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The general theory of relativity enables us to calculate gravitational shielding and absorption. These
effects are analogous to the shielding of electromagnetic 6elds with the exception that in lowest order quad-
rupoles rather than dipoles are involved. Quasistatic shielding effects occur in the tides, and for some models
the shielding effect is several percent of the applied 6eld. The dynamic shielding is much too small to ob-
serve at this time.

INTRODUCTION

HIELDING eGects have been observed and well
understood in electricity and magnetism for over

a century. The distribution of charges and currents
is calculated in the presence of a given applied field.
If the field of the driven charges results in a reduction
of the magnitude of the original driving field, we say
there is a shielding effect. There is no intrinsic absorp-
tion of the electromagnetic field; all shielding e6ects
are due to charges or multipoles which have been in-
Quenced by the applied field. The gravitational case
difI'ers in detail, but the same kinds of eAects are clearly
present.

Utt =P La r"+(b„/r"+')]P„(cos8) . (2)

For values of r smaller than E~~ we must have b =0.
Thus far we have calculated the potential of sphere 8
as though it were at rest in an inertial frame. In con-
sequence of the orbital motion (free fall) of A the forces
at r=0 must vanish. This may be accomplished to a
good approximation by choosing a new potential

A and 8 will be in orbital motion. We choose for con-
venience a spherical coordinate system with the s axis
along the line of centers and the center of the co-
ordinate system fixed at the center of mass of A. We
thus have cylindrical symmetry and the solution of
Eq. (1) is

QUASISTATIC GRAVITATIONAL SHIELDING Ua'= Ua+L . (3)
The gravitational theories of Newton and Einstein

enable us to calculate quasistatic shielding eHects.
The second derivatives of the gravitational field of one
body may induce tidal effects in another. The resulting
redistribution of mass gives rise to shielding which is
readily observable. Such eGects are known to geo-
physicists under difI'erent names and are included here
for completeness.

We consider the tidal effects induced in a solid sphere
by another sphere 8, using Newton's theory of

gravitation. In the region outside of 8, the potential of 8
is given by solutions of the Laplace equation

V'U~ =0.
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Expanding the right side of Eq. (5) enables us to deter-
mine a„, so the quadrupole term is

Us Grrstsf P (c s8)/oRsQ n (6)

The tide-producing potential will distort 3 and to a
first approximation this will result in an induced
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The radial force at r=0 is

BUtt'/Br=(g rta,„r" 'P„(cos8)+BL/Br]„ t. (4)

Equation (4) will vanish at r=0 if we choose BL/Br
= —a&P&(cos8). This then leaves the quadrupole term
as the major tide-producing potential. We may deter-
mine as by writing, for points on the axis (Fig. 1)

Utt ——Q a r"= Gmjt/(R~lt&r) . —
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FIG. 1. Gravitational
shielding in the tidal
interaction of orbiting
spheres.

an observer in a fixed position on the lunar surface
will see, in general, an increase in acceleration due to
gravity of sphere 8, but the increase is not as great
as it would be if it were not for the shielding term in-
volving —+2E. As we noted earlier, for a fixed radius
there is a real shieMing eGect.

DYNAMIC GRAVITATIONAL SHIELDING

A dynamic gravitational field will interact with a
mass quadrupole oscillator. The theory of the absorp-
tion of energy has been given' and the absorption cross
section calculated. At resonance the absorption cross
section of such an oscillator is given by

0 = 157rGIaPr/gc'. (12)

quadrupole, with a change of potential

hU= KGmiir—,'P2(cos8)/R~s'r'. (7)

In Eq. (7), K is a constant which is called a Love
number. ' r, is the unperturbed radius of sphere A.
The form of (7) is chosen because we are "outside" of
the induced quadrupole and the coe%cient of E must
reduce to (6) for r= r,. The acceleration due to gravity
at a fixed radius r near the surface of A is

Gre~—2GmsrP2(cos8) 3KGrliir, 'P2(cos8)
+ (g)

p2 ~AB Eggsr4

=go+ $1 ssK(r, /r)' j( —8U2'/Br)—
In (9) go is the acceleration due to gravity of the
unperturbed sphere A. Calculation of E is a solved
problem in the theory of elasticity. For the moon con-
sidered as a homogeneous elastic sphere' K=0.03. Thus
at a point near the surface of the moon the shielding
of the field of 8 due to the redistribution of mass of A in
consequence of the tidal forces is about 4-,'%%uo.

An observer on the surface of sphere A would not
necessarily observe a decrease in the part of the ac-
celeration due to gravity of B.This follows because the
surface itself moves in response to the tidal force. This
displacement is denoted by 8 and given approximately
by

8=+hUg'/gp. (10)

In (10), h is a second kind of Love number. For R~s
large compared with E& it is necessary to correct only
the first term of (8) for the displacement to obtain
the acceleration due to gravity at a point on the surface
of A as

g=go+(1+h —s3K)(—8U2'/8r). (11)

It is again instructive to consider the moon. Since h
has been calculated as =0.05, it is clear from (11) that

'A. E. H. Love, Some Problems of Geodynamics (Cambridge
University Press, I.ondon, 1911).

~ R. Tomaschek, in IIandbuch der Physik (Springer-Verlag,
Berlin, 1957), Pol. 48, pp. 775—845.

In (12), G is the constant of gravitation, I is the
quadrupole moment, co is the angular frequency, c is
the speed of light, and 7 is the relaxation time. A some-
what more transparent form of (12) is

(12a)

(12a) is seen to be the optical cross section r', multiplied
by the ratio of gravitational length to the wavelength
A, , multiplied by the ratio of the integrating length c~
to the wavelength.

If a gravitational wave is incident in a medium con-
taining mass quadrupoles, a shielding effect may be
produced. We proceed to calculate the gravitational
absorption coe%cient. Dispersion relations may then
be employed to calculate the refractive index. Suppose
we have an incident plane gravitational wave propagat-
ing in the z direction. In a Riemann normal coordinate
system, the Riemann tensor is given by

iruz jc—irut —az (13)

The time-averaged energy Aux tp, has a z dependence

tp. =Se 2~z (14)

' J. Weber, General Relativity and Gravitational 8 aves (Inter-
science Publishers, Inc. , New York, 1961), Chap. 8.

The attenuation constant u is given from Eq. (14) as

n= —(2to.) '(dto. /ds) . (15)

a may be calculated if the energy absorption dto, /ds
per unit length is known. For simplicity let us assume
that we are dealing with uniaxial mass quadrupole
oscillators, characterized by a vector r which gives the
equilibrium position vector of one mass element relative
to the other. When driven by the Riemann tensor, the
dynamical relative displacement P of a given mass
quadrupole oscillator is given by the solution of the
equation

d'P D dP hP
+ + = —C2E"p pr

dt2 m dt m
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Here D is a dissipation factor, k is the force constant.
our Riemann normal coordinate system is assumed to
be propagated along the world line of the center of mass
of the oscillator. Repeated indices are summed over;
8& p„ is the Riemann tensor. Taking the Fourier
transform of (16) gives for the Fourier transform
p(s&) in terms of the Fourier transform R"p p((u):

moment I, will be

norm-'Gn~
n=Re P, —

c'(& —))S—'„) '))~

~ (22)

In (22), Q, =s&m, /D, , coog=k;/m, , and (22) may be
written as

P(co) =mc'E"0 o(&o)r~/((o'm —u0D —k) . (17)

The absorbed power is given by

m-'a)IgGnp

o=Z~
"Q,(L1-(-./ )'j'+I/Q, '&

(23)

P,b„,b~= Re[ 2uug—m—c'(R&0 0)*r j (18) We may obtain the refraction index from the dispersion
relation

In (18), Re stands for the real part and the asterisk
indicates a complex conjugate. Making use of (17),
we write (18) as

2c Q((d )dc'
n(co) = 1+lim-

p GO
—M

(24)

P.b...b~ ——Ref—ia)(mc') '(E&0 o) *r E)'Op, r~j/
2((u2m —iauD —k) . (19)

ln terms of the energy Aux we write'

((R&o Orn)') = 4''IGLOO~'/c'm. (20)

In (20), I is the usual quadrupole moment multiplied

by a numerical factor of the order of unity. Writing
the square of the Riemann tensor in terms of the energy
Aux has the arbitrariness involved in defining the
gravitational energy density and making use of the
particular kind of Riemann tensor associated with a
linear mass quadrupole oscillator. ' Equation (20) may
be regarded as defining I.

Making use of (20), (19) becomes

P, «blab= Re(—ice'm2u2Gto„I/(a&'m —i40D—k)c') . (21)

The absorption coefficient (15) for a medium containing
n; quadrupoles per unit volume with quadrupole

with complex ~=co~+uo2.
In most cases (23) gives an incredibly small result.

For example suppose we have a case of a medium con-
taining 1022 atoms per cubic centimeter, each with a
quadrupole moment =10 4' g cm', ~=10", Q=10',
o.=10 ~ cm ' at resonance. For the one cycle in a
54-minute quadrupole mode of the earth, about one
part in 10"of the incident gravitational wave power is
absorbed at resonance.

CONCLUSION

We have noted that static and dynamic gravitational
shielding effects exist, in analogy with electrodynamics.
For orbiting spheres the quasistatic tidal shielding
e6ects may amount to several percent of the inducing
field. The resemblance of (23) to the traditional elec-
tromagnetic theory result is evident, with mass quadru-
poles taking the usual role assumed by electric dipoles.


