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Quantum-mechanical kinetic equations are derived for a homogeneous, isotropic system of charged
particles and photons. A hierarchy of equations is introduced by the use of the Wigner distribution operators
and quasiphoton creation and annihilation operators. The method of Bogoliubov is used to truncate the
hierarchy and to obtain kinetic equations. The resulting kinetic equations contain effects due to the processes
of particle-particle scattering, particle-photon scattering, and single and double emission-absorption of
photons by particles. In addition, there are terms representing shielding of the particles and photons, as well
as other many-body effects. Photon self-energy corrections are also discussed.

INTRODUCTION

HE development of kinetic equations for a plasma
including radiation has been a problem of grow-
ing interest in recent years. Several authors have de-
veloped classical treatments.'~® The development of
quantum kinetic equations has been generally restricted
to the “Golden Rule” approach, i.e., the development of
quantum Boltzmann equations via the use of transition
rates calculated by the “Golden Rule,” or equivalent
techniques. In particular, Osborn and Klevans® derived
master equations by using the repeated random-phase
assumption. Dreicer” used a strictly Boltzmann ap-
proach to derive relativistic, quantum equations. None
of these techniques is generally capable of including
many-body effects.?
In Sec. I of this paper we introduce the Wigner dis-
tribution operators,®1% and derive the equations of mo-
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tion satisfied by these operators. The electromagnetic
field will be treated as being completely internal (the
case of a uniform external magnetic field will be con-
sidered in a subsequent paper). The exact equations of
motion for the one-particle and one-photon momentum
distribution functions for a multicomponent, homo-
geneous system are presented. The terms in these equa-
tions are classified as representing the particle-particle
scattering process, the particle-photon scattering pro-
cess, the single emission-absorption process, and the
double emission-absorption process. The various con-
tributions are then treated separately in the subsequent
sections. These various terms involve certain correlation
functions. Equations of motion are obtained for these
correlation functions and a truncation ansatz, which is
a simple generalization of that used by Ron,! is used
to terminate the hierarchy of equations. The Bogoliubov
(adiabatic) assumption, that the correlation functions
relax in a time short compared to the relaxation time,
is used to solve the system of equations and obtain ex-
pressions for the correlation functions as functionals of
the one-particle and one-photon momentum distribu-
tion functions.

The results of Osborn and Klevans® and of Dreicer?
are obtained plus correction terms which represent cor-
relation effects. Among the correlation terms there are
some terms which do not contain delta functions that
conserve the unperturbed energy. These terms are
similar to a term found by Kohn and Luttinger® in
their work on quantum transport in solids. Similar
terms have also been more recently obtained by
Mangeney* in his treatment of a classical, relativistic
plasma with radiation, and by Michel®® in his treatment
of the electron-phonon system. These terms are also
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considered in two recent papers by Chappell and
Swenson'* and Henin et al.15

I. WIGNER OPERATORS

Let ¥, (r) be the quantized wave field for particles
of type a. Then, for fermions, ¥, and ¥, satisfy the
anticommutation relations:

{Wa(r),¥5(r")} = (T (r),¥4 (')} =0,
{ W (r), W5t (1)} =80,68 (x—1'). 1)

The one-particle Wigner distribution'®!! operator for
a-type particles is given by

an

oy
fa(f,l’)=—§ [ dl e 2, i (43 1) T (r—120), (2)

where Q is the volume of the system and I runs over a
region of volume Q/72. The general n-particle operator is

#3n
n)=—f---/dll---dl
Q'Ib

Xexp(X Lo pi) Vo, (r1+-3701) Voot (rat-3702) - - -
=1

famz---an(l;z;‘ )

X ‘I’anT(rn'*“%hln)‘I’an(rn —%hln)

X ‘I/a,._|<rn—1—%h'lﬂ—1) e \I,al(rl—%hll) ) (3)

h2o2

H=H, 4. / dr wm(—

2Ma

1 €a?
_; S /dr Ja(r)-A(r)+ Za/d PR «
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where 1= (ry,p1), etc., and the subscripts a;- - ‘@, de-
note the particle type. For example, there are two basic
types of two-particle distribution functions. These are
fea(1,2) and fas(1,2), with ax=p.

Equations (2) and (3) also hold if the particles are
bosons. There is no essential difficulty in treating the
case where both fermions and bosons are present.

The Wigner operators have the property that

Fasaeeran(1,2y% 1) =Tt fayagerray (1,2, - 1) ]

is the Wigner distribution function,® where Tr denotes
the trace operation and p is the density matrix. The
properties of these operators are discussed in Ref. 10.

The radiation field will be represented by the vector
potential A(r) (we choose the Coulomb gauge), which
can be written in terms of creation and annihilation
operators as

A(r) =2 2ahc/Qk) 2emne™ (aanta_nt),
K\

where
A=1,2, k-gn=0, 4)
Laxnan 1= [ant,awnt]=0,
and
Lawn,arnt]= 8 wdr . ©)

The Hamiltonian of the system is given by (the cou-
pling of the spins to the radiation field is ignored)

)\I/a(r)—l—% > //dr ar’ W (X)Wt (r)Vap(t—1")Wp(r') Vo (r)
B

«(1)A%r), (6)

where H . is the free-radiation Hamiltonian, Vag (r) is the Coulomb potential, and

a(r)—

2mai

The equation of motion of the #-particle Wigner operator Feragean (1,2, -

[‘I’ M) V& o(1)— (VT (1)) Ta(r)]. (M

-,n) is given by

V] n Pj R
Faran (L2, )+ — Vi Fageran(1,2, - n)+~— / / dldl’ ¢t Gimp it -
at i=1m;j 72 1< ]<k< n p,p’
X[Vaja,,(Il’,‘—l‘k-l-lh(l*—l')[)‘ a:ak(| ri—1—3h(1-1) I)]fal ONE SN JEEERES 78 HEERES % STRP 3 Tn,Dn)
3> > | dleit-ei—p. [A(rj—l—lhl)-l—A(r, )] V,,.fal...a,,(r,,ply KRS 7% JIERES N |
7=1p m.5CS2
e;
+ Z Z dl e“'(pj“p)'—Jp' [A(r,-{—%hl)—A(r] hl):'fal au(rlypl """ yELPy s rn;pn)
Q=1 » m;ic
i n ] e’
—— X X [ dleit @ D——TA(t;4-3 1) — A%(t;— 3 20) ] fareroan(T,D1 + -3 1sD5" * *; TuyDn)
Q=1 » 2m jc?
=1;— Z > Z dr el (i—p")
hQ =1 8 p.p’

X[Va,-ﬁﬂri_r"*“%hl] )_Vai6(|r1 r—37l| )]fal «aa(T1,D1;" - '7§ r;,p’;-

rﬂ)l’n 3 T p) (8)

14 W, R. Chappell and R. J. Swenson, Phys. Fluids 8, 1195 (1965).
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It is convenient to introduce a new set of photon-like or “quasiphoton” operators which are related to the opera-
tors ax and ax\f through a Bogoliubov transformation!®

o=@+ vd_a’,
and
bt =wa+vac . 9)
The vector potential can then be written as
A@r)= > 2rhc?/ Qo) 2exe™ (bt b_ml), (10)
5

and the Hamiltonian is given by

H=H,/+Y . [ dr ¥, i(x)(— h2V2/2ma)‘Ila(r)+% / / dr dr’ W (e)Uel(r)Vap(r—1' ) Wp(r') ¥ o(x)

1
o ] dt J.(0)-A(D)+ X / dr (ea/2mac?)dna(r)A%(r), (11)
[

where
na(t) =V (1) T, (1) — No/Q,
Hy=% 3 hor(bintbit-biadiat) (12)
o)
wr=(k%¥w,)!?, (13)
and
0= 4T N ota?/mQ. (14)

The quantities V o, €4, and m, are the total number, the charge, and the mass of a-type particles, respectively. These
new operators obey the usual boson commutation relations.

The advantage of using these operators is that most of the dispersive effect of the medium is now included. The
next term in the dispersion relation is of order (2?)/c? compared to the plasma frequency w,. The dispersion relation
used by Osborn® is simply the first two terms of the Taylor expansion of Eq. (13) for kc>>w,.

We can rewrite the Hamiltonian as

H=H,+Y hobatbion—3Y 3 #cad erfa(—Kk, p) (birtb_i)
:3N a,p k,\
+X T Y hdiw e ewn falk'—k, D) (birtb_iah) (G_won+biont), (15)

a,p k,k7 AN

where H, is that part of the Hamiltonian which contains only particle operators,

futk)= [[dr et (16)
Car=(2mes2/ himolwr)''?, 17
A= (1rea2/m.,9)(wkwk:)"”2 , (18)

and Y i’ means the term k’=Kk is omitted in the summations.
The equations of motion for the operators by, and f,(k,p) and the momentum distribution functions are

3b
—6_];)\: —iwbiat 2 Caxd: enfa(kp)+ L X’ 2diwer- e fa(k—K/, p) (br+b_int), (19)
a,p a,p k/, N
a P
(5+ik-—>fa(k,p)=% 5 ical enl fali—L, M)+ fulh—L,p— 4D )
Ma

—i % catp* en[ fa(k—1, p+37)— fa(k—1, p—37D) J(b1r+0_n')

+21:' )? idwen- epa[ falk+1—1, p+220—1))— fa(k+1—1, p—22A—=1)) J(B_yr—+birt)
l ’ ’
+(1‘/h9)ﬂz Zl Vﬂﬁ(l)[faﬁ(k_-lf p+%hly l: p,)—fdﬁ(k—l: p-%hl; l) p,)J) (20)
»p’

16 W. R. Chappell, S. J. Glass, and W. E. Brittin, Nuovo Cimento 38, 1187 (1965).
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9 0a(D) 1 1
Py 2 § carp- &x Im[ ga(k, p+37k) —gre(k, p—57k) ]
=22 Y duenn ey Im[hanve(k, K, p—14(k'—k))
Kk’ AN
— ek, K, p+30(k' —K))+Eae2(k, K, p— 35k — k) — kv (k, K, p+22(k'—k))]
2
+— Z Z erﬁ('_l) Imgaﬂ(l; p+%hl) p,) ) (21)
hQ B.,p" 1
and
(7%
_:915—= 23 carp e Impa(k,p)—4 3 2 diwein- eon Im[an (i, p) vk K,p) ], (22)
a,p a,p kK’
where ’
oo~ [ dr e, (23)
1= (bialbin) (24)
V()= /dr e TV 5(r) (25)
g)\“(k’p)= <fa(—k) p)bk)\> ) (26)
e (kK p) = (fu(k'—k, )bin i), (27)
Fave (kK ,p) = (fo(k'—k, p)bird_ion), (28)
and
gas(k,p1,p2)= / / dry dry ek (7 go0(1,2) (29)
The two-particle correlation function ges(1,2) is defined as
gaﬂ(lyz)=faﬂ(l’z)—_fa(l)fﬂ(z)—haﬁ(laz) ] (30)
where
Oaph®
ro12==2- 5 5 [ [aca
Q% ai.q2 a,s

Xexp[ik- (p1—3q1—3q2)+il- (pa—Fq1—3q2)+ (/%) (q2—qu) - (11— 1) ]
X fasGLrrt1]4+12(1—k), q1) fasG[r1+12]—32(1—K), ). (31)

The quantity %.s(1,2) represents the correlation arising from the Pauli principle. Clearly it is convenient to
separate this correlation from the correlation arising from the particle-particle and particle-photon interactions.
Except for a change of sign, the expression for /4qp(1,2) is the same for bosons.

The general structure of the correlation functions gives some insight into their physical nature. Since fa(k,p)
contains a particle-creation and a particle-annihilation operator, g\ is related to single-photon emission-absorption
processes, nn* to particle-photon scattering, £ * to double emission-absorption processes, and gz to particle-
particle scattering processes. These relationships are also obvious from Egs. (21) and (22).

II. PARTICLE-PARTICLE SCATTERING

We begin by considering the contribution to the kinetic equations due to the correlation function Zap:

aﬁoa(p) 2
l: ] =— 3 3 Vas(—k) Imgas(k, p+17k, p’). (32)
at pp. HQBp k

At this point we will ignore the photon contributions to g.s. (We shall consider these in Sec, VI.) Thus, the two-
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particle Wigner distribution function is assumed to obey the following equation of motion:

9fas(1,2) p1

p 1fag(1 2)+— szaﬂ(l 2)-|— Z //dl dk et (p1—p)gil- (p2—p)
¢

X[V,,,g(rl—rz—i-%h(k—l))— V ap(ti—ro—37(k—1))]fap(rs,p; 12,p")

ih?
=—22 X / / dl dr &t @[V o (t1— 142 70)— V oy (ts—1— 2 71) ]

Q v pp

Xfaﬂ’v(rlyp I9,P2; 1p)+ Z Z //dldre“ (pr=p")

Y P p’
X[ Vy(ta—1+371)— Vg, (ta—1—34) | fapy (11,01; 12,05 1,p) . (33)

The truncation of this equation involves the use of the following superposition approximation:

Fasr(1,2,3)=21a(1) f5(2) f3)+ fa(1)[g8+(2,3) — 1154(2,3) ]
+6(2)[8ar(1,3)—hay(1,3) ]+ f2(3)[8as(1,2) — hrap(1,2) ].  (34)

This is equivalent to the approximation used by Ron. This particular breakup of f.s, neglects some higher order
exchange contributions.!” We assume g, and the Coulomb interaction to be small and neglect all terms containing
both gasand Vg except the screening terms. The screening terms must be retained because of the long-range nature
of the Coulomb interaction.

If the average interparticle spacing is assumed to be larger than the thermal wavelength, then terms containing
hap(1,2) are small compared to f,(1) f5(2), and the correlation function %, will only contribute when it has the form
hay(1,3) or hg,(2,3). The resulting equation, after a Fourier transformation on the spatial variables, is

9 P1 P2
[___I_ ik- (__—>:| 2as(k,p1,D2)
at Ma Mg,

— /M)y Vay(K)Aa(k,p1)>5 gvs(k,p,p2)+ (/222 V oy (k) As(k,p2)2"p gar(k,p1,p)
=(/h2) X zazsV (k) [Gaa1+(kap1)Gﬂsz_(k;p2) _Gasl_(k;pl)Gﬁez+(k,p2):| , (35

81,82

where
Aa(k’p) = QPa (p+%ﬁk) — Pa p_ _hk) ) (36)
Gas*(k,p) = ¢as(p37K) [1— 0as(pF37k) ], @37)
Za= ea/e ’
and
V(k)="Vos(k)/2025- (38)

Equation (35) is the multicomponent generalization of the familiar equation of motion for a quantum electron
plasma in the random-phase approximation. The latter has been considered by Guernsey,'® Ron,'? and Wyld and
Fried.'” The general technique involves the use of the Bogoliubov assumption. Thus, the one-particle distribution
functions are considered to be independent of time and one solves for the asymptotic (¢ — <o) limit of the correlation
function. The resulting expression is then substituted into the first equation of the hierarchy.

If the asymptotic limit of gag is defined by

o0

Beslopp=lime [ egesopupe) (39)

0
and the Bogoliubov assumption is applied to Eq. (35), we obtain

E@+ szaﬂ(k,l)l,lh) =Sap (t) ) (40)

17 H. W. Wyld, Jr., and B. D. Fried, Ann. Phys. (N. Y.) 23, 374 (1963).
18 R. L. Guernsey, Phys. Rev. 127, 1446 (1962).
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where s,4(t) is identical to the right-hand side of Eq. (35) and the term ®g.g corresponds to all but the first of the
terms on the left-hand side of Eq. (35). Equation (40) can then be solved as

Zas(k,p10)= / 1T (0) dr. (41)
0

It is then an easy matter to generalize the technique developed by Dupree!® and Wolff? to obtain as the final result

[6 @a(D,t)jI =£r— D3 V ap(k) 2[Gasl+(k’ P1+27k)G e (k, po—17k)

o dpp. 89 erwsm x| 8{k[Ea(prtik)— Ea(pr)]/ 5}
where —Gas;~(k, P15 7k)Gpsyt(k, p2—37k) 5[ Eo(p1)+Es(p2) — Eo(p1+7k) — Eg(p— k)], (42)
and Eo(p)=1*/2Ma,

1 V aa(k)Aa(k,p)

gkw]=1+—3 — T
79 ap w— (k- p/ma)+ie

(43)

Equation (42) is simply the multicomponent generalization of the quantum Balescu-Lenard equation.!®

III. PARTICLE-PHOTON SCATTERING

The contributions of particle-photon scattering processes to the kinetic equations are given by

6goa(p)
[' ] =—2% % dien- ey Im[we(k, K, p—3A(K' — k) —hanelk, K, p+32(k'—k))],  (44)
p.s

L ot kE' AN
and
I 772%
I: At :| =—4Y > dppern- e Imin(kk'p). (45)
P.8

a,p k'N

Thus, we must obtain an expression for the particle-photon correlation function % ¢. This correlation function
obeys the following equation of motion:

[9/0t+i(K-p/matwr—wi) Jan*(k,K',p)
=i 2 [eap” en(fa(K,0) fa(k,0 )b 1) — i’ e (Fal(K,0) fo(— K/, D)bicr) ]
P’

—2i ¥ 3 [duPer en(fa(K,p) fo(K—1, p")bwt(01+b_11))— duPer,- ein (Fa(K,p) fo— K/, ) (Bt +b_1)bin) ]

B8,p’ Ly

—2i Y heailK - en,[(Fa(K—1, p+30) (b1, b thia )+ (fa(K—1, p—270) b1+ b_1,)bicrns 1B1cn) ]
v
+i Y caip: en[(FulK—=1, p+241) (b1, +b_1,1)bwn tir)— (fa(K—1, p— 2 70) (b1+b_11) bicrn 1hin) |
I

—1 Z Z dll'aslv' sl'v'[<fa(K+l,'_l, p+%h(l'—'l,))(blv+b—lvf) ° (b—l’v’+bl’v’ T)bk')\’ 1‘bk)\>
W 17
—(fol KAV =1, p—320A—1)) (b1, 41,1 - (b_rrsrF-Brr D birrs 1Bin) ]

7
= — ﬁz Zl V as [ (Fag(K—=1, p-H170; 1p")bion 1B — (Fas(K—1, p— 3715 1, p")bionr i) 1, (46)
.0’

where K=k'—k.
We assume that the correlation functions appearing in the above equation can be approximated by sums of prod-
ucts of @a, 7k, ©2% Fan®, kan®, and gag. Thus, for each of the correlation functions appearing above, we take the

18T, H. Dupree, Phys. Fluids 4, 696 (1961).
2 P, A. Wolff, Phys. Fluids 5, 316 (1962); see also in this connection C,-S. Wu, J. Math. Phys. 5, 1701 (1964).
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sum of all possible ways of achieving such a breakup. For example, we write

(fa(K=1, pA-370) (b1y+b_1,")bicrnr i) = 1,108, 00 (11 ) g% (s, p+57K)
+81,—wuagn®* (k’, p—37k)-+higher order correlation. (47)

The first term on the right-hand s ide of the above equation is obtained by our writing
(Fa(—K, p+27K" ) byrrbirn o) = (brrnbint ) fa(—k, p+37Kk")bir)+higher order correlation. (48)

The terms denoted ‘“‘higher order correlation” are clearly at least one order higher in the coupling than the other
terms. In a similar manner, we obtain

(fo(K D) f5(k,p")brn ) =0y g 120apn®” (K, p+37K)+ K apn* (&, —k, p, 1), (49)

(fa(K;p) fﬂ(k_ 1, pl)bk’)\'Tblv> =8 108 i n { — 8ap0p,p0 225 Pas(D—37K)[1— @as (p+3%K)]
~+ 2.6 (K,p,p")} +higher order correlation, (50)
(Fa(KAV =1, D)b1,brs b bi0) = @ (D) (81,1 icrticr (14 711000)
+61,10,,10,10x,» (1+712r) -+ higher order correlation, (51)

and
(fas(R=1, p+371; 1, p)bion b)) = 81 x 0o (D5 7K) Fnr 8 (k,X’,p")+higher order correlation, (52)

where to obtain Egs. (49) and (50) we made use of the identity!
£1,2)=A)1(2)+£1,2),

where

hﬁ
2:(1,2)= o 2 /dl exp[(2i/%)(p2—D) - (t1—12)+4l- (p1—p2) Ifa(ra+371, p). (53)

This superposition ansatz is identical (although somewhat different in form) to that used by Ron!! for the electron-
phonon system.

With the use of the above ansatz, a closed set of equations is obtained when the higher order correlation terms are
neglected. Note that one of the higher order correlation terms was written explicitly as Kqg in Eq. (49). These
terms are connected with self-energy contributions. We will return to this topic later.

In order to simplify the equation somewhat more, we will take the system to be isotropic. In this case, the terms
containing g\ can be ignored because the lowest order term in gy*(k,p) is proportional to (p- ex) as will be demon-
strated in Sec. IV. The contribution of this term will vanish because isotropy dictates that factors such as eg - exr)s
and p-e must appear in even powers. The terms that contain %y can also be ignored to this order because
ke (kK’,p) is proportional to dye.

The resulting equation is

7
o/ 31+i(K-p/ma)+iwk—iwkf)hw“(k,k’,p)_;;zVaﬂ(K)Aa(K,p)Z P (k,k',p’)
8.p’

= —Zidkk/“skx ckwa;\:"‘(k,k',p)-l-Zi Z dlok'ﬂsk)\' Sk'wgaﬁ(K,P,P') (nk)\'_”k')\') ) (54)
8.0’

where

D (kk,p) =20 [ (14+110x)Gast (K,p) — 1121 (14210) G~ (K,p) ] (55)

The second term on the left-hand side of Eq. (54) has been retained because it corresponds to the Vlassov term in
the linearized equation of motion for f,(K,p). Thus, it represents the screening of the particles. The last term on
the right-hand side has been retained because it involves an integral over g,s. The long-range nature of the Coulomb
potential can cause such a term to make an important contribution. In fact, such terms also give rise to screening
effects as will be shown in a later section.

We assume that the Bogoliubov assumption holds for the correlation function 2, as well as gqs. A similar
assumption was made by Ron concerning the electron-phonon correlation function. The equation for the asymp-
totic correlation function 4x\¢ is then given by

. i -
(e+i(K'p/ma)+iwk-iwk')hw“(k,k’,p)—;{—} 2 Vas(K)Aa(K,p)loar A (ki K',p")
Bp’

= —2idpw “ein- eI (K ,p)+20 3 diwPen: tionZas(K,p,0") (o —mions),  (56)
8.p’
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where again

)

%)\)\’a(kyk,)p) = ng-ll-e] e_”h)‘)"a(kikl!p)dt . (57)
= Jo
From the above equation we easily obtain

2diw e gov Do (kK,p)
wp—wr— (K-p/ma)+ie

2driPen - exrnBap(K,D,0") (Hxr—112)

Z)\)\' « (kiklyp) =

-z - t22.V (k) Ao(K,p) {22 8[ K, wpr—wi (i — wr— (K- p/ma)+i€) } 7
;5.4 Wpr — W™ (K-p/ma)-l-u
2gd 'Be v ’ﬁ(k7k,ap’) 280Kk Y€\ " B/ 'E (K,p/,p”)(% 'Y
X[— 8k PErn € n LI 8@k YEkn* B nZ By k?\ kx):l. 58)
Byp’ wk»—-wk~(K-p'/m,e)-l—ze 8o 79" Wpr—Wp— (K'p’/m;;)—i"ié

The contribution of particle-photon scattering to the kinetic equations is then obtained by the substitution of the
above expression into Egs. (44) and (45). The results of these substitutions are

at o,p k/N

on
I: k)\:l == X 8rhlduein: tion 2w (K p) 5[ Ea(p+ 1K)+ isr— Eo(p) — Freop ]
p.S.

gaﬂ(K,p;p/)
42 2 2 8diwdinP(ein: &) (i — 11 nr) Im[ ]
a,p B8,p’ k', N Wit — W= (K~p/ma)+ie

+Z Z SZad)‘)\raV(K)Aa(K,p)(ék)\ . ek/)\:)2 Im {[thI:K, wkf—wk](wk:—wk— (K . p/'ma)—l-ie)]‘l

a,p kK’ ,\

|
|

zpdui PP (kK p) 2pdri Y (M —nin ) Za, (K, 0, q)
x| - : ]} (59)
8.0 wy—owr— (K-p'/mg)+ie 8

" Y.e W — W (K-p'/m,g)—l—ie

bl

and

d¢a(p)
[ ot ] =—3 167hdrw e twv Ik, K, p+34K)6[ Eo(p+ 7#K)+for— Eo(p) — hiosg ]
p.s. b,k

+2 2 2 8w dinP(ein: n) (i —nunr)

k,k’ N\, B,p’

Zas(K, p+37K, p') Zus(K, p—37K, p") :I
wp—oi— (K/ma) (p+7K/2)+ie wip—owr— (K/ma)- (p—24K)+ie
+> > 8z *(exn+ ak,)\:)ZV(K) Im[hQé’(K, wk'—wk)]"l

XIm[

P WY
[ Au(K, p+37K) Aa(K, p—37K) ]
wp—wr— (K/ma)- (p+34K)+ie  wp—wi—(K/mo)- (p—31K)+-ie
X[—— 2edru P B(k, K ,p) iy 281 "2 (K,p',q) ] (60)
8.0’ wpr—wi— (K-p'/mg)+ie 8.0 v.a wp—owp— (K-p'/mg)+ie

where the formula
(x+ie) 1= PxYimd(x)

has been used to obtain the delta function. The leading terms in Egs. (59) and (60) yield the results of Osborn and
Klevans® when

Wp= (k262+wp2)1/2
is replaced by

wi=kctwp/2kc,
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and these terms also yield the nonrelativistic limit of Dreicer’s” results when wy is taken to be &c. The remaining
terms represent corrections arising from correlations. These terms also have the interesting property that they
yield contributions that are not proportional to

L E«(p+7K)+fiwr— Eo(p) — o]

These terms are similar to terms obtained by Kohn and Luttinger,'> Mangeney,* and Michel.”® The other terms can
be identified, in the classical limit, with the corrections due to the shielding clouds of the particles.?

Some of the higher order correlation terms that were neglected in the derivation of Eq. (54) can be shown to yield
self-energy corrections. It is not very difficult to pick out the appropriate terms. One way is to look at the equations
of motion for these higher order correlation functions and to pick out terms proportional to z*(k,%’,p). A simpler
method is to consider the equation of motion or higher random-phase approximation!®?> methods for deriving dis-
persion relations. Then we simply pick out the corresponding terms in Eq. (54). In particular, we can include the
lowest photon self-energy correction by retaining the terms corresponding to Eq. (49). The equation of motion for
kv is then given by '

7
(6/65+/L(K : p/ma)+iwk— iwk’)h)\l'a(k;k’,p) _;EZVaﬂ(K)Ad(Kyp)ﬁZ h)\)‘rﬁ(k,k’,p,)
9’

—iBZ Lesr(p’- e) Kapn*(K', —k, p, p')—cprr(p- e1rn) Kapr(k, —K', p, p')]
0’

= —2idpr e e (KK ,p)+ 27 X dirPen sk'x'gaa(K,P,p') (mon—mnwn),  (61)
8.0’

where
Kopn(6K,0,0") = (fus(—k—K', p; K', p")bi)— b1, —1wdr, v 0 (D) 25 (k,D) - (62)

The procedure at this point is to consider the equation for K g and to solve for the asymptotic function K .,
retaining only those terms proportional to /. %(k,k’,p). The results of this procedure are the following :

Kop* (K, =k, p, ') =[ww— (k-p'/mg)— (K- p/ma)+ielcsn(@ - ea) As(k,p")oan (kK',p) (63)
Ko (k, =K, p, p') =[wr— (K- p'/mg)+ (K- p/mo) —ie]cgre (b - en) s (K, 0 ian 2 (kK p) . (64)

and

With the use of the above equations and Eq. (61), we obtain the following equation for Zx¢(k,%,p) :

{eti(K-p/ma)+ilwit-bilwr — (K- p/ma)) 1— il wr+Su(wrt (K- p/ma)) T} iar (b, K',p)

7
~—0a(K,B) T Vaa(K)ln (K ) = = 2idass“esa eere T (K'p)
8.p’

+2i 3 diePein twngas(K,p,p") (mia—nwn) ,  (65)
8.0’

where ( yiau(p)
Cakz P exn 2 o (K,P,
O Gep/motie (

The quantity éx(wr— (K-p/m.)) gives the energy shift for the photon with momentum #k. These corrections
correspond to the phonon self-energy corrections obtained by Michel'® in his analysis of the electron-phonon sys-

tem. Higher order corrections to the photon self-energy and self-energy corrections for the particles can be ob-
tained in a similar manner.

IV. SINGLE EMISSION-ABSORPTION

The correlation function which corresponds to single emission-absorption processes is

n(k,p)=(fu(—k, D)bir).

2 M. N. Rosenbluth and N. Rostoker, Phys. Fluids 5, 776 (1962).
2 R. K. Nesbet, J. Math. Phys. 6, 621 (1965).
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The process of bremsstrahlung will be included in the contribution of g The equation of motion for g\*is given by

(0/9t—i(k/ma) - pFiw)gr(k,p) =3 ﬁZ, car(0* 2){fa(— K, D) f5(k,p))

~2 3 X dulein son(fa(—k 0)fs(k—K', p)(Brn+boin D)

B’ KN
7
- (5> > Car(Bk: een)[(fa —k—K', p+37K) (birn b 1) bir)
KN
—(fa(—k—K, p—35K") (birrr+b_iox1)b1r) ]
—i % car(p- &) [(fa(—k—K, p+37K) Brrr+b_in D)
k/xl
—(ful k=K, p—212K") brr+b_sra Do) +i X X diwewn - e
kN 1,»
X [{(Fu—k+1=K', pF+175(k' —1)) b+ s D) (b_iy 01D i)
—(fu=k+1=K, p— 34K —1)) brrr+b_ion D) (01,4011 bir) ]

=éﬁ§; le Vas(D[{fas(—k—1, 04371 K, 0)bi0) —(fas(—k—1, p—37K’; K, p)Bia)].  (67)

We again truncate this equation using the same method as in the previous section. The assumption of isotropy
allows terms with factors e ey to be ignored. Also all correlation functions are assumed to be small compared
to products of ¢, and #zx. The result of these approximations is

(3/0t—i(k/ma) p+iwe)gr*(k,p)—i[ Aa(k,p)/ 2] ﬂZ Vas(k)gr*(k,p") =icar(p- £2)J ex(k,p)

7

+7’ Z Cﬂk(p, : Sk)\)gaﬁ('—k, p, p/) +;§ Bz zl: Vdﬁ(l)[KﬂﬂX(k7 k,a p+%h’k/7 p’)—‘—Kaﬁ)\(ki kl; p—%hk/7 pl)] 3 (68)
8.p’ '

where

Ja(k,p) =225 [(1+7:0)Geas (k) —70G s (kD) ] (69)

The above equation has the same form as Eq. (54). The higher order correlation function K 46, has been retained
at this point because it is responsible for the bremsstrahlung contribution. The g5 term gives rise to photon self-

energy terms, as well as screening effects.
For the moment we will ignore the Kqg\ terms in order to obtain an expression for #\% The equation for the

asymptotic function g\* is then given by
(wr— (k/ma) - p—ie)gr*(k,p) —[Aa(k,p)/ 2] ﬂZ Vas(k)2:°(k,p")
.
=car(D" 20)J ax(k,p)-l-ﬁz cor(D’* 2)Zes(—k, p, p).  (70)
,p’

The above equation is easily solved for g\* The result is

ca(p-2n)J (kD) con(p’- £)Zas(—k, p, P)

&(k,p)= } FzalAa(k,p)V (K){2Q8[ k0w [(wr— (k/ma) - p—i€)} 1
Bk = e )V (V08 ke o () p=i)
[ZBCBk(P,‘sk)\)JBX(k:I"/)_{_ 5 cyizp(D” - €0)Zsy (— Kk, ?’, D"):I. )
8.0’ L wi— (k/mg)-p'—ie v’ wr— (k/mg)-p'—1ie

The fact that only the imaginary part of g\® is required results in considerable simplification because the delta
function (which becomes the Dirac function in the limit @ — ), 8(wi— (k/m.s) D), is always zero. Therefore,

coe(p’ - &) ImZap(—k, p, p')

+2aa(k,p) V () { A28 ki J(wr— (k/ma) - p—i€)}~*
wr— (k/ma)-p cor2s(D” - 1) ImZao(—k, ', p”)
xy § ETR A B

7.0’ B.p’ wr— (k/mg)-p’

Imgy(k,p)= 2_
8.’
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A further simplification results if only the largest contribution to Zag(k,p,p’) is considered. This contribution,
which arises directly from the Coulomb interaction, is proportional to §(k-p/m.—k-p’/mg). Since g.s has the
property that

Imgas(k,p,p") = —Imgga(k,p’,p), (73

such terms will not contribute to the second term on the right-hand side of Eq. (72). (This is seen by carrying out
the transformation 8 <> v and p’ <> p”’.)
The contribution of g)* to the kinetic equations is then given by

M 2¢arcar(P- e) (P’ &)
[ k)\} =Z Z : - - XImgaﬁ(—k) p, pl)’ (74)
. ot dso. wp 80’ wilwr—(k/ma) p)
an
d0a(p) dwrcarcor(p- &) (D' €0)
= XImZ.e(k, p+17k, p'). 75
[ P ] %‘; % (M) D) Zap(k, p+37k, ) (75)

The term on the right-hand side of Eq. (74) can be seen to be zero by the same considerations which were used to
eliminate the second term on the right-hand side of Eq. (72). Therefore, as expected, there is no radiation at this
order.

Clearly Eq. (75) represents an additional interparticle force [cf. Eq. (32)]. This is the force arising from the
exchange of virtual photons by the particles. There are similar terms in Eq. (60) arising from the scattering of a
single photon by two particles.

The lowest order photon self-energy correction can be obtained by our considering in more detail the equation
for g.5(—Kk, p, p’) (see Sec. VI). This equation has the following form:

[k- (p/ma—p'/mp)+ie]Zus(—k, p, p')=cpx(p’ e) Ap(k,p)2r*(k,p) + - -, (76)

where - - - denotes those terms that are not proportional to ga%(k,p). The result of the substitution of the above
expression for .5 into Eq. (70) is

k‘ k'p Aa(k,p)
[wk+ak( )———u]gw(k,p)— S Ves®W@?(kp)
Ma Ma 72 8.y
= Car(p- &) ar(k,p)+ BZ cor(p’- e)Zos’ (K, p,0"), (77)
p’

where Z.g’ differs from Zag by containing no terms proportional to g\* The self-energy correction does not affect
the vanishing of certain terms in the expression for Img\e.

In order to obtain radiation, the hierarchy must be truncated at a higher level. Since the bremsstrahlung proc-
ess involves the interaction of two particles and a photon, it is clear that the correlation function K g\ contains
information about this process.

The equation of motion for Kagn is given in the Appendix. We again apply the superposition ansatz to the cor-
relation functions which appear in this equation. These correlation functions are then written as

(fas(—k—K, p; K, p')f5(k,Q) )= — 8ay0q,ptic 2 fap(— k', p+37k; K, ')
—8py0q, 4410 2 fap(B+ K, p; —k—K', p'—37k)
+ fesr(=k—K, p; K, p’; k, q), (78)

(Fap(=k—=K'~1L p+32L; I, p) (brr+-b_11)biy= b1, sns fos(—K', p—37k; K, 1), (79)

(faﬂ(_ k—k'— l: p; kl+l> pl)bk> =0 —k—k’ ‘Pa(p)g)\ﬁ(kypl)_l_ 01,—w <Pﬂ(ll/)gx“(k:l’> ’ (80)

and

(faﬁ‘Y(_k—' k,_ly p; k/: ]_J/; l: q)bk>= 61,—kfaﬂ(_k,7 p; k/) p,)g)\’y(kﬂl)
+6l'—k'f13'¥(k,; pl; _k,) q)g)\a(krp)'*'61,—1(-—1{'¢a(p)1{75(k:k’7q7pl) . (81)

The contributions of the exchange terms arising from f.s(—Kk’, p; K, p’) are neglected for the same reasons as
given in Sec. II. Furthermore, terms containing factors of gasgx* are neglected because each of the correlation



86 W. R. CHAPPELL AND W. E. BRITTIN 146

functions is assumed to be small. The resulting equation is given by

d p P 7
[5—i<k+l>-—+i1-—+m]z<m<k,l,p,p'>+—mAa<k+l, D) S Ver(WK sl ap)
7.4

Ma mg
_"EAIJ(IJP,) 2 Vas(K)K ay(k1p, ) = icar (p—3 1) - eir(1+7010) ges(—1, p+3 7k, p’)
7.4
—(p+371) - exniagap(—1, p— 37k, p') 1H-icar[ (0" +57) - ern(14-m1)ges (14K, p, p'+37k)

1
(0~ D) satogan(-h, b, DR TV esl) T [t (g =3~ G (b a“(h 4300

+éVa,a(— k—1) 3, [Gas(I+k, p)er?(k, p'+ 3201+ K)— Gost (IH-k, p)ga*(k, p'— 35(1+k)) 1. (82)

The equation of motion for K s given above and the equations of motion for ga* and gag given by Egs. (68)
and (35), respectively, constitute a closed set of equations. We have not solved this set of equations as it stands.
However, it is very easy to obtain an approximate solution if we ignore the screening terms. In this case, the equa-
tion for the asymptotic function K g\ becomes

14 P _
[1 (I+k)— wk—ie]Kaﬂx(k,l,D,P')=Cak[(P—%hl) a1+ Bap(—1, D137k, p')

mg Ma

— (p+37) - svninZas(—1, p— 37k, p) J+car[ (043 71) - e (14-m)Zes (K, p, p'+57k)
Vaﬂ(l)

o > [Gast(Lp)are(k, p—371)— Gp=(L,p")3r(k, p+371) ]

— (p,— %hl) . sk)\nk)\zaﬂ(l_l_k: D, p’—-%hk)]—l—

Vas(—1—k)
_I_—._._
hQ

2o [Gas (14K, p)2P(k, p'+372(1+ k) — Gast (I+k, D)2(k, p'—32(14+-K))].  (83)

The expression for Zag in the absence of the screening terms is given by

’

1 Vap(k)
zaﬁ(k,p,p'>=[k-(—p———p—)—ie] A S [Gaa (k) Gar(kp)— Gan(kp)Ga ™ (k). (88)

Me  Ma A2 s1,e2

Finally, the expression taken for g\* is
(k,p) = (@i—k-p/ma—1€) "car(p- &:r) Jar(k;p). (85)

When the above expressions are substituted into Eq. (83) and the resulting expression for K .p\ is substituted into
Eq. (68), we obtain for the bremsstrahlung contributions to the kinetic equations the following expressions:

2 ea2
——2[1(4'”1{7\)1\::2(1(, Q1+37k) —nad 2k, qi—37k) J(py - £0)?
Ma

e

(2779
[ ] =Y T 3 X Tapn(01,a1; P2,82,K) L1 +720) F ae(01,01) Fp02(P2,82) — 110\ F a5, (61,01) F 35(Q2,p2) ]
0t Jp @B s1,52 pr.p2 q1.q2
pz“pzl
D> Vaﬁ( )
Q3wy, @B s1,82 p1.p2 41,02 /]

X [F ast(P1,1) F p3(D2,82) — F o1 (41,01) F g5 (G2, 02) 18 (12— 1— 42) 8L Ea(p1) + Es(p2) — Eo(q1) — Es(q2) ]
+3 T T T [Oan® (1,415 P202; K) A4710)— Oupr @ (D1,41; P2,82; K)7210n]

«,B 81,82 P1,P2 41,92

X [FaS1(p1yq1)Fﬂsz(p2;q2)_Fa81(q17p1)Fﬂsz(q2;p2)]
X 8(p1+p2—q1—q2)0[ Ea(p1)+Es(p2) — Eo(q1) — Es(q2) ], (86)
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and

0¢q
[ ] =2 X X {Tapn(p1,a1; 2,92, K) [ 710 F 0oy (01.91) F 03 (@2,02) — (14-7300) F a5, (P1,91) F s (D2,q2) ]

ot dp 8.k, s1,3 q1,p2,q2

+Tsan(q1,01; q2,02,K) [(147210) F a1 (Q1,01) F 805(a2,02) — 210F 0, (D1,01) F ey (D2,92) 1}
X X

8m2ey2 P2—qs\ |?
Vaﬂ< ) LA 4-n)Aa(k, p'+37Kk) (p1 - &) *— maha(k, p1—37K) (p1- £2) %]
Q3mo2 8.k 51,52 pa2,q1,42 h
X [F 8s1(q1,01) F 53(a2,02) — F a1 (01,81) F 355(P2,q2) 18(P1+Pp2— p1'— p2) [ Ea(pr) + Ep(p2) — Eo(d1) — E(q2) |
+22 2 X [OemnP(pr,qs1; P2,2; K)(147210) — Oapn P (p1,q1; P2,q2, k) 710 ]

B,k s1,82 p2,41,92

X[F asy(@1,01) F 553 (Q2,02) = F s, (91,91) F 35,(D2,82) 16(P1+D2— q1—q2) [ Ee(p1) + Ep(p2) — Ea(q1) — Es(q2) ], (87)

where

Fas(p,q) = (Pas(p)[l - ﬁoas(q)] ) (88)
Tapn (1,415 P2,82,k) = 272/ Q%wi) [oasr (1,415 P2,82, k) +08ar(P2g2; P1,41,K) 128(P1+pe—q1—q2— 72k)
X[ Ea(qr)+Es(a2)+ for— Ea(p1)— Es(p2)], (89)

I

Ca P2—pP
Tapr(P1,q1; P2,q2,K) = (*) Vaﬁ( . : )[(Dl' e)Aa(k, p1—37k)— (q1- &) Aa(k, qi+-37Kk) ], (90)
Ma
Ao(k,p)=[Ea(p+37k)— Ea(p—37k)— heor 1, (91)
472 pg-—-q2+ hk qi1—P1 €alp
Ousrn @ (p1,415 P2,q2,k) = —‘Vaﬁ( ) Vaﬂ( )( )(‘h' €xn)
Q3wz [/ /] Mathg

q X[(q1- exn)Aa(k, qit+37k)— (p1- en)Aal(k, p1—37k) JAp(k, qe—37k), (92)
an

472 P2—(q2— tk q1— P21 [A]
Oupr @ (P1,a1; P2,82, k) = - Vaﬁ( ; ) Vaﬁ( )( )(Pz' &)
B

Wi h Mo

X[(ar- e)Aa(k, qit+37k)— (p1- en) Aa(k, p—357k) JAp(k, po+37k). (93)

The leading terms in Eqgs. (86) and (87) are the normal bremsstrahlung contributions to the kinetic equations.
These terms agree with the results of Osborn and Klevans.® The remaining terms are rather unusual because of the
absence of a delta function conserving the unperturbed energies.’'® These terms are similar to terms in Egs. (59)
and (60). They are equivalent to the bremsstrahlung terms obtained by Mangeney.* Another interesting aspect of
these terms is that they vanish when the particles are in equilibrium (independent of the nature of the photon
distribution). It has been suggested that these terms are present because the particles in the system are always
interacting and never completely isolated.*'5 Briefly stated, the source of these terms is the appearance of factors
of the form (x—a—1ie)~!(x—b—1ie)~. The imaginary part of this quantity is given by

m3(x—a)P(x—b)1+wd(x—b)P(x—a).

One of the delta functions will conserve unperturbed energies, and the other will not.

V. DOUBLE EMISSION-ABSORPTION
We will next briefly discuss the contributions that arise from the correlation function
k)\)\’ a(k’kl’p) = (fa(K,p)bk)\b_kl)\r> (K: k’—. k) .

This function contains information about two-photon processes.
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The exact equation of motion for this quantity is given in the Appendix. With the use of the truncation procedure
and the assumptions of isotropy of the correlation functions, we obtain

i
(8/3t+i(K-p/ma)+iwitiwp Yo *(k,k',p) "%A“(K;P)Z V as(K)kan#(k,k',q)
B.q

= —Zidkk»"‘sk)\ . skr;\:L)\)\r“(k,k’,p)-l—Zi Z dkk'ﬁsk)\' sk’)\’(l+nk)\+nk')\')gaﬁ(K;p;q) ) (94)
8,9

where
Lok K ,p)=2; [movtionGast(K,p)— (1+110) 1+ 7_102)Gas~(K,p) ]. (95)

The asymptotic solution (making the Bogoliubov assumption) is then given by

(kK ,p) = 2e- £in (K- p/matwrtwp—ie)™ { — i * Lo (KK, p)+ 2 diwP(1+no+nwn)Zes(K,p,q)
B.g

Lf(k,l,q) dkk'7(1+%kx+nkw)zﬁv(K,q,p'):l} (96)

8K, artan) ] E Voo
( [AQE(K, wrter)] Bq ol K-q/mstwrtwp—ie v.p’ K-q/mstwitwp—1e

Considerable simplification results because the delta function 8(wi+wi—+K-p/mg) is always zero.
Even more simplification results if wx+wp—+K-p/mg is approximated by wi+ws. The contributions of Zy®
to the kinetic equations are then given by
[ank)\/at]d.e.zo

8w AP (exn exrnr)?

(1+nk)\+nk’)\’) Imgﬂﬂ(K, p—}—%hK, q) ) (97)

and

[aﬂaa(p)/at]d.e.

8,9 k&’ AN (wrtwi)
where we have made use of the identities

Imgaﬁ(K;p,q) = Imgdﬁ(_ K; b, q)
and
Imgaﬂ(Krp)q) = Imgﬁa(K:q,P) .

Similar techniques to those used in the last section can be applied to obtain higher order effects such as the self-
energy and the double bremsstrahlung contributions. Clearly, the double bremsstrahlung contribution is obtained
by considering the correlation function

(fas(K—1, p+271; 1, @)bad_son') -

In this case, photon self-energy corrections will arise from the first two terms on the right-hand side of Eq.
(A2). The correlation functions in these terms are K s(—k', k, p, p’) and K osr(k, —K’, p, p').

VI. ELECTROMAGNETIC CORRECTIONS TO THE TWO-PARTICLE CORRELATION FUNCTION

In the earlier calculation (Sec. IT) of the contribution of g.s, all effects of the transverse field were ignored. In
this section we will consider the correction terms arising from the presence of the particle-photon interaction. If
the truncation procedure is applied to Eq. (8), the equation of motion for g.s becomes

] p1 D2 i i
[—+ik-(—‘——)]gaa—ﬂxk,poz Y ar(Rg601,0,22)-F A5k p2) V() gecn(sp1,0)
at Mo Mg 7 v.p 7nQ 7.0
Ficar(p1- ern) Aa(k,p1) [P (k,p2) +2%"(—k, p2) J—icer(p2- e0) Ap(k,p2) [ea*(—k, p1)+gr**(k,p1) ]
—iA(l,p1) 22 e e [P, 1=k, po) -+ f*(—1, k—1, po)+EanB(1, 1=k, p2)+Zanf*(—1, k—1, po) ]

LA

+iAs(k,ps) > e era [ (=L k—1 pO) w1, 1=k, p1)+Eaw (=1, k=1 p1)+-Eaw*d, 1—k, p1)]
RRY

zi— > Vap(K)[Gaer(k,p1)Gpos(k,p2) — Gasy~(K,p1) G (,p2) . (98)

Q s1,52
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Let us begin by considering the contribution of the correlation functions g\®. It follows from Eq. (71) that
2°(k,p2)+2°" (— K, p2) =25 cprp2- eron [ Gst(k,p2) +Gps(k,p2) ]
+Z Cyeq” sk)\wk_—ll:zﬁ’r(_k) P2, q)+gﬂ'y*(k,p2,q)] ’ (99)
7 q

where w;—k- p/m. has been approximated by ws. There is a similar expression for gx%(—k, p1)+g22*(k,p1). Clearly,
the contributions of these terms to Z.s will have the form (p:- &) (p2- exn)Fap, Where F,g is independent of the
angles p1- exn/p1 and pa- e/ pe. Therefore, gos can be written as

gap=gap'+gas?, (100)

where gag?(k,p1,p2) is the part of g.s contributed by the g, terms. (This separation can be made only for an iso-
tropic system.) The equation of motion for gas? is given by

Lk- (py/ma—p2/mpg) — i€ g ap>(K,p1,02) + (2/wr)CarD1” ErAa(l,01) 2 ¢11 " €aEs2(K,q,p2)
Y4
— (2/wi)carpe ealp(k,p2) 2 €149 erBar?(k,p1,q)
7.4
= —(2/wr)carcsr(P1 en) (P2° €0) 2o [Gasy (K, p1)Gpss™(k,p2) — Gasy~(k,p1)Gpey* (k,p2) . (101)
81,82

The above equation has precisely the same structure as the equation for g.s that results from Eq. (35). Its solu-
tion can be obtained by similar methods.
If the result is then substituted into Eq. (74) we obtain

3<Pa(p1)] 2T 47reaeﬂ(p1 . Sk)\) (pz‘ Sk)‘) 2
=32 X [Gast(k, pi+37k)Gpsy(k, po—37k)
[ o ). ams s oo 2o (k- pu/mat- 1282 2my| — e A T

—Gas (K, p1+37K)Gpoyt (k, po—37k) J0[ Ea(p1)+ Es(p2) — Ea(pr+ k) — Eg(p2— k)] (102)

The presence of the self-energy factor 8, in the denominators is due to the screening terms in Eq. (101). If
these terms are neglected, the answer is changed only by & being replaced by zero. The factor wi?+ 2w has
the appearance of a self-energy correction [cf., Eq. (77)], except that the expression would seem to be missing
a term &2 In fact, the factor wi?42widx is the proper expression [1i.e., the self-energy correction is actually given
by (wi?+2widx) /2—wy ], and the earlier results obtained in Egs. (65) and (77) are approximations corresponding
to the first two terms of the expansion of (wx2+42widx)1/2.22 This should also apply to the results obtained by
Michel.*® The difference of 8,2 is very small. Therefore, the preceding discussion is relevant only to the theoretical
interpretation.

Equation (103) is the quantum-mechanical version of the classical Fokker-Planck equation obtained by Simon!
and by Aamodt, Eldridge, and Rostoker.’ This term in the kinetic equations arises from the magnetic forces be-
tween moving charges. From a more quantum-mechanical point of view, it is due to the potential arising from the
exchange of virtual quasiphotons by the particles. This point of view allows us to obtain this term, including the
self-energy correction, by a “Golden Rule” or ‘“guessing” method similar to that used by Wyld and Pines to
obtain Eq. (42).%

It is much more difficult to treat the corrections to Z.g that are due to the correlation functions % and &y ©.
In this case we do not have the convenient symmetry that existed for ga®. If gag' is split into the sum of a large part
which expresses the correlations arising from direct Coulomb interactions and a small part g.s-! which contains
the effects of v * and kv, and if all screening terms are neglected we obtain

Zap (K, p1,02) = [k (p1/ma—po/mp)—ie] ™t 3 4drdriPen- eien
v

{(1 Fntnix)

[Gas"(k,p1)Gpoy (I, p2) — Gasl_(k;pl)Gﬂsz+(k’p2)]
(1 tors)

\ Aﬂ(kyl)?)l)\)\’a(_l: k—l, pl) Aa(k)pl)I)\X’ﬁ(—lr k*l; pz)

k- pi/matoi—wrr—ie k- po/mp+wr—wi_i+-ie

% The approximations made in obtaining Eqs. (65) and (77) involved our neglecting terms proportional to &y and g¢* (—K, p).
The neglect of these terms is equivalent to the neglect of the admixture of d_x)' with by in the higher random-phase approximation
method for obtaining dispersion relations (Ref. 16). This approximation results in linear instead of quadratic dispersion relations.

% H. W. Wyld and D. Pines, Phys. Rev. 127, 1851 (1962).

, (103)
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where the following approximate expressions have been used for Fave and e ®:
Eave (k&' ,p) = — 2du “er - £1rn (por) Lo (kK ,p), (104)

N , 2di e gov v (k1 ,p)
T (ki p) = . (105)
Wy —Wr— K p/ma—l—ze

and

The quantities Lyv* and I\ @ are defined in Egs. (95) and (55).
The quantity Z.s!" gives the correlations which arise from the scattering of a single photon by two particles and
by the exchange of two virtual photons. In this case, the expression depends on the photon distribution 7.

VII. SUMMARY

A method is presented for deriving kinetic equations for a homogeneous, isotropic, multicomponent system of
charged particles coupled to the electromagnetic field. A hierarchy of equations is introduced by use of the equa-
tions of motion for the Wigner distribution operators and quasiphoton creation and annihilation operators. The
basic quantities in this method are certain correlation functions that are related to the physical processes of
particle-particle scattering, particle-photon scattering, and single and double emission-absorption of photons by
the particles. The contributions of these various correlation functions to the kinetic equations are obtained by
use of the Bogoliubov method for the truncation of the hierarchy and the subsequent introduction of irreversibility.

The kinetic equations that are obtained contain the results of Osborn and Klevans® and Dreicer.” In addition,
terms are obtained that reflect the correlations between the particles. These correlation effects include screening,
photon self-energies, and other many-body effects. Corrections to the two-particle correlation function are ob-
tained that correspond to interactions between the particles mediated by the photons.
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APPENDIX
The exact equation of motion for K.am(k,k',p,p’) is
[0/0t—i(k+k')-p/mati(k’-p'/mp)+iwe 1K apr(k,K',p,0")
=i 1221 crid” sx{fas(—k—K', p, K', ') /5 (k,@))—i :ZE 12, 2di"e1 e fas(—k—K, 0, K, 0') f (k=1 @) (b +5_17))

W

+is—2 Z1 Vas[{fap(—k—K' =1, p+320; K41, o'~ 3D bia)— (fas(—k—k'—L, p—37l; K'+1, p'+32D)bia) ]

—f; % Car(lH-k+K) - e[ (fas(—k—K'—1, p+371, K, ') (b1 +b-1,)bin)
o +{fep(—k—k'—1, p— 371, K, p') (b+b_1,)bia)]
5 % ca(l=K')- e[ (fas(— k=K, p, &' —1; p'+34) (b1, +b_1,1)bin)
+(fas(—k—K, p, K'—1; p'—31) (b1y+b_1,1)bin) ]
—i ‘l[, caip* e[ (fas(—k—k'—1, p+37L; K', ') (bpAb_1D)bin) — (fas(—k—k'—1, p— 370, K, p') (b1s+0_1,1)bin) ]

—i % cap’ - e[ (fas(— k=K', p; k' —1, p'+3720) (bAb_1,D)bia)— (ep(— k=K', p; K' =L, o= 37 (b1,+b_1,1)bia) ]
1
+i X T duwcey ern[(fapll =1=k—NK, p+-35(01=1); K, p) (014511 (b +Drrwr )bin)
v 1,17
—(fapl =1=k—K', p—32(1=1); K, p") b1s+b_1s) (v +brw D)) ]
+1 Z Z dll’ﬁslv' ey I:(faﬁ(_k_k’, I); k,+l,_1; P"’i‘%h(l— l’)) (blv_*_b—lv'r) (b—l’ﬂ’_l_bl'v’ T)bk)\>
vo! 1,1
— (fap(—k—=K', p; &W+1'—1, p'=32(1=1)) (b4-b_1,1) (b_vwr+brw Dbicr) ]
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i ;
+h—9 = Zl VayO[{apy(—k=K'~1, p+-3 2 K, p'; 1, ©)bia)— (faps(—k—K =1, p— 371, K, p'; 1, )bua) ]
74

1 4
+;§ 2z ZIZ Vor[{Japr(— k=K, p; &'~ 1, ' +30; 1, )bia)— (fapr(— k=K, p; &~ 1, '~ 371; 1, Q)bia)]. (A1)
7.4

The exact equation of motion for & *(k,k’,p) is
[8/0t+4i(K-p/matwrtwi’) Jean*(k,K,p)
=i BZ, Cearp”* er(fa(K,) Sk, 0 )osox )+corp’ - eion (fa(K,p) fo(— I, D)bia)]
P
— fiz ,Z [dufer ea(fo(K,p) fok—1, p') (brAb_1,D)b_son )+ duwPer- en (fa(K,p) fol—K', p)bir (b1t+0_1,))]
' Ly
—2i 12 f1caiK - e[ (Fou(K—1, p+270) (b14b_1,1)biab_son Y+ (Fa(K—1, p—271) (b1, -+ b1, ) biab_srar) ]
+1i ; CalD* 91V[<fa(K_ ], p+%hl) (blv‘l" b—lvT)bk)\b——k’)\’>_ (fa(K— l, P— %hl) (blv+ b—lﬁ) bind_xrw >]

—1 lzl:, Z, duer evw [(Fl K+ =1, p+220A—1))(01,4b_1,1) (Byrvrbrrv Db )
~{fa(K+V =1, p— 22(A=1)) 1411 (b—vrsr b1 birb_sn) ]

7
=0 ﬁz Zl VasM[(fas(K—1, p+-371; 1, p)biordson ) — {Fas(K—1, p—370; 1, p)biorb_scn)]. (A2)
0’



