id,i,
ty

13 The analysis of the perturbed metric into spherical harmonics
has been carried out for this case by T. Regge and J. A. Wheeler,
Phys. Rev. 108, 1063 (1957). This analysis was, however, applied
only to the case in which the perturbing matter vanishes. In the
presence of a perturbing mass one would expect that the perturbed
metric would be given as a sum over all harmonics with coefficients
determined by the matter distribution, in analogy with the
similar flat-space decomposition of 4,, into spherical harmonics
given by J. Mathews, J. Soc. Indian Appl. Math. 10, 768 (1962).
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and the only nonvanishing components of the Riemann
tensor are

Roijo=0,:5; Riju=08i1d,u— 0811, ix— b, ji+0ad sk »
Rij=—08:jp 1x; Roo=—0¢x; R=2¢ 1k,
together with those components which can be obtained
from the above by a trivial permutation of indices.
Using Egs. (3.8), (3.9), and (3.10), the field equation
for h;; can then be written, to order ¢, as
Ohi+ 2D¢E/i;’_4[¢Eij,00+¢,1‘50]’.(—)+¢,j;;/0i,0+¢.ijh00]
+2(¢,1h15) i+ 2(D,th0i) ,i— 2855 i r— Bood ki ]
_fz',i"“fj.z— 5s‘jf0.0+5.‘,‘fk,k= - 161rG¢5T¢,', (3.11)
where [1=4%/02— V2, We now choose our coordinate
system so that

(3.10)

fu=2¢.1hu. (3.12)
Equation (3.11), with (3.12), then simplifies to
D[(1+2¢>’;’i1']_4[¢ﬁij,00+¢,if'10j,o+¢,jﬁo¢,0
+ (b,:5— 30:i9 k) oo ]= —167GT ;.  (3.13)

The coordinate conditions (2.19) with (3.12) become
(1—2¢)hoo,0— [(1+2¢)hox ] x=0,
(1—2¢)hoi,o— [ (14 2¢) i ] k=26, ih00.

Therefore, through the use of Egs. (3.7) and (3.14), we

may express (3.13) in a form where only the spatial

components of h,, appear. From Egs. (3.3) and (3.4),
we also have that

(3.14)

dzt dz?
5T¢j=m(1—4¢)/ds 8(x,3(s))— —, (3.15)
ds ds

where z#(s) is the equation of the path of the perturbing
particle. The perturbation in the metric, 4,,, caused by
the perturbing stress-energy tensor &7,, is therefore
determined by Eqgs. (3.13), (3.14), and (3.15).

It should be noted that Eq. (3.13) could also have
been obtained from an expansion of the field equations
of general relativity about the flat-space metric.? If
the deviation of the metric from that of flat space is
given as the sum of %,, and a term linear in ¢ arising
from the large mass, then we find nonlinear terms of
order ¢?, ¢k, and /42, ignoring terms of higher than second
order in the gravitational constant. The terms of order
¢? can then be eliminated by including in the lowest
order metric the ¢* terms of the expansion of (3.1).
The terms of order ¢4 are identical to those of Eq. (3.13)
if one uses the coordinate condition (3.12). The terms
of order /2% being proportional to m? are ignored since
we are looking only for perturbations in the metric
linear in the perturbing mass m.

IV. GREEN’S FUNCTIONS IN CURVED SPACE

The problem of finding the solution to (3.13) is made
much easier if we first digress and consider the general
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problem of Green’s functions in curved space. In
flat space with Cartesian coordinates, the Green’s
function for the scalar wave equation is defined by

OG(x,3)=6*(x—32). (4.1)

If one specifies that G(x,2) — 0 for large spatial dis-
tances and that only contributions from the §* function
at the earlier time are allowed, then one obtains the
retarded Green’s function Gr(x,2):

Gr(x,5)=8(z"—1+R)/47R, 4.2)

where x#= (1,1), 2¢=(2%2), and R=[(r—z)- (r—z)]"2.
We could, of course, have taken the advanced solution
to (4.1), Ga(x,2):

Ga(x,2)=6(z"—{—R)/47R, 4.3)

except that this can usually be ruled out through
causality arguments.!* Linear combinations of (4.2) and
(4.3) are also solutions of (4.1). If we take the sum of
(4.2) and (4.3), we obtain?®

Gr+Ga=(1/2m)8((t—2°)*—R?)
= (1/2m)8((x—324) (x2—29)).
If we define Qo=1(x,—24) (x*— 2%), then
Grt+Ga=(1/4m)8(Q0), (4.5)

where Qo is one-half the square of the proper time
between the points x* and 2z, taken along the “straight”
line joining the two points. The Green’s function (4.5)
has a disadvantage for most problems in that it contains
advanced contributions as well as the desired retarded
ones. However, if we consider the solution of the
scalar wave equation with a point source

(4.4)

O¥(@)=[ f()8(xz(s))ds,

—00

(4.6)

where z#(s) is the parametric equation of the path of
the source and f(s) is its strength, then we may ensure
that only retarded contributions are obtained in the
solution of (4.6) by letting

1 80
$a)=— / 5@Lrs()Df()ds,  (47)

TJ -

where 5o is chosen so that z#(s,) is outside the light cone
centered on x*,

Equation (4.6) is written explicitly in Cartesian
coordinates. In order to study the solutions to wave
equations in curved space, we first write (4.6) in terms
of general coordinates

Yraiam / F($)54x,5(5)) ds, 4.8)

14 A counter-example is provided by J. A. Wheeler and R. P.
Feynman, Rev. Mod. Phys. 17, 157 (1945).
15 P. A. M. Dirac, Proc. Roy. Soc. (London) A167, 148 (1938).
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where 84(x,2(s)) is a two-point scalar function' defined
as in Eq. (3.4). If we now define'? Q(x,2) to be one-half
the square of the proper time along the geodesic joining
x# and z#, then Q(x,z) is also two-point scalar function
which reduces to Qo(x,2) when Cartesian coordinates are
chosen. Therefore, in flat space with general coordinates,
the solution of the covariant wave equation (4.8) can
be given covariantly as

1 o
(@)= f S@as D) ds.  (49)
4

T J —w

If we now generalize our analysis to be valid also in
curved space, one possible scalar wave equation!® is
given by Eq. (4.8), where the metric is now determined
by the field equations (2.1) with nonvanishing T,.
However, another equally valid generalization of the
wave equation to curved space is

¥.o'*t+aRy= f(S)lS“'(JC,Z(S)) ds,

—00

(4.10)

where R is the curvature scalar and a is an arbitrary
constant.’” We shall choose to work with the more
general wave equation (4.10). The covariant flat-space
solution (4.7) does not satisfy (4.10) for any value of a.
In fact, the definition of 2(x,z(s)) becomes ambiguous
in a general curved space since there may be more than
one geodesic path joining the points x# and z*. Therefore,
as a covariant trial solution to (4.10) we take

1w
YO =—F / @ Lxz() D) ds, (4.11)
4r i J_o

where the sum over 7 indicates a sum over all geodesic
paths connecting the points x# and z*. In order to find
to what extent this is a good approximation to the
solution of (4.10), we next find y @, 2.

The properties of (x,2) have been studied extensively
by Synge.!? If £%(u) is the parametric equation of a
geodesic path, then « is a special parameter along the
geodesic path if

aU«
du

+{ ¢ }UﬁUv=0, (4.12)
By

where Ue=dt*(u)/du. In terms of the parameter #,

16 One approach for finding a Green’s function for this equation
as well as for a vector wave equation has been given by B. S.
deWitt and R. W. Brehme, Ann. Phys. (N.Y.) 9, 220 (1960). An
extension of their method to the case of the tensor potential was
given by D. Robaschik, Acta. Phys. Polon. 24, 299 (1963).

17If one requires that the wave equation be conformally
invariant in analogy with electromagnetism, then @ is determined
to be §. See R. Penrose, in Reaiivity, Groups, and Topology,
edited by B. deWitt (Gordon and Breach Science Publishers, Inc.,
New York, 1961).
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Q(x,2) is given by

ul
Q(x,3) =% (u1—uo) f gusUUB du,  (4.13)
u0

where u=1u, at £*=x* and u=u, at £*=z% The deriva-
tive of Q(x,2) with respect to x¢, keeping z* fixed, is
given by

Q0= (ul—uo)Ua, (414)

where the Q., obey

Q,.0%=2Q. (4.15)

From the expression for the second derivatives of
Q(x,2) given by Synge, one obtains

1

u1
Q. o=4+4 / (u~uo)2Ra5U“U“ du
0

(Ml—uo)

+0(R2)=4+F(x,2)+0(R?), (4.16)

where O(R?) means that squares of the Riemann tensor
have been ignored in the first two terms. From (4.16)
we see that Q.,/=4 in flat space.

Y©. i« can now be found to be

80°

[26" (Q:)Qi+48" ()46 () F:(x,2) ]
X f(s) ds+O(R?). (4.17)

1
YO r=— ¥
dr i J_o
Letting J
P {8(2Lx,2() D}
S
Qg )=
(d/ds)[Ax,z(s))]
and integrating by parts with respect to s, (4.17)
becomes

JO, e / T H0)8a()) ds

89%

1
+;— 2| F(QIF:f(s) ds+O(RY). (4.18)

—x

Comparing (4.18) with (4.10), we see that @ and ¢
differ only in terms proportional to the Riemann tensor.
Therefore, to lowest order in R,g,s5, we find that ¢ @,
defined by (4.11), satisfies (4.10).

We next obtain an explicit solution of Eq. (4.10)
which is valid to first order in Rugqs. If we define

1
(1 = 0 ——— —_— 4 .
YO (x) =¢© (x) 41r§ / [V (—g()Jdty 8(Qi(x,y))

807

1
x {aR WO+ [ 5@D0D

—0

XF(y,2(s))f(s) ds} , (4.19)
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then ¢ @ satisfies the equation
40, otoRy = [ JOaalo) dstO), (.20

so that ¢ @ is the solution of Eq. (4.8), neglecting terms
involving squares or products of the Riemann tensor.

Although the terms on the right side of (4.19) appear
to be complicated, in certain cases they simplify
considerably. The second term arises through the
inclusion of the term eRy in the wave equation, and one
may wish to set a=0. However, even with a nonzero q,
in the case where 7, is localized at a point in space, the
integral is trivially performed. The third term arises
from the second term on the right of (4.18). An interpre-
tation which can be given to this term is that the
approximation ¢ =y© gives rise to a spurious source at
any point x* which is connected to z* by a null geodesic
which passes through a region of nonzero 7,,. In the
case of the localized T, the third term of (4.19)
reduces to a line integral along that particular null
geodesic.

These results are best seen if we consider the case of
the scalar equation in a curved space with a metric
given by (3.8). The wave equation (4.8) written out to
first order in ¢ becomes

(1—2¢) 00— (1+2¢)‘/Akk=/ F()84(x,2(s)) ds. (4.21)

Since the trial solution is (4.11), we next need to find
explicitly 6(Q(x,2)) in this particular metric. Q(x,2) is
given by 3 (AS)?, where

t g
AS= / ds= / ,
geodesic path 2° (dEO / ds)

where £#(s) is the equation of the geodesic path connect-
ing z# with x#. From the geodesic equation (3.5), with
u=0, we find that

@*°/ds*+2(d/ds) (d"/ds)=0,

so that to order ¢, d¢%/ds=A[1—2¢], where 4 is a
constant, and thus AS becomes

(4.22)

1 2 rt
AS=—[t—2"]4+— .
AD :H_A /,0 # (&) de° (4.23)

We are interested in the expression for AS when AS is
small, or equivalently, when the geodesic path is
nearly null. In this case we can determine 4 by comput-
ing its value from an extension of the geodesic path to
large distances, where ¢=0. In the second term of
(4.23) we can approximate the path by a straight line,
since deviations from this will be of order ¢? and thus
negligible in (4.23).
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Since
gur(dE+/ds) (dgr/ds) =1,
we have that

(ds/de%)?= (1/41) (1+4¢) = (1+2¢)—*(1—2¢) , (4.24)

where v=d¥/d® and *=v- v. If we extend the geodesic
path passing through (x,) and (z,2°) to large |E|, we
find that 4—2=1—1,2, where v4 is the asymptotic value
of ». To zeroth order in ¢, v4=R/({—2"), where R
= |x—z|. This gives AS=[(t—z°?—R¥]'? in agree-
ment with the special relativistic result. To first order
in ¢, the path may still be considered straight, but with
v changing with position. From (4.24) we find that, to
order ¢, 1*=142+4¢ or v=v,4+2¢, where we replace v
by ¢ in the terms of order ¢ since deviations from this
will be of higher order in ¢. The condition that the path
go through (x,t) and (z,2°) is

R= [ @) dp=si-)+2[ o) ae.
Solving for v4 gives
R 2 ¢
u=—=——"|[ ¢(&) d&.

t—20 1—20J 0

We then substitute 1/4 = (1—1v,42)"? into Eq. (4.23) and
carry out the integrations over the ¢ terms, assuming
again that the path is straight and that v=%¢. This yields
the expression for (AS)?:
(AS)?=[(t—3°2—R*—4GMRT][1— (4GM/R)T],
where R=r—2z, R=|R|, and I'(r,2) is
rR+r1-R )

P(r’Z):ln(]le-i-z-R

(4.25)

(AS)? is factorable into retarded and advanced parts, so
that 8(Q2) becomes a sum of retarded and advanced
parts. By our choice of soin (4.11), the only contribution
comes from the retarded part, and we can write's

YO ()= f ¥ sOLes() D) ds

1 r*6(2*—1+R+2GMT)

=— f(s)ds. (4.26)
ir ) _» R
By explicit calculation, one finds that Oy @ is
090 = [ 5D Ge— 215 ds
©
+4¢ +I(r,z), (4.27)
at?

18 The argument of the & function differs from that of flat space
by the term 2GMT . This gives rise to the time delay in the radar
reflection experiment proposed by I. I. Shapiro, Phys. Rev.
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where I(r,2) is zero except along the line r-z=—r|z|.
Aside from the term 7(r,z) which arises from the second
term on the right of (4.18), this is identical to Eq. (4.21)
when one replaces

/ 81— ()0 2(s)) (s) ds
- [ 8 (52 (= )11 (s) ds~ / #(5,9)1(5) (1—26) ds

~ / 8 (x,2) f(s) ds—2¢¢@ 00+ 204 @ 1 (4.28)

using the definition of §4(x,z).
In order to find the next order solution ¢, we let
8y be defined so that

0oy =—1(r,z).
Then 8¢ has the explicit solution

GM 3 ®
Wal)=—— / ds/ du
21!' at —c0 0

(2 (s)—t4u+| z(s) | +p(w))
Lu+|2(s) | Jo(u)

p(u)=[r2—(%)2+<%+u>2]”2. (4.30)

Therefore ¢y V=y®4§) is the solution to order ¢ of
the scalar wave equation (4.21).

, (4.29)

where

V. SOLUTION OF THE PERTURBED
FIELD EQUATIONS

Having found the solution of the scalar wave equa-
tion, we now proceed to solve Eq. (3.13) for the A.;.
In analogy with the scalar equation, we choose our
trial solution for h;; to be the same as (4.26) and (4.29)
with f(s) replaced by —16aGm (1—2¢)(dz%/ds) (dz’/ds).
The resulting function, which we call 2@;;(1+2¢),
satisfies the equation

D[’-l(o);j(l+2¢)]—4¢E(0),~j,on= — IGWGET.;]'. (51)

This only gives some of the terms of Eq. (3.13) if
h®,;is taken to be equal to A;;. We note that the terms
which are missing in (5.1) involve components of the
perturbed metric other than k,;. This problem, of course,
did not arise in the discussion of the scalar equation
since in that case there was only one component.

We can see, at least qualitatively, the reason why
components of #,, are present in Eq. (3.13) which are
not present in (5.1). The solution to the scalar equation,
upon which (5.1) is based, took into account only the

Letters 13, 789 (1964). Also see the analysis of this experiment by
I. I. Shapiro, Phys. Rev. 141, 1219 (1966), and by D. K. Ross
and L. I. Schiff, sbid. 141, 1215 (1966).
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fact that the signal from the source was received at a
time determined by the zero of the & function of Eq.
(4.26) rather than the zero of the & function of Eq. (4.2).
If the source has a direction associated with it, e.g., a
velocity component, the components of the potential
generated by this source will not be simply related to
the components of the source because the signal will
have been deflected in its propagation from the source
to receiver. Thus we may expect terms in the equation
for the perturbed metric which mix different velocity
components. We will not, however, analyze this bending
phenomenon quantitatively in order to obtain a better
approximation to A;;. Rather, the solution of the scalar
wave equation will be used to generate an expression
for k;; which satisfies Eq. (3.13).

Since Eq. (4.21) is linear in ¢ with coefficients
independent of time, we may Fourier transform (4.21)
with respect to time and consider y(r,w) rather than
¥(r,t). Equation (4.26) then becomes

1 g0+ R+2GMT)
YO (rw) =— / ——f(s) ds
T
1 giw(A+R)
zz— [142ieGMT]f(s) ds. (5.2)
T

Comparison of (5.2) with the Fourier transforms of
(4.27) and (4.29) shows that the quantity

rR+r-R
z|R+z R

© Iy eixa(u+| z|+p)
o)
0

(u+z[)p
with p(r,2,%) given by Eq. (4.30), satisfies the equation
0OG(r,z,w) = — (w4 V2)G(1,2z,0) =¢(r)e“E/R. (5.4)

GMzre“"R

G(r,z,w) L R

From Eq. (5.3) we may generate other useful rela-
tions. If we operate on Eq. (5.4) with the operator

Vi=09/9x*+9/5" (5.5)
then, since
(3/92*+9/9z%) f(R)=0,
we find that
OViG(r,w)=[1(8/3x*+0/32F)G(1,z,w)
=¢x(r)e“E/R. (5.6)
Operating on (5.6) with V, gives
O (VleG(r)z)w))=¢,kl3mR/R- (5'7)

Therefore, by operating on the function G(r,z,w) with
various combinations of V;, we generate solutions to
different wave equations. We shall find the expressions
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(5.6) and (5.7) together with (5.3) to be sufficient to
solve the problem of the extra terms in (3.13).

To lowest order in ¢, h; is given by the trial solution
h®;, which is approximately

B(z"— t+R) dzt d2

u(r t)~— 4Gmf — . (5.8)
ds ds

Taking the Fourier transform of (5.8) and changing
the variable of integration to z°% we obtain

e +R) gt daiy dod
—(—). (5.9)

ﬁ;j(r,w)% —4Gm[dz°
R d?® d\ds

From (3.14) hij ;= —1iwhi, and (5.9) then implies that

ew(z“ﬁ-R) dz‘b< dz®

hiji=~ uoh,o~+4Gwm/dz° ) (5.10)

ds

where terms of order ¢ arising from d2z?/dz°? and dz%/ds
have been ignored. One can similarly express A, in
terms of w and dz%/ds. Since (3.13) differs from (5.1)
only in terms proportional to ¢k, we may use the
relations (3.14) and (5.10) to give the %,, in the ¢k
terms explicitly in terms of the velocity components
v=dz*/d2.

If we now take the Fourier transform of Eq. (3.13),
we obtain

OL(142¢)hi; 144w’ phij+dio[d, ho+ . hoi]
—4(,:;— 3050, xx) oo

d? az’
=—16aGm | ——8(t—2°)8*(r—z)vv —, (5.11)
1+42¢ ds

where we have used Eq. (4.28) for 8(x,z). From Egs.
(5.4)-(5.10) we then have the solution for A;;(rw),
valid to order ¢,

’;‘ i (r,w) =

4Gm / Ex) /dz") gl
1+2¢) ) 1426\ ds. R

a3’
+16Gm/d2° (d—>ei“‘°/d"’r' (' —z(2%))
s

X {@?0vi— i (vV;4-07V ;) — } (14-22)

X (Vivj—%sﬁvz)}c<r’r’;w) ’ (5'12)
where V;=08/dx;+9/9x. and G(r,r',w) is given explicitly
by Eq. (5.3). The components Ao; and kg may be found
through Eq. (3.14).

In particular cases (5.12) reduces considerably. If we
consider the case where 7>>|z|, then the only part of
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G (1,1’ ,w) which contributes in order 1/7 is

GMi[eiw[Fn -]

Gy ,w) ~ ——
o0 eimu
du:l), (5.13)
r’+n-r’/ u

> dw
where n=1/r. Operating on (5.13) with V; gives an
especially simple result

r

X(ln(r’+n-r')+

GMi etor
V,,[G(r,r’,w)] >'\>' , _T
T, T W
) , o, xk,/r,+nk _
X[emion ¥ —eir T——— | (5.14)
r+n-r

If we now consider the case wr’>>1 (quadrupole approx-
imation) as well as 7>>7/, only the first and last term on
the right side of (5.12) survive and we obtain

h wr [ d20
hus () o>l r ¢ /
GMz;z;
Xe“”“(v"vf+ ) (5.15)
lz|?
Since dv¥/dz’2—GMz;/|z|® and 2z 22—3z%, Eq. (5.15)
becomes
2 lly we? ; 5.16
.. ~ —— ptwr tw 2! te] .

R L e N O

which agrees with the Fourier transform of the usual
expression for h,; in the large 7, small w7’ limit in terms
of time derivatives of the mass quadrupole tensor of
the system.?

In the limit R — 0, keeping |z| finite, we obtain an
expression for A;; which is valid near the particle m. In
this limit, G(r,r’,w) and ViG(r,r',w) become

GMis1 © du g
G(r,r' w)= (——-/ ; )+O(R) ,

20 \7' ;o u

(5.17)
GM ’L xk’ .
ViG (1t w) = ———(—) (1—e?»)4-0(R).
2w \7"3
If we now consider wr’ small as well as R/, then
ViG(r,r'w) ~ —GMx(/r?.  (5.18)

R<<r,wr’'<<L1

Although the first term on the right side of (5.12)
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dominates the expression for small R, some effects, such
as gravitational radiation reaction, depend on parts of
the £,, which remain finite at the position of the particle,
and the contributions of (5.17) and (5.18) cannot be
neglected in such problems.

The last limiting case we shall consider is that near
the region of the heavy mass M. The behavior of
G(r,Y' ) for r<&#' is found to be

GMire“” rr+r-r
Glrw) ~ ———[ 1n(——)

r<<r’ 2w 'l 2,’2

0 eiu(u+r’+p) du
+f[ =]
o (utr)p
Although this looks divergent at r=0, if we let dv

=[1/p(%)]du in the second term and integrate by parts,
we find

GMifer
G w) ~ ———l: In(2,'2)

r<<r’ 2(.0 7"

L) d eiu(2u+1")
- InQu)— ———) |, (5.19
/o duln u)du< ('+u) ):I (5.19)

which is finite. More generally, we find that G(r,t'w) is
finite along the line r-r'=—77’, even though each term

of (5.3) diverges for r-v'=—rr'.

VI. CONCLUSION

In summary, we have found that the expanded field
equations (5.11) have an explicit solution (5.12) in
terms of the Green’s function (5.3). This Green’s
function has the property that the effect at x of a source
at y is not only felt when x and y are joined by a null
geodesic, but also when x is joined by a null geodesic to
any point z which is itself joined toy by a null geodesic
which passes through a region of nonzero stress-energy.
These equations serve to give the gravitational analog
of the Lienard-Wiechert potentials in the presence of a
massive body. Unlike the solutions of the linearized
field equations, this solution takes into account the
nonlinear terms ¢/, which represent the important fact
that gravity is itself a source of gravity. From the
approximation (5.13) one can show that these nonlinear
terms yield a 1/r contribution at large distances which
contribute to the radiation problem in the same order of
magnitude as that arising directly from the perturbing
matter. Also from the approximation (5.17) we see that
the nonlinear terms give a finite contribution at the
position of the perturbing particles, and therefore the
effects of such terms should be included in any discus-
sion of the gravitational radiation reaction problem.



