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We have calculated the photon spectrum and total rate for radiative muon capture in Ca~ using the giant
dipole resonance (GDR) model used by Foldy and Walecka to significantly improve theoretical calculations
of ordinary muon capture rates. In this model we relate the dipole parts of the nuclear matrix elements
relevant for radiative muon capture to integrals over experimental photo-absorption cross sections in the
region dominated by the giant dipole resonance. The remaining other multipole and velocity parts of the
nuclear matrix elements are evaluated in the closure approximation using harmonic oscillator wave functions.
We present numerical results for the photon spectrum as calculated in the GDR model for various values
of the weak-interaction coupling constants and of the average maximum photon energy k which is used
in the other multipole and velocity parts of the calculation. The most important effect of the GDR calcu-
lation is to reduce the dipole contribution to the capture rate, thus giving an absolute radiative rate some
40% lower and a relative rate (ratio of radiative and ordinary rates) some 20'Po lower than that obtained
in the closure-harmonic-oscillator model. As a consequence, the GDR model requires a larger value of the
induced pseudoscalar coupling constant g~ to reproduce a given spectrum than does the closure-harmonic-
oscillator model. Finally, we compare our results with the data of Conversi et a/. , who found by interpreting
their data in the closure-harmonic-oscillator model that gg= (13.3&2.7}gg, where gg is the axial vector
coupling constant. We find that the GDR calculation requires gp = (16.5&3.1)gz for a fit to the experiment,
where we have assumed k =88 MeV and have taken currently accepted values for the other coupling
constants. Alternatively, by taking the Goldberger-Treiman value g&—7gz and varying the induced tensor
coupling constant gz we obtain a 6t to the data for gz 35gp. As these results are quite sensitive to k, we
give in addition results for other values of k .

I. INTRODUCTION

ECENTLY, Conversi, Diebold, and di Lella' re-
ported results of a measurement of the photon

spectrum for the radiative muon capture process in Ca".
Such a measurement is of particular interest in that the
radiative spectrum is quite sensitive to g~, the induced
pseudoscalar coupling constant of the weak interaction.
Conversi et a/. ' found that g~= (13.3&2./)g~, where g~
is the axial vector coupling constant, based on an in-
terpretation of their data in terms of the theoretical
formulas of Rood and Tolhoek' (RT) for radiative
muon capture and of Luyten, Rood, and Tolhoek'
(LRT) for ordinary muon capture. These formulas are
based on the closure approximation and the assumption
that the initial nucleus can be adequately characterized
by a shell-model harmonic-oscillator wave function
without spin-orbit coupling. In view of the discrepancy
between the measured value of g~ and the theoretical
value g~=7g~ of Goldberger and Treiman, 4 it is of
interest to try to improve the nuclear physics in the
theoretical calculation of radiative capture.

Foldy a,nd Walecka' (FW) have shown that for
ordinary muon capture one can signi6cantly improve
the results of the closure —harmonic-oscillator model by
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relating the dipole parts of the relevant nuclear matrix
elements to integrals over the photo-absorption cross
section, in the giant-dipole-resonance region, of the
initial nucleus. The other multipole parts of the matrix
elements are evaluated in the closure —harmonic-
oscillator model as before. In this article we show that
one can extend the calculation of FW to radiative muon
capture. In fact in this way, which we call the giant
dipole resonance or GDR model, one is able to obtain
from experimental photo-absorption cross-section data
an even larger proportion of the capture rate in the
case of radiative capture than in ordinary capture.

In the erst section we outline the derivation of the
general formulas for radiative muon capture and their
evaluation in the closure —harmonic-oscillator model,
following RT. We then show in detail in the following
section how the ideas of FW can be extended to radia-
tive muon capture and thus we obtain formulas,
analogous to those obtained for ordinary capture by
FW, which relate the dipole parts of the nuclear matrix
elements appropriate for radiative muon capture to
integrals over experimental photo-absorption cross
sections. In the next section we present numerical
results for both the absolute and the relative radiative
capture rates, as calculated in the two models, for
several difI'erent sets of coupling constants. We 6nd
that the most important e6'ect of our calculation is to
decrease the dipole contribution to the capture rate
from its value in the closure —harmonic-oscillator model.
Thus we obtain for the standard set of coupling con-
stants de6ned below an absolute radiative capture rate
some 40% lower than that given by the closure-
harmonic-oscillator model and a relative rate some 20%%uo

lower, which implies that to 6t a given set of experi-
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mental data one would need a larger value of g~ with
the giant-dipole-resonance model than with the closure—
harmonic-oscillator model. The GDR model also adds
a high-energy tail to the photon spectrum, but this
seems to be unimportant numerically.

Finally we examine in the last section the eGect of our
calculation on the interpretation of the experimental
results of Conversi eI, a/. ' As explained in more detail
below, because of dBBculties associated with the ex-
perimental counter resolution it does not seem possible
to sufficiently separate theory and experiment so as to
allow direct comparison of the results of the GDR
calculation and the original data. We therefore com-
pare the GDR results with the theoretical spect~nn
given by the formulas of RT which gave the best 6t
to the data. On this basis we 6nd that we need

gz ——(26.5&3.2)g~ to give agreement of theory with
experiment, where the uncertainty is purely of experi-
mental origin. To obtain this result we assumed stand-
ard values for the other coupling constants and in
particular that the second-class induced tensor coupling
constant g~ is zero. Alternatively, we may assume the
Goldberger-Treiman value of about 7g~ for gp and
vary gz, In this way we obtain the result g&& 35g& for a
Gt to the experimental results. The speci6c numerical
values obtained for g~ and g~ are rather sensitive to k,
the average value of the maximum photon energy
which is used in the other multipole part of the calcula-
tion. For those given above we assumed the value
k =88 MeV in accordance with the result of Conversi
et' al. ' Figure 7 shows results for some other choices.
These numerical results are also somewhat limited by
the nature of the comparison of theory and experiment
which was required and so should be interpreted with
care.

H. GENERAL FORMULAS FOR THE RADIATIVE
MUON CAPTURE RATE

We outline here the derivation of the general formula
for radiative muon capture in a nucleus following for
the most part the work of RT to which the reader is
referred for details and for references to earlier calcula-
tions of radiative muon capture. The basic weak in-
teraction Hamiltonian for ordinary muon capture on a
proton we take as'

&gw gs gz
&w=~-I fv7 + &'0+ 0 +g~V V~+ +VS

V2 k 2m m„ m„

where q =n —p withl and p theneutronandproton
6 The notation is that of J. D. Bjorken and S. D. Drell, Rele-

tieistic Quentin Mechenics {Mcoravr-Hill Book Company, Inc.,
Nepv York, 1964). The coupling constants are de6ned so that
they agree in the nonrelativistic limit vrith those of LRT. e
also use the units h =c=1.

(c)

(e)

FIG. 1. Diagrams contributing to radiative muon capture on a
proton. Diagrams (b) and {c) include radiation from the
anomalous magnetic moment of the proton and neutron.

four momenta, and where es is the nucleon mass, m„
is the muon mass, and u„, I„,u„, N„are the wave func-
tions for the neutron, proton, neutrino, and muon. The
coupling constants gy, g~, g~, g~, gz, gg, are measured
in units of the Fermi constant G, which we take as
2.02)& 10 '/m„', and correspond, respectively, to vector,
axial vector, weak magnetism, induced pseudoscalar,
and second-class induced tensor and scalar couplings.
We will neglect the q' dependence of all of the coupling
constants except g~ as it is unknown for g~ and gg and
as we expect it to be quite small for g&, g&, and g~ in
the region of q' of interest. For gy and g~ we know that
the eGect of including the actual form factors as ob-
tained from the conserved-vector-current theory is only
a few percent. We do not have such precise information
for g~. However, theoretical estimates" and prelimi-
nary results of high-energy neutrino experiments' seem
to indicate that g~ also varies at most a few percent over
the range of q' appropriate for radiative muon capture.
Finally, we obtain the form factor for the induced
pseudoscalar term by assuming dominance of the one-
pion contribution in accordance with the argument of
Goldberger and Treiman. 4 The capture interaction for
a nucleus can now be obtained in the usual approxima-
tion as a sum over captures by individual nucleons.

To obtain the capture interaction for radiative muon
capture one essentially adds a photon line in all possible
ways to the diagram corresponding to Eq. (1). The
dominant contribution comes from Fig. 1(a) correspond-
ing to radiation by the muon. RT also include con-
tributions from Fig. 1(b) in which the proton radiates
(including radiation from its anomalous magnetic
moment), Fig. 2(c) in which the neutron radiates from
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its anomalous magnetic moment, and Fig. 1(d) cor-

responding to radiation from the intermediate pion in

the diagram leading to the induced pseudoscalar term.
Finally there is the contribution of Fig. 1(e) which

comes from the requirement of gauge invariance, i.e.,
from the replacement p -+ p —eA in Eq. (1).In each
case the induced pseudoscalar term is written as

gp(q')= gp"—'=gv(m-'+m')/(m-' q') —(2)

where the Goldberger- Treiman agrurnen t gives g~= igg,
and where q' is the four-momentum transfer at the
weak vertex. Thus, for diagrams 1(a) and 1(e) gv(q')
—=gv' given by Eq. (2) with q =p —v —k, and for
diagrams 1(b), 1(c), and 1(d) gv(q')=gpN given by
Eq. (2) with q =p —v where p, v, and k are the
four-momenta of the muon, neutrino, and photon,
respectively.

RT now make a nonrelativistic reduction of the con-

tributions of each of these diagrams, including terms to
6rst order in the momentum of the initial nucleon, and

thus obtain an effective nonrelativistic Hamiltonian for
radiative muon capture completely analogous to that
used in ordinary muon capture. One now treats the
effective Hamiltonian as a single-particle operator,
sums over individual nucleons, and considers the
matrix element of the result between nuclear states.
The square of this matrix element summed over Anal

and averaged over initial states leads to the following

expression for the number of photons in an energy
interval dk:

N(k)dk=(n mG'/4n')

&(Iqvl'dk p (I,'(k, X)+Iv8p(k, X)). (3)

Here we have taken the muon wave function out of the
nuclear matrix elements and use' "

I
p„l'=(Zm„~)'R/n

with a= 1/137 and for Ca4', Z=20 and R=0.44. The
sum on X=~j is a sum over right and left circular
polarizations of the emitted photon. The nuclear matrix

elements are buried in the functions I„'(k,X), which

contains the major nuclear matrix elements, and
I,P(k, X), which contains terms proportional to the
momentum of the initial nucleon, the so-called velocity
terms. These functions are given by

k(k "—k)'
I,'(k, X) = dy P 8(k '—k)(G, '),&

mp 3ab

Xl&bIZ'r-(i) exp( —is.' «) la&l' (4)

In these expressions y=k 8 and s,s= (1+@),~. The sum
on ab indicates an average over initial nuclear states

I u& and a sum over final nuclear states (bl. The maxi-
mum photon energy k„' in the transition

I
a& ~

I
b)

is given by the equation k„'=m„—(m —mv) —Esz
—(Eq—E,) in which E, and Es are the energies of the
nuclear states and EBE is the initial binding energy of
the muon. This equation is just the equation expressing
conservation of energy for the case in which the neutrino
is emitted with negligible energy. The average value of
k ' is denoted by k„. The step function 8(x), defined

by 8(x&0)=0 and 8(x&0)=1, simply incorporates in a
mathematically convenient way the requirement that
the transition probability be zero for photon energies
greater than the maximum allowed by energy-
momentum conservation. G„' and G,~' are rather
complicated functions of the coupling constants, of
k ~, and of y and are given in the Appendix.

To obtain Eq. (4) we had to assume the following
relations:

and, in the closure approximation with certain other
conditions given below,

k(k„—k)'
I„.P(k, X) = 8(k~—k) dy G„,P

Sly

2 I&bIZ r (i) exp( is,—s r~) ls&I'j (5)

P (k-"—k)'8(k-" k) I&bIZ r (i) exp( —is s.r,)a(i) lu&l'

=32(k " k)'8(k ' k)I&bIZ r (i) exp( —is, b r,)lo&l'
ab i

2 (k "' k)'8(k '' k)&'&bIZ r (i) exp( —is, ~ r;)e(i) la& 8* &bl+ r (i) exp( is, z r,)e—(i) lo&*

=PA.S*(k '' —k)28(k '~—k)I&big r (i) exp( is, q r,)—
I )l o. 2(7)

ab

where A and 8 are arbitrary vectors. These relations
have been assumed in almost all previous calculations of
ordinary and radiative muon capture. They are true
in the closure approximation, which allows us to replace
k 'by k and take it out of the sum on b, as well as in

' J. C. Sens, Phys. Re@. 113, 679 (1958).

the group summation method of LRT if we assume
that the nuclear wave functions can be characterized
by shell-model wave functions without spin-orbit
coupling and that the initial nucleus has doubly
closed shells. ' These same assumptions, with the addi-
tional requirement that the initial nucleus have equal
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numbers of neutrons and protons, allow us to obtain
Eq. (5) for I„,P(k, X).' ' There is also evidence that
these equations are valid under assumptions less
restrictive than those of the closure or group-summa-
tion approximations. In particular, FW have given an
extensive discussion, based on Wigner supermultiplet
theory, of the validity of the relations for ordinary
muon capture which are analogous to Eqs. (6) and (7).
With only minor modidcations their arguments are
applicable to radiative muon capture. Thus one can
show that, for initial nuclei which are isospin singlets
and which have a mass number which is a multiple of
four, Eqs. (6) and (7) hold exactly, provided that spin-
dependent forces can be neglected.

We make the one further assumption, that we can
replace k " in the expression for (G„'),b by an ap-
propriate average value k, since it appears only in
the combination k j2m which is 5% of the leading
terms. With this approximation we can lump all of the
nuc1ear physics into the quantities

k(k„pb —k)'
y"dye 8(k '—k)

3

&& l(bid r-(i) exp( —is.b r') l~&l' (g&

which can now be evaluated using various nuclear
models.

RT evaluate I„ in what we shall call the closure—
harmonic-oscillator model, which uses the closure ap-

M'„'=20 1—1+——+ e '"'
8 80 640

(10)

III. RADIATIVE CAPTURE RATE
IÃ THE GDR MODEL

FW have shown that one can obtain a result for the
ordinary capture rate, which is in much better agree-
ment with experiment than that obtained in the closure—
harmonic-oscillator model, by using the experimental
photo-absorption cross section for Ca' in the region
dominated by the giant dipole resonance to evaluate
the dipole part of the nuclear matrix elements. We
proceed now to extend this model to radiative muon
capture, following essentially the development given
for ordinary capture in Secs. 4 and 5 of FW.

We define the total isospin raising and lowering
operators T~=-, g; r,(i)Air„(i) in terms of the single
particle isospin operator ~(i) and use the commutation
relation r~(i) = %—~2IT~, r,(i)7 to replace the r in
the nuclear matrix element in I„by 7., thus obtaining

proximation and shell-model wave functions with
harmonic-oscillator radial parts for the nuclear wave
functions. In this model I„is given by

k(k„—k)' 1

I„= 8(k —k) y "dy M, ',
mp 3 —1

where, for Ca4, with gn=—(sb) =bsLk —2k(k —k)
X(1—y)7, where the oscillator parameter b=2.03 F,
we have' '

1

I ——
n

2 —1

k(k "—k)'
y"dy 2 8(k-' —k&

I
&b'I 2 r*(i) exp( —is.b r;) I o& I'

ab'

k(k 'b —k)'
8(k-"—k) 2 I

&b'Iz r*(i&ii&s.br'&1'i-(0) Io&I'.
m„3 l, m

We have assumed that isospin is a good quantum num-
ber and that T la&=0. The index b' represents the
T,=O component of the isospin triplet of which b is
the T,= —j. component. Thus, w'e are summing over
T= 1 states of the initial nucleus rather than the Anal

one. The second formula is obtained by expanding the
exponential in multipoles. "We now consider the dipole
part of I, I D'l'. FW have shown that the nuclear
matrix element can be written to within a few percent
as the product of an unretarded part obtained by the
replacement jr(s, br~) ~ s,br;/3 times an elastic form
factor Ii,~. With this approximation we have

1 ' k(k '—k)'
I n iP — yedy g 8(k ab k)

6 1 ~&' m 3

x IF.il'('b)'I &b'IZ "(')r(') Io&I', (»)

where FW give

1
4 2

I~.il'= 1—v'+ —e-'"'.
80

(13)

O,(E)=-,'7r'a Q (Eb. L.)—
ab'

Xl&b'I& "() i(r)ii''&(bEE+E.) (14).

The nuclear matrix element is now exactly that which
appears in the expression for the cross section for
photo-absorption by a nucleus in the unretarded dipole
approximation,

Quantum Mechanics (Princeton University Press, Princeton, /ew
Notation is that of A. R. Edmonds, Angular Momentum t'n Jersey, 1957).
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some of the dependence on the nuclear model by con-
sidering the ratio of radiative to ordinary muon
capture. Thus we give the results for the ordinary
capture rate in the two models considered. From LRT
the ordinary muon capture rate is

4„,= (m '/2s)
I &~l '([G&'+3GoT']M

+(&' /mes, ')$Gvgv+g~(G~ —Gs)]Q), (20)

where Gp, GGT, Gy, G~, G~ are conventional combina-
tions of the coupling constants" which depend on the
average neutrino energy v, , which we took as 85 MeV. ' '
The induced pseudoscalar term g~(q') which appears
in Gor and G~, was evaluated according to Eq (2.)
for q =m„—2m, „v, . The nuclear matrix elements are
given by the dimensionless numbers M' (main terms)
and Q (velocity terms) which for Ca4' in the closure-
harmonic-oscillator model are, from LRT, Q=14.54
and M'= 3.54.

In the model of FW we write M'= ~F,~~'(Mv') pn
+ (Mv') oM. The contribution of other multipoles
evaluated in the closure —harmonic-oscillator model is
(Mv')oM=1. 6'r.'"We evaluate the unretarded dipole
contribution in the same way as Qz and Q& and find
(Mv')UD=2. 52 which, with ~F,~~'=0408, gives M'
=2.70. Our value of (Mv') ~n is a few percent lower
than that obtained by F% because we have used some-
what more recent data for n~(E) which were taken with
high enough resolution to pick out some of the structure
in the resonance peak.

Befoxe proceeding to the results for the specihc
case Ca4', we should point out that the general tech-
niques described above are applicable not only to Ca'
but also to other nuclei which have T ~u)=0, e.g.,C" 0" and He4, and for which Eqs. (6) and P) and
the analogous equations leading to Eq. (5) can be
assumed valid. In fact, we might expect the giant-
dipole-resonance model to be even better for some of
these lighter nuclei than it is for Ca" because the dipole
contribution accounts for a larger proportion of the
capture rate in the lighter nuclei than in Ca", thus
decreasing the importance of the less-well-known con-
tributions of the other multipoles.

IV. RESULTS

Ke have calculated the radiative capture rate in
Ca4', evaluating the dipole part from the giant dipole
resonance according to the formulas above, for various
values of the coupling constants and of k, the average
value of the maximum photon energy. In general our

'~ Reference 3, p. 239. As mentioned in an errata statement,—gp should be replaced by +g& in Gz.
"FW' actually used 1.41 which is the average of this and the

result calculated by summing over various partial transitions. This
gives a somewhat better result for the ordinary capture rate than
does 1.67. However, as we hope that some of the model depend-
ence will cancel in the ratio of radiative to ordinary capture, we
choose the closure result so as to have exactly the same model for
ordinary capture as we use for radiative capture.

20
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Fxo. 3. Radiative capture rate E(k) in Ca40 for k =88 Me&
and go=1.0, g~=3.71, gg= —1.18, gg=7gg, gp=O, gs=O. P)
Total rate in closure-harmonic-oscillator model. QI) Dipole con-
tribution to I. @II) Total rate in giant-dipole-resonance model.
{IV)Dipole contribution to III. (V) Contribution of other multi-
poles to I and III. (VI) Contribution of velocity terms to I and
III.

results are qualitatively the same as those obtained
by RT in the closure-harmonic-oscillator model,
namely we obtain a spectrum of the general shape of
curve (III) of Fig. 3. We find the radiative rate to be
quite sensitive to the induced pseudoscalar coupling
constant and somewhat less so to the second-class
induced tensor coupling. An increase in either g~
or g~ increases the magnitude of the radiative rate.
The result is also sensitive to the value taken for k,
because of the factor (k„—k)', but less so in the giant
dipole resonance calculation than in the closure-
harmonic-oscillator calculation, because in the former
the factor appears only in the velocity and other multi-
pole terms which together amount to only about half
of the total rate. "

To illustrate the details of the differences between
the two calculations we examine the results obtained
with a particular choice of coupling constants, namely

'~ Actually k has a somewhat different meaning in the GDR
calculation than in the closure-harmonic-oscillator calculation.
In the latter k corresponds to the maximum photon energy
averaged over all transitions while in the former, if we neglect
velocity terms, the average is only over other multipole transitions.
Thus to obtain the quantity in the GDR model directly com-
parable to k of the closure calculation one must take an ap-
propriately weighted average of k and the k 'e which corresponds
to the average maximum photon energy for the dipole transitions.
For the most part we will neglect this distinction and simply give
results in the GDR model for several values of k .
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the "standard" set go=1.0 and g~=3.71 from the
conserved-vector-current theory, g~ = —1.18 from
neutron beta decay, " gp=7gg from the Goldberger-
Treiman argument4 and gz

——g~ ——0 corresponding to
the assumption that the weak Hamiltonian has deinite
transformation properties under 6 parity. For purpose
of example, we also assume k =88 MeV for Ca' in
accordance with the result obtained by Conversi et el., '
based on the closure-harmonic-oscillator model.

Figure 3 shows the absolute radiative muon capture
rate calculated with the above choices of coupling
constants. A comparison of curve (I) calculated in
the closure-harmonic-oscillator model and curve (III)
calculated in the giant-dipole-resonance model shows
two important differences. In the first place 1V(k)ona/
1V(k)ci„~„=0.6 to within a few percent over the whole
spectrum up to k=80 MeV. Thus, we have electively
reduced the result obtained in the closure calculation
by about 40%. This means that to fit a given set of
experimental data one novr needs a larger value of gp
or a much larger value of gz than was necessary in the
closure —harmonic-oscillator model. Secondly, vre ob-
serve that we obtain a high-energy tail in the GDR
model which was not present in the closure calculation.
We can understand this in the following vray: In the
closure approximation vre assume an average value for
k; then the factor (k —k)'8(k —k) cuts off the spec-
trum at k=k . Consequently, the very high-energy
photons from those transitions which have a maxi-
mum photon energy somevrhat larger than the average
value or equivalently those photons which leave the
residual nucleus with somevrhat lower than average
excitation energy are artificially eliminated from the
result by the closure approximation. On the other
hand, in the GDR model, for the dipole part of the
matrix element, it is this part of the spectrum which
we know most accurately because it comes from the
lower energy parts of 0 «(E) which we know quite well. In
fact as mentioned earlier, knowledge of 0«(E) up to
30 MeV allows us to obtain the dipole part of the matrix
element for k&80 MeV exactly, whether or not there
are higher energy contributions to 0 «(E).Unfortunately,
however, we still must rely on the closure approxima-
tion to calculate the other multipole and velocity
terms. Thus, we have only partially remedied the
deficiencies of the straight closure-harmonic-oscillator
calculation at the high-energy end of the spectrum.
However, it appears that, at least as long as the average
and resonance values of k are not too far separated,
the high-energy tail is so small as to be of interest more
as a matter of principle than of practice.

The results in Fig. 3 also show the relative importance
of the various contributions to the rate. The dipole
part accounts for about 50% of the total rate in the
GDR calculation over the whole range of k up to 80
MeV; the other multipole and velocity terms account

'8 C. P. Bhalla, Phys. Letters 19, 691 (1966).

for about 35—45% and 5—15%, respectively. It is in-
teresting to note that this indicates that the giant-
dipole-resonance calculation is better for radiative
capture than for ordinary capture since for ordinary
capture in Ca" the dipole term amounts to only 34%
(with the same coupling constants as above) as opposed
to 50%. This probably just reflects the fact that even
in the closure-harmonic-oscillator calculation the dipole
term makes a larger contribution to radiative capture
than to ordinary capture.

Finally, for the total radiative capture rate, ob-
tained by integrating the spectrum, we 6nd, for this
standard set of coupling constants, the values 519
sec—' in the GDR calculation and 841 sec ' in the
closure —harmonic-oscillator calculation. The ordinary
capture rates come out A, 0 =30.4)&10' sec ' and
A '""~=38.9&10' sec ' compared with the experi-
mental value" A„, "'=(25.5&0.5) && 10' sec '. One can
get even better agreement of A.„, R with experiment
by taking, as did FW, the other multipole contribution
to be the average of the results of closure and summation
over partial transition calculations. This procedure
gives A.„,=27.8)(10' sec—', which is essentially the
result of FW.

We now consider the relative spectrum for radiative
muon capture, i.e., the quantity R(k) —=1V(k)/A„, .
We might expect, since the nuclear matrix elements
appearing in 1V(k) and A„, are quite similar, that much
of the dependence on the nuclear model would cancel
in the ratio. One can see from the results for the relative
spectra, which are plotted in Fig. 4, that to a certain
extent this is true; the ratio R(k)ona/R(k)c~„„„——0.8
to within a few percent over the entire range of k up to
80 MeV. Thus, the effect of the GDR calculation is to
reduce the relative spectrum obtained in the closure
approximation by about 20%, compared to a reduction
of about 40% in the absolute spectrum.

We can perhaps better understand the important
features of the GDR calculation by examining the
following simple calculation. We begin by observing
from Fig. 3 that in the closure —harmonic-oscillator
model the ratios of the dipole, other multipole, and
velocity contributions to the total rate are approxi-
mately constant. The averages of these ratios at 10-
MeV intervals over the range k = 10 to k =80 MeV are,
respectively, 0.679, 0.250, and 0.071 and the variations
from these averages are typically less than about 0.03.
This indicates that the shape of the spectrum obtained
from the various contributions is about the same, and
so we write 1V(k)c&osur8=1V(k)cio n''+1V(k)c&~8~«~oM

+N(k)ci~u av '= (0 679+0 250+0.071)1V(k)c&08u«6 We
further observe that the ratio of the dipole contribu-
tion in the GDR calculation to the dipole contribution
in the closure-harmonic-oscillator model is also ap-
proximately constant, the average value being 0.447
with variations from the average being less than 0.02
except near k=80 MeV. Thus, if we simply scale the
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essentially that of RT, as they compared the relative
capture rates calculated in several difterent models,
all of which used the closure approximation and which

differed mainly in the second and higher order terms
in (sb)' and (vb)' in the expressions for the nuclear
matrix elements, and found for Ca" diGerences of less
than 10% in the results. In our calculation, however,
there is an additional important feature, i.e., we are
able to scale the dipole part of the nuclear matrix
elements for radiative capture and, separately, for
ordinary capture. These scale factors are not the same
because the factors multiplying o„(E) in Eqs. (17)
and (18) are different from those in the analogous equa-
tion for ordinary capture. Also the dipole part makes a
larger contribution to radiative capture than to ordinary
capture. "As a result of these two sects, the radiative
capture rate is reduced more than the ordinary rate,
and so we obtain a relative rate in the GDR model
which is some 20% lower than that obtained in the
closure-harmonic-oscillator model.

Ke now illustrate in Figs. 5 and 6 some typical results
obtained in the giant-dipole-resonance model with

values of the coupling constants and of k other than
the standard ones of the previous example. Figure 5
shows the eAect of varying g~ and gz .Ke see that the
relative radiative capture rate is quite sensitive to gg
and somewhat less so to gp" and increases as either is
increased. Figure 6 shows results obtained with the
standard coupling constants for several values of k .
All of these results are in qualitative agreement with
those obtained in the closure —harmonic-oscillator model.
Again, as in the example, the most important eEect
of the GDR calculation is to decrease the closure result
for the relative capture rate by a factor which ap-
parently remans fairly constant at about 20-25% for
moderate variations of the coupling constants from
the standard values. Finally, we observe that, if

gz is actually fairly small, as evidence from ordinary
muon capture in H, He', and C" and perhaps from
the difference in ft values of 8" and N" seems to
indicate, " '4 then it will be extremely dificult to ob-

' As an estimate of the maximum angular momentum which
contributes, we have vR for ordinary muon capture and sR for
radiative muon capture, where R is a measure of the size of the
nucleus in which the capture takes place. For ordinary capture,
the value of v for each particular transition is 6xed by energy
conservation. As noted before, v, —85 MeV. However, in radia-
tive capture, since we are dealing with a three-body 6nal state, s
is not 6xed but is a function of k and y which has a maximum value
k =v, at the endpoints of the spectrum and which may go to
zero near the center. Therefore, over most of the spectrum sR &uR
and so we expect that the higher multipole terms should be less
important and the dipole terms more important for radiative
capture than for ordinary capture. This is the result we obtain
from a complete calculation.

~ This conclusion, of course, depends to a large extent on our
assumption that the q' dependence of gz can be neglected while it
is quite important for g~, giving an enhancement of a factor of 3
near the high-energy end of the spectrum.

"H. P. C. Rood, CERN, 1965 (unpublished).
~2 R. J. Blin-Stoyle and M. Rosina, Nucl. Phys. 70, 321 (1965).~ Hisao Ohtsubo and Akihiko Fujii, Nuovo Cimento 42, 109

(1966).
'4 A. Bietti, Nuovo Cimento 37, 337 (1965).
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Frc. 6. Relative radiative muon capture rate E(k)/A„, in Ca"
calculated in the giant-dipole-resonance model for various values
of k and with gy ——1.0, g~ ——3.71, gg = —1.18, gp =7gg, gz

——0, and
gs=0. (I) k =80 MeV. (II) k =88 MeV. (III) k =96 MeV.

tain information about it from radiative muon capture
without a very precise knowledge of both g~ and k .

"R. Diebold (private communication).

V. COMPARISON WITH EXPERIMENT

Next we examine the experimental results of Conversi
et a/. ' for radiative muon capture in Ca" in light of our
theoretical calculations based on the giant dipole
resonance model. ideally, one would hope to compare
directly the measured points on the photon spectrum
with the theoretical spectrum. Unfortunately, such a
clear separation of the experiment and theory does not
seem to be possible, as the quantity one measures is not
the actual photon spectrum, but a spectrum which has
been somewhat distorted by sects of the Rnite resolu-
tion of the counters used. Consequently, one must
numerically fold the experimental counter resolution,
with its associated uncertainties, into the theoretical
spectrum and then compare the results with the meas-
ured number of photons. For the experiment of Ref. 1,
the counter resolution function was relatively broad
and quite asymmetric and had the eGect of decreasing
the high-energy part of the spectrum by amounts
ranging from 10 to 35%.~' Rather than carry out such
an elaborate program, we use the following rather ap-
proximate method which we hope will be sufhcient to
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FIG. 7. Region in k —gz plane consistent with experiment of
Conversi et al., based on approximate comparison of results of
giant-dipole-resonance model and experiment. The other coupling
constants were taken as go=1.0, g~=3.71, gg= —1.18, go=0,
g8=0.
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FrG. 8. Region in g~ —gz plane consistent with experiment of
Conversi et al. , based on approximate comparison of the results
of giant-dipole-resonance model and experiment. The other cou-
pling constants were taken as gy =1.0, g~ =3.71, gg = —1.18, and
g8=0; k was assumed to be 88 MeV.

give at least a general understanding of the effect of
the present theoretical calculation on the interpretation
of the experimental results. Using the formulas of RT
with go=13.3g~ and k =88 MeV, we reconstruct the
relative spectrum which, according to Ref. 1, gave the
best Gt to the experimental points. We then compare
the results in the GDR calculation to this spectrum
over the range of photon energies 60-80 MeV, which

includes most of the experimental range, but avoids
points near the very high-energy end of the spectrum,
where the high-energy tail obtained in the GDR cal-
culation might aGect the results. Since the shape of the
spectrum calculated in the two models is about the
same, and since the main effect of varying g~ is to
increase or decrease the magnitude of the spectrum, we
would expect this method of comparison to give at least
an approximately correct value of g~. We, in fact,
found that, for a 6xed value of k, one could 6nd a
well-de6ned value of g~ such that the GDR spectrum
and the "experimental spectrum" agreed in most
cases to better than 3% over the range 60-80 MeV.
Since the 6ts were, for the most part, equally good over
the whole range of k from 80 to about 95 MeV, we
were unable to 6nd a best value for k . This may be in

part due to the approximate nature of our comparison
procedure and in part due to the fact that the results
are not as sensitive to k in the GDR calculation as
they are in the closure-harmonic oscillator calculation.

In Fig. 1' we show the region in the k —g~ plane
consistent with experiment, as interpreted in the
giant-dipole-resonance model, where we have assumed
the standard values for g~, g~, and g~ and that g~=ga

=0. The error limits are taken from Ref. 1. For the
choice k =88 MeV, we

find

g——(16.5&3.1)g~. Alterna-

tively, we may allow gp to be nonzero. Figure 8 shows

the region in the g~—gp plane consistent with experi-
ment under this assumption, where again we have
chosen k =88 MeV and standard values for the
other coupling constants. We see that, if we take

grig~, then gz must be &35gy, which is in rather
serious disagreement with the evidence mentioned
above, all of which indicates that gp is small. Finally, it
is also possible to obtain a fair Gt to experiment by
taking g~=7gg, gz =0, and g8 ———1.5gy, with k„=88
MeV and standard values for gy, g~, and g~. We should
re-emphasize that all of the conclusions in this para-
graph are based on our approximate method of com-

paring theory and experiment and therefore should be
interpreted with some caution.
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APPENDIX

Assuming, as mentioned in the text, that the k '
dependence of (G„'),q can be factored out, we obtain
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I„'(k,X) = (gs'+2gss+g142) Ip+ X(gs'+g14' —2gsgs) Is
+K(I2—Io) ((1—x)[gs(g»+gp)+gs(gz —2gp —g11)+g14(go+les)]
+(r+»(1 x))[(1 x)(gsg12 g3g12 gsg13) l1xgsgls])

+K(I1—Is) (1—x)[bx(1—x)(gsgss —gsg12 —gsg13) —Xbx'gsgss]
—2K[xIo+(1—x)I1][l1gzgs+gsgs+gsg» —(y+ bx(1 —x))gsgss)

+2"L(1 x)Io+»1)[gsgz+gsg 2 gsg» (&+»(1 *))gsg»)
+2K(I1—Is)bx(1—x)(1—2X)gsg12/2K(I1+ us) (x—1)gsg14

+K [Is Il 2X(1 x)(I3—Is I1+—Is)][(pg13 g12gls)(2'r»(1 —*))—bx(1—x)gssgss]

+K [Ip Is 2—x(1——x)(Ip—I1—Is+Is)][(pgss —gssgzs)(y +2ybx(1 —x))
—(y+ bx(1—x))gssgss] 1Ks[I2—2x(1—x) (Is—Is))[2y»(2 —x)g122]

+Ks[Ip—2x(1—x)(Ip—I1))[gss'+gss'(p'+2y»(1 —x))]+K'(1—x) '(Is+ l1I1)gs'

+K'[I1—2x(1—x)(I1—Is))[g»2—g122(ys+4ybx(1 —x))]+K'(1—x) '(Is—Is)gsgs
+K'-'gz'[(1 —2x+3x')Ip+4x(1 —x)I 1+ (1—x)'Is]
+K gzgp[x(x —1)Is+2(—2xs+2x —1)I1—3x(1—x)I2]

+K','g 22[(3 -8X+7x—s)Ip+4x(1 x)I1+—(3X 1)(1 —x)I2],—(Ai)
and in the closure approximation

I«& (k,X)= 2A+gzs—gvK(2p Ip I1—) Q—gsg&K(—1—x)(sp —Io+I2)
—2&gsgzK[2p —-,*(1—x)p—Ip —I1+-,'(1—x)(Ip—Is))

+gsgp pzKl1((8/3)p —Ip —Is)+2l1+Ks(1—x)gsgv(sp —I1—Is), (A2)

The I„were evaluated from Eq. (8) for the appro-
priate nuclear model as detailed in the text. The maxi-
mum photon energy k was taken as an average value
for the closure —harmonic-oscillator model and for the
other multipole and velocity contributions to the giant-
dipole-resonance model and as the resonance value for
the dipole contribution to the giant-dipole-resonance
calculation.

Equations (A1) and (A2) follow directly from the
analogous Eqs. (A2) and (A3) of RT. We have rede-
Gned some of the combinations of coupling constants
so that they are all independent of y and have absorbed
the factor k(k —k)'e(k —k)/m„' and the integral on

y into the formulas, which amounts to replacing y"
in the formulas of RT by I„.In addition, we kept a
few small terms in g7 and g9, which w'ere apparently
dropped by RT and an additional term in the expansion
of g~ . In numerical work, we kept all the I„as op-
posed to the approximation of RT: II=I4=0, I2——3IO.
These additional terms seem to have little or no eGect
on the Anal numerical results.

our numerical calculations also diGer somewhat from
those of Ref. 1."In particular, we have included the
velocity terms, which were not included in the calcula-
tion of Ref. 1, and we used v =85 MeV as opposed to
v, = (89/91)k . We also evaluated gP in the ordinary
capture rate at a slightly diGerent value of q' than used
in Ref. 1. Together, these diGerences make our results
for the relative capture rate in the closure —harmonic-
oscillator model typically 2-5/o larger than those of
Ref. 1.

where

m '—m„2+2m+

m '+vs„~

2k ys

fg Pr +OSIS

gs= g~(&+—
3 ) gP"V +—(gv+gs)&P Is

+gT(4«+~3 ) ~

gs —— gz(&+Xq)—+(gv+gsr) p1+gTQV (Kx V), —
gs=gvg+gsr&p p,
go= gvkt+(gp gT)~ O'Is gspq

g1= (gv+gsr)N+ p'("fp gs)—
gp= (gv+gsr)4,
g»=(g~+gT)W~

gx2=gz~ &

g13 gP P(1 x) g

g14 gvP+(1+Kx)+p]+gs~+gA~ pis

+2gTXyis(32 K(1 x))—, —
K=k /2m, pz=m„/2m, @=4.71, lip=-2'(1&X),

x=k/k„, p =Zk(k k)2/m„p,—
m% +mo 1

gz =gp =—gp
m 2 „+m2s—km(1 x) a——Px

m '+m„'
gz =ga

m '—m„2+2m„k —2k 'x(1—x)(1—y)
—gp[y+ bx(1—x)(1—y)],

2m+ 1P=, , v=-,
Sgsr +Olfe A


