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Eigenchannel Theory of Nuclear Reactions*
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A method is proposed by which the eigenstates and the eigenvalues of the S matrix, i.e, , the eigenchannels,
can be directly computed from the nuclear problem, for example, from the shell model. The calculation of all
cross sections, viz. , partial and total cross sections, is then exceedingly simple. The characteristics of the
eigenchannels are described and the relation with other reaction theories is briefly discussed.

I. INTRODUCTION
'

N a recent paper' we have developed a formalism for
~ - the treatment of narrow resonances by shell-model
methods. In this paper we shall generalize the treatment
to the case of arbitrary continuum states. A central role
here again is played by the natural boundary conditions,
However, we abandon the previously used E-matrix
theory and use, instead, a representation in which the
S matrix is diagonal. In this representation all formal
relations are very simple and transparent. %'e shall call
the eigenstates of the S matrix the "eigenchannels" and
the phase shifts associated with the eigenvalues of the
S matrix the "eigenphases. "As will be seen below the
eigenchannels and the eigenphases can be obtained
directly from the shell model. To this end, the con6gu-
ration space is separated into an inside and an outside
region. The nuclear problem is solved in the inside
region by using properly de6ned natural boundary con-
ditions for the wave function at the matching radius,
r =a, which separates the inside and the outside regions;
the obtained solutions are already without further
transformations the eigenchannel solutions.

The previously treated case of a narrow resonance'
corresponds to the situation in which the reaction is
dominated by a single compound state, and which can
be described by a single-level Breit-signer formula. In
the eigenchannel language this corresponds to the
domination of the reaction by a single eigenchannel,
which has at the resonance energy an eigenphase of s/2.
Then all the other channels can be relegated to the
"background. "

In general atl eigenchannels contribute comparably
to the reaction amplitude. It is thus necessary to 6nd
all eigenchannels and all eigenphases. Once this has
been done one actually has obtained the complete solu-
tion of the problem. This can be seen formally very
simply. Writing the eigenvalue equation as

sv( )=~ v& &,

then the eigenvalues can be written in the form

e =8'~a
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where, because of the unitarity of the S matrix, the
eigenphases 8 are real. Combining the column vectors
V( & into a "solution matrix" S" and constructing with
the eigenvalues e"' the eigenvalue matrix c which is a
diagonal matrix whose diagonal elements are the eigen-
values e, we have the well-known representation' of the
S matrix

(3)

which, then, is the complete formal solution of the
problem.

Evidently, the formal aspects of the reaction theory
are so trivial in the present treatment that it even may
not deserve the name "reaction theory. "However, for
exactly the same reason we believe that it is eminently
suited as a method for the computation of reaction cross
sections. Actual numerical calculations using this
method are underway at this time. They will be re-
ported on in a separate publication.

There exist several procedures in the literature for
treating the problem of this paper. ' ' In fact, the
simplest cases, e.g., 016 in the one-particle —one-hole
approximation, can be treated by every method. Which
of the methods is easier to apply, and which of the
methods is easier to generalize to more complicated
systems and to higher approximations, will have to be
proven out by practical experience.

In the present paper we still limit ourselves to the
energy region below the two-particle threshold, i.e., all
considered channels are assumed to have only a single
incoming or outgoing particle. Also, the center-of-mass
problem has been left unresolved. However, this is a
separate problem, and it would disappear simply by
using such wave functions in which the spurious com-
ponents have been eliminated by means of some arbi-
trary, although as yet unknown, prescription. Without
this relnement, the results will contain uncertainties of
the order 1/A.

In Sec. II we give the precise definition of the eigen-
channels and discuss their physical meaning; we also

' Ph. Frank and Rv. Mises, Die Djferential- und Integralglei-
chungen der Mechanik und Physik (Dover Publications, New York,
1961), Vol. 1, p. 113.' U. Fano, Phys. Rev. 124, 1866 (1961).

4 H. Feshbach, Ann. Phys. (N. Y.) S, 357 {1958).' C. Bloch and V. Gillet, Phys. Letters 16, 62 (1965).
6A. D. Hill and B. Buck, Proceedings of the International

Conference on Nuclear Structure, Antwerp, 1965 {to be pub-
lished); B.Buck (private communication).' F. S. Levin, Phys. Rev. 14Q, B1099 (1965).
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describe some special cases. Some formal relations are
discussed in Sec. III. The procedure for computing the
S matrix is given in Sec. IV. Many details of this pro-
cedure can be taken over completely from Ref. 1. In
Sec. V we show in which way resonating and non-
resonating processes appear in the eigenchannel method
and discuss the relations of this method with the R-
matrix formalism.

II. THE EIGENCHANNELS

In this section we give the precise definitions of the
eigenchannels and discuss their physical meaning. The
S matrix is defined, as usually, by the asymptotic form
of the wave function, i.e., by the wave function at such
distances where the short-range nuclear forces have a
negligible magnitude. There then holds

O'= Q, [A,I.+B.O,]g..

Here I, and 0, are the radial parts of the incoming and
outgoing particle in the channel c, f, is the wave func-
tion of the (A —1) system together with the angular
parts of the projectile particle, and the summation is
over all open channels. To distinguish these channels c
from the eigenchannels of the S matrix, we shall call
them the "experimental channels. "The S matrix then
is defined by

B,= —Q;S„A, .

Considering (1) and (2), and assuming neutral particles,
it then holds that for an eigenchannel

g(~) —p [V(~)I emip'NV, (~)0 ]p,
=Q, V, ( &e" [e *'I, e"%,]$-, —

V (a)ei)&a[ i(kcta+(&a —l~v/2)~C C

es(kcrc+&e—tc~l2) l.T.
QQC

2ie" —P. V, ( & sin(k, r,+i& —l,&r/2)&t, . (6)

The eigenchannel thus corresponds to standing waves
in all open experimental channels with a common phase
shift, the eigenphase 8 . This is true also for channels in
which the outgoing particle is charged.

We now turn to the discussion of (3), i.e., to the
representation of the S matrix in terms of the eigen-
channels and eigenphases. The solution matrix 5' which
has the elements

can always be inverted since the solutions V( ' form a
complete set. In particular, there are as many eigen-
channels as there are open experimental channels at the
considered energy, say X. The vectors V( ' are or-
thogonal as long as the eigenphases are nondegenerate.
Otherwise they can be orthogonalized. Furthermore,
they can be normalized. From now on we shall assume
that the ortho-normalization has indeed been carried
out. Then

V (a)emiiNV, (a)e (10)

Equation (10) shows that in the end no matrix in-

versions are necessary if the complete set of eigen-
channels has been obtained. It remains to be shown that
in fact it is possible to obtain such solutions. Before
turning to that qestion we discuss some special cases of
the S matrix.

In potential scattering the diGerent experimental
channels do not mix and the S matrix is thus diagonal
in the experimental channel representation. Here the
experimental channels are already the eigenchannels.
The diBerent eigenphases have no relation to each other.

Somewhat more tricky is the case of degeneracy of
eigenphases. I,et us consider the case where a certain
number, say n, of the eigenphases are equal. Then,
writing I&II for the inverse of the W matrix (8), i.e.,
putting M=@', and writing 1„for the n-dimensional
unit matrix, we have

which is (3) expanded such that the degenerate states
are explicitly separated from the nondegenerate states.
Furthermore, we have written 6=e"~ for the degenerate
eigenvalues and Fp for the diagonal eigenvalue matrix
of the other eigenchannels. Note that the first subscript
of 8' and the second subscript of M designate the
experimental channels; the eigenchannels are associated
with the second subscript in 5' and the first in M.

Equation (11) can be rewritten as

S=1~6

(
W p[1'p —l„h)Mp W p[I'p 16]3ffpp—

(12)
w„p(r p

—l„~gap. w pp[r p l„a]M—„
Here m=E —n is the number of nondegenerate eigen-
channels.

The S matrix thus splits into two parts, a diagonal
part and a nondiagonal part. The latter depends only
on the nondegenerate eigenvectors. This can be seen
more clearly by writing out explicitly the matrices
making up (12), for example,

(w.p[r p
—l„~jm„)„,

=gp V, (P&[e'"P e"'5V (P&—*. (13)

We thus see that a degeneracy leads in a certain sense
to a "decoupling" of the channels, which is a mani-
festation of the freedom associated with the arbitrari-
ness of the choice of the degenerate eigenvectors. Any
linear combination of degenerate eigenvectors is itself

and together with the definition of the eigenvalue matrix
elements

~sk= ~Ass &

Eq. (3) becomes
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an eigenvector. Complete degeneracy leads to a com-

plete decoupling of the channels. However, as long as
even one eigenvalue is nondegenerate, a well-defined,
in general finite, inelastic-scattering cross section does
exist, in general connecting all channels. Since the
eigenphases are functions of the energy, two eigenphases
may coincide at some energy. If at that energy only
very few channels are open then, under favorable con-

ditions, the resulting "decoupling" could be observed,
e.g., in the branching ratios.

DI. DECOMPOSITION OF THE S MATRIX

In this section we discuss a formal decomposition of
the 5 matrix in terms of "S matrices" defined within
one eigenchannel.

In the asymptotic region, the most general wave
function is given in terms of the eigenchannel wave
functions (6) as

(7
(a)g (a)

=P. q(-& g, LV.(-)a,+V,(-&e.j. (14)

We have here introduced the abbreviations

(a) ~
—2'~'V (a)+

)

8,=I.$„8.=0,$,. (15)

A particular wave function describes the situation in
which an incoming wave exists in only one channel, say
c, and outgoing waves exist in all channels. This is the
situation in which the S matrix can be defined in the
most immediate manner. We denote the eigenchannel
amplitudes describing this situation by q, ( ). Thus we
have

If
(a)p (a) (16)

Recalling the definition of the solution matrix W in (7)
we find immediately

g
(~)= —M

Inserting (17) in (14) we obtain indeed

(17)

i.e., the defining equation of the S matrix.
We now define the "eigenchannel S matrix" by the

equation
'V, , (a) — P, I/, (a)I&' (a)

Inserting (19) into (14) we find

which shows that a possible solution of (10) is

T7, (a)-"'. c

(19)

(2o)

(21)

which is immediately obvious. However, (19) has an
infinite set of solutions which is evident by counting
the number of unknowns and the number of equations.

C. Mahaux and H. A. Keidenmiiller, Ann. Phys. (N. Y.) 32,
259 (1965).

Another solution is obtained when making the ansatz

p (~) $ g {/)y ( )
)

which when inserted in (19) shows that

r (a) —y (a)f(a)
C C

with the normalization constant

]/f( )aR —Q (V (a))2

(22)

(23)

(24)

which is not necessarily real. Inserting (22) into (20)
we again obtain (10).We see that even though (19) has
no unique solution, such a definition still may be of use
since one always can construct the S matrix using the
U matrices if one has a calculational procedure which

gives a particular set of solutions.

E&, (i& )=E. (27)

The roots of this equation can, for example, be found
by a graphical method or an iteration procedure.
Equation (27) has as many, in general, nondegenerate
solutions as there are open channels, vis. E. The dis-
cussion of the problems which appear in the com-
putation of the eigenchannels, in particular the choice
of a complete orthonormal set of wave functions obeying
the different boundary conditions b„Eq. (25), in the
different channels at a given phase 8, can be taken over
completely from Ref. 1.

In practice the solution of (27) is rather simple since
it is only necessary to check whether one eigenvalue of
the Hamiltonian matrix coincides with the energy E.
This can be done simply by computing the determinant

IV. COMPUTATION OF THE EIGEÃCHANÃELS
AND EIGENPHASES

The amplitudes V, ( ) and the eigenphases 8 have to
be supplied for each energy of the compound system by
the solution of the nuclear Schrodinger equation. This
can be done by a method similar to one discussed in
detail in an earlier publication. In short, the procedure
is as follows. Fixing an energy E, the logarithmic
derivatives of the reduced radial wave functions are
computed for each open channel with an assumed
common phase shift tt', i.e.,

f&,= $rf, '(kr)/f, (kr) j„,. (25)

The matching radius a is chosen as small as possible,
consistent with the requirements of channel orthogo-
nality, as discussed earlier. For neutral particles, f, is
given by

f, (x) = (x/k)t cos(&j&(x)—sini&N&(x)], (26)

where x=kr. For charged particles the spherical Bessel
functions are replaced by Coulomb functions. With
these boundary conditions the eigenstates of the nuclear
Schrodinger equation are found for the inside region,
i.e., for r&a. We call the eigenvalues E&, ((&). The eigen-
phases 8 then are found from the condition
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of the matrix H—E. If this determinant vanishes B has
an eigenvalue E. Only then does one compute the
eigenvector to this eigenvalue, which then requires only
a matrix inversion and not a diagonalization. The main
computational eGort thus lies in the determination of
the wave functions and the matrix elements.

This essentially completes the computation of the
eigenchannels. Namely, the nuclear wave function
corresponding to the eigenvalue n can now be written
in the asymptotic region, i.e., r=a, in the form (6).
This involves a projection with P, , at which point the
channel orthogonality requirement enters, vis. the
relation

(28)

must hold with sufij.cient accuracy. This way the
channel wave function for the channel c is split oG and
the amplitude V.( ) can be read from Eq. (6) by in-
spection. As a final step, the amplitudes V, & ) must be
normalized.

The generalized natural boundary conditions dis-
cussed in the Introduction now are seen to be given by
(25) when computed with an eigenphase i) . Thus, at
each energy there exist X, in general, difI'erent natural
boundary conditions.

V. RESONATING AND NONRESONATING
PROCESSES

An isolated sharp resonance can be described by a
one-level Breit-Wigner formula. As a matter of fact, the
possibility of a description by such a Breit-Wigner
formula can even be used as the defining condition for
a sharp resonance. In terms of the eigenchannel de-
scription of the 5 matrix one sees that the simplest,
nondegenerate situation which leads to such a resonance
is that in which the eigenphase in one eigenchannel
changes rapidly by about ~/2 over an energy interval
DE=I' while all other parameters remain essentially
constant over this energy region. The contributions of
all other eigenchannels then can be collected into an
essentially constant "background" term. Then an S-
matrix element has the form

(a)e2())air, (a)4+fl (29)

and, writing for the diverse amplitudes their absolute
values and phases, the cross section is proportional to

+ I
fl- I'+2

I
&- I I

i'."
I I
l'""

I

Xcos(ys —y,+v), —2b ), (30)

which indeed shows a sharp peak for the discussed
conditions. Since y,—y, .=0 which can be seen from
(6), the pealr will occur at b =w/2 if the phase ys„,=s.
For such a situation evidently it should not be necessary

9 A. M. Lane and R. G. Thomas, Re@. Mod. Phys. 30, 257
(1958).

to compute all eigenchannels. We shall return to this
point later.

In the general case no single resonance dominates the
cross section. The same holds for the eigenchannels.
Then all eigenchannels have to be computed and no
simplifications are possible in the description. Naturally,
it still is possible to perform a meromorphic expansion
for the di6erent cross sections o„as a function of the
energy. However, the usefulness of such an expansion
is questionable for higher level densities. Firstly,
because the number of needed resonance parameters is
then very large, viz. , positions and residua of all poles
for each partial cross section. Secondly, a nonresonating
background term, an entire function of the energy, also
has to be accounted for in addition. In any case, the
numerical methods proposed in this paper in practice
would not allow the performing of any "exact" mathe-
matical operations which would be needed to dis-
tinguish a maximum in the entire background function
from a maximum resulting from a pole since in our case
only the cross sections are known as a function of
energy, and only as a table of numbers of limited
accuracy at that. We do not want to claim, however,
that there might not exist cases where such an expansion
could be of interest. For example, some poles may
appear at the same position in all partial cross sections,
while others may be associated only with some channels.
In any case, our aim is limited to the actual computation
of cross sections, at least for the time being.

Finally, one or two words are in order concerning the
connection of the eigenchannel treatment with the
earlier formalisms. The nuclear Schrodinger equation
can be solved with arbitrary boundary conditions. We
are here limiting ourselves to standing-wave solutions.
Each solution of the inside problem in general will be a
linear combination of all eigenchannel wave functions.
The expansion in terms of the eigenchannel wave
functions will thus in general involve all eigenchannels
and will converge uniformly except at the matching
boundary. However, for the special case of natural
boundary conditions the expansion will contain only
those eigenchannel wave functions which are associated
with the employed natural boundary conditions, i.e.,
here one solution coincides with, in general, one eigen-
channel wave function. In other words, here the ob-
tained solution does not span the complete function
space, and therefore not all the information concerning
the nuclear system is contained in the wave function.
It thus seems that in the Wigner-Eisenbud procedure
either one has an incomplete solution or one is saddled
with the problem of non-uniform convergence at the
boundary.

However, if the obtained solution dominates the
reaction, as it is the case in a narrow isolated resonance,
then the information contained in the dominant eigen-
channel wave function should sufBce for the description
of this resonance, i.e., it should yield position, width,
and branching ratios. That this is actually the case,
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one sees by going to a neighboring energy where the
boundary conditions are not the natural boundary
conditions any more. There the Wigner-Eisenbud pro-
cedure works since the wave function spans the complete
function space. The obtained one-level Breit-Wigner
cross section can then be calculated at this energy, and
one sees that one can go with the energy through the
point of the natural boundary conditions without
encountering any problems. This procedure works only
as long as the cross section is describable by a one-level
formula. In general at the point of the natural boundary
conditions indeterminacies will show up. This case has
been discussed in Sec. III at length.

Concluding, we believe that the proposed method is
particularly suited to the actual computation of cross
sections because it leads, without the consideration of
intermediate auxiliary quantities, directly to the S
matrix. Also, the calculational e6ort needed. for the
solution of the nuclear problem seems to us to have been
minimized.

ACKNOWLEDGMENTS

We thank U. Fano for useful discussions and sug-
gestions, and H. A. Weidenmuller for valuable
comments.

P H YS ICAL REVIE%' VOLUME 146, NUMBER 3 17 JUNE 1966

Scattering of 40.S-Mev Alyha Particles by C" C", N" N" 0" and 0"t'
B. G. HARvEYr J. R. MEMWETHER, AND J. MAHONEY

Laurence Radiation Laboratory, University of California, Berkeley, California

A. BUSBIkRE DE NERCY

Laboratoire Joliot-Curie, Orsay, Seine et Oise, France

AND

D. J. H0REN

guava/ Radiological Defense Laboratory, San Francisco, California

{Received 24 January 1966)

Elastic and inelastic scattering of 40.5-MeV a particles from targets of C", C", N", N" 0" and 0"was
studied. Angular distributions were measured for a large number of excited states. It was found that the
shape of the angular distribution depends on the nature of the single-particle transition involved. Six ex-
amples of quadrupole transitions involving promotion of a psl~ nucleon to the p~q~ shell were found. Although
the cross sections varied over a tenfold range, the shapes of the angular distributions remained very similar.
Six examples of the dipole transition p~l~ ~ 2s~l~ and seven examples of the octupole transition p~~m

—+ d~l~
were also observed. The dipole transitions gave angular distributions of a characteristic and unusual shape.
Excitation of the N" levels at 9.41, 9.71, 10.22, and 10.55 MeV suggests that they are all T=0. The levels
at 6.05, 6.70, /.40, and 7.60 MeV were not observed; probably they do not exist. A weak level at 10.85 MeV
and two strongly excited levels (or groups of levels) at 11.3 and 12.9 MeV were obser ved in N'4. The angular
distribution of particles scattered from the 4.45-MeV level of 0' suggests strongly that this level is 1—
rather than 3+. Several unnatural parity states were observed, but no states known to have isotopic spin
different from the ground state. The angular distributions for several scattered particle groups were com-
pared with distorted-wave Born approximation calculations and very approximate reduced transition
probabilities for excitation of the levels were obtained. For the quadrupole and octupole excitations the results
are in reasonably good agreement with values measured by electromagnetic methods.

I. INTRODUCTION

HE inelastic scattering of n particles is a useful
method for studying the surface shapes of me-

dium-mass nuclei. ' The levels most strongly excited are
the 2+, 4+, and 3—collective states. It is therefore for
the excitation of such levels that most of the angular
distributions of scattered particles have been measured.
The shapes of the angular distributions are determined

t This work was supported by the U. S. Atomic Energy Com-
mission and the U. S. Navy, Bureau of Ships.' J. S. Blair, Phys. Rev. 115, 928 (1959).

by the angular momentum transfer L, while the absolute
value of the diGerential cross section depends upon the
collective strength of the level excited.

The light nuclei present many opportunities for
studying inelastic scattering of o. particles from targets
for which the structure of the initial and 6nal nuclear
states is rather well understood. In many cases the
transitions should be almost pure single-particle rather
than collective. Large numbers of levels are suKciently
well separated in energy to permit resolution of the
corresponding groups of scattered particles.

In the present survey experiment, elastic and inelastic


