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Scattering of Slow Electrons from Helium Atoms*
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The eGect of Pauli exchange on the elastic scattering of a fermion from a many-fermion system has been
studied in the context of the "no-polarization" approximation. Calculations of the low-energy elastic-
scattering cross sections of electrons on helium atoms have been performed in order to investigate various
sects in this approximation. It is shown that the "post" and "prior" forms give essentially identical results
when calculated exactly with correct spatially correlated target wave functions. The results also indicate the
importance of including all exchange terms and using accurate representations of the target wave function.

I. INTRODUCTION

~ ~ ~

E have been interested in the inclusion of ex-
change sects arising from the Pauli exclusion

principle in the elastic scattering of a fermion from a
many-fermion system. In this paper we discuss the
approximation in which the eGect of polarization of the
target by the incoming particle is neglected. This
approximation is obviously best at low energies for
tightly bound target systems.

In the elastic-scattering "no-polarization" approxi-
mation, the Hamiltonian for the many-body system
reduces to an effective one-body Hamiltonian in which
the interaction between the incident fermion and the
target particle is given by a nonlocal potential. The
nonlocality in the effective one-body potential arises
from exchange terms due to the exclusion principle. In
the derivation of this potential two forms are developed
(Secs. II, III, and IV), which differ in two of the three
exchange terms. It is also easy to see (Sec. V) that when

a target wave function which can be written as an anti-
symmetrized product of a single-particle state with an
(1V—1)-particle state is used, the differing exchange
terms must vanish. These developments give rise to
questions about the importance of using correlated
target wave functions, and the necessity for the inclusion
of all exchange terms. Further we must investigate the
difference between the alternative effective potentials
we have developed and decide which is to be preferred.

In order to gain some insight into these questions we
have applied the formalism to the scattering of slow
electrons by helium atoms (Secs. VII and VIII). The
electron-helium problem is particularly favorable for
application since the basic two-body interaction is
known exactly and the target wave function can be
obtained as accurately as desired. ' With this advantage
we can perform an exact calculation within the frame-
work of the no-polarization approximation. Individual
effects or approximations can then be isolated and their
relative importance studied.

*Work supported by the U. S. Atomic Energy Commission.
t Now at Battelle-Northwest, Pacilic Northwest Laboratory,

Richland, Washington.' E. A. Hylleraas, Z. Physik 54, 347 {1929).

II. DEVELOPMENT OF THE FORMALISM

I.et us consider the scattering of a fermion from a
target with E identical fermions. The Hamiltonian for
the system is given by

8(0,1, ,cV) =X(1, ,N)+hp,
where

N
X,(1, ,1V)=Q T;+ Q V;,t+Q W;

and
N

hp=Tp+Q Vp, ;+Wp.

In the above equations T is the kinetic-energy operator,
U;; are the two-body interactions between the identical
fermions, and 8' is a potential in which all the particles
move. The coordinates are taken to represent position,
spin, and isotopic spin. The Hamiltonian is, of course,
symmetric under particle exchange.

The wave function for the entire system may be
written as

4(0,1, ,1V)=Q. Sg„(1, ,1V)f„(0), (4)

where 0', is the antisymmetrization operator and
P„(1, ,1V) are the normalized and antisymmetrized
eigenfunctions of the target Hamiltonian,

R(1, ,N)
~
y„(1, ,lv)) = h„~ zt „(1, ,Ã)) . (5)

In the scattering problem we wish to solve the
equation

ate(0, 1,",X))=sic(0,1," P)) (6)

under the scattering boundary conditions. Since we
assume the E-body problem to be solved, we attempt
to solve for the one-body functions g„(0). We may
express this formally as

(P„(1, ,$)
~

H
~
%(0,1, ,N))
=ZQ„(1, ",X) i

e(0,1, ,X)). (7)

The equations symbolically written in Eq. (7) are a
system of coupled one-body equations for ti„(0), whose
solution is more dificult than we care to attempt. For
low-energy elastic scattering we neglect polarization of
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the target by writing the wave function of the entire
system as

4(0,1, ,N) = 6$(1, ,N)P(0), (8)

where p(1, ,N) is the antisymmetric, normalized
ground-state wave function of the E-body target
system. For convenience we have dropped the state
subscript s =0, since we are taking into account only
the lowest eigenstate.

Instead of Eq. (7), we now look at the much simpler
equation,

(~(1, ,N) jfrj ~~(1, ,N)~(0)&
=E(y(1, ,N) j

(1',y(1, ,N)g (0)&. (9)

III. OPERATING TO THE LEFT

We may simplify Eq. (9) through the use of the
Hermitian adjoint of Eq. (5) to replace (P(1, ,N) j K
by Bs(p(1, ,N) j. With this substitution, Eq. (9)
becomes

(y(1,",N) jhs j O,4(1,",Ng(0)&
=e(y(1, ",N)

july(1,

",N)P(0)&, (10)

where e is the single-particIe energy,

e—= (E—Bp) .
Since P(1, ,N) is an antisymmetric function we may
write

%(0,1, ,N) = (RP(1, ,N)$(0) =$(0)$(1, ,N) —f(1)p(0,2, ,N) —. —iP(N)$(1, ~, N —1, 0), (12)
so that Eq. (10) is then, more explicitly,

N N
(To+(ZQ(1») jI'oij+(» "»)&)+Wo—e) jf(0)&=(4(1, N) j(Ts+Wo+2 I's —e) j4(1)+(02 . N)&

+ +Q(1, ,N) j(Ts+Ws+Q Vs,—e)jg(N)$(1, , N —1, 0)&. (13)
j=1

The exchange integrals which appear on the right-hand side of Eq. (13) give rise to three different kinds of
terms. Thus Eq. (13) can be further simplified to read

(To+Wo+U —) j4(0)&=N(4(1,",N) j I'oijk(1)4(0,2, ",N)&

+N(Tp+Wp —e)($(1, ,N) j tt (1)$(0,2, ,N) &+N(N 1)Q (1, —,N) j Vps

jest'(1)$(0,

2, ,N) &, (14)
where

V=V(0)=—P(4(1,",N) j V„j4(1,",N)&=N(y(1, ",N) j V„j4(1, ,N)&. (15)

We see that Eq. (14) is a one-body Schrodinger equation with a nonlocal potential, where the nonlocality arises
from the antisymmetrization.

IV. OPERATING TO THE RIGHT

We may obtain another equation, differing in form from Eq. (14), taking account of the symmetry of the
Hamiltonian. Thus we write'

&=&(1, ,N)+ho= X(1, , i 1, 0, i+1—, , N)+h;=—X~+h, , (16)
where K without a subscript is identical to Ks. Thus, using Eq. (5) we see that IX operating to the right on the
wave function, Eq. (8), yields

H~(1, ,N)P(0) = hsO', &(1, ,N)g (0)+bshe(1, ,N)P(0) — . —h,g(1, , i—1,0, i+1, , N)P(i) — . (17)
The use of Eq. (17) in Eq. (9) then leads to the "right-hand" result analogous to the "left-hand" result of Eq.
(14), viz. ,

(T,+W,+'U —.) jp(0))=NQ(1, ,N) j V„jg(1)y(0,2, ,N))
+N(~(1,",N) j(Ti+Wi-e) jV(1)~(0,2, ,N))+N(N-1)(y(1, ",N) j V»jg(1)y(0, 2,",N)&, (18)

where again 'U is given by Eq. (15). In the absence of
exchange effects, Eqs. (18) and (14) are identical. How-
ever, two of the three exchange terms in these two equa-
tions are formally diGerent. The 6rst so-called "direct

' M. J. Seaton, Trans. Roy. Soc. (London) A245, 469 (1953).

exchange" integrals, corresponding to the incident
particle interacting and exchanging with the same target
particle, are identical. The second and third, which we
shall call "(T—e)" and "many-body" exchange, differ.
In the "left" equation (14) the "many-body" exchange
term can be thought of as representing the incident
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particle interacting with a given target particle with the
ejection of a diferent target particle, whereas in the
"right" equation (18) the exchange or ejected particle
interacts with a target particle. If the single-particle
wave function P is approximated by a plane wave then
Eqs. (14) and (18) lead to the "post" and "prior" forms
of the scattering amplitude in the Born-Oppenheimer
approximation '

Since both equations appear to have equal a priori
basis, it is of interest to investigate the difference
between them.

If the Hamiltonian were of the form

H=Q;(T;+W, )=Q;h;, (24)

then the exact eigenfunctions could be Slater determi-
nants, in which the single-particle states @„(j) were
eigenfunctions of the single-particle Hamiltonian h(i).
In that case, it is obvious that the "right-" and "left-"
hand equations both reduce to the same equation, in
which all the exchange integrals vanish and all the
single-particle states are necessarily orthogonal.

V. SLATER-DETERMINANT WAVE
FUNCTIONS

An interesting special case occurs when the ground-
state wave function. of the target is written in the form

g(1, ,N) = O'4(i)&(1, , i 1, i+1, —
, N) . (19)

In'that case the "left-hand" equation (14) has the

property that there exists a solution such that

P(0) =4 (0), (20)

independent of the energy e. This corresponds to the
trivial solution,

8$(1, ,N)|t (0)
= O'P(0)P(i)x(1, , i 1, i+-', , N—)=0, (21)

in which the entire wave function vanishes. This is the
reason that the condition that f be orthogonal to g is

imposed. 4 If we take a target wave function of the form
of Eq. (19), and impose the orthogonality condition

(~(') I ~('))=o (22)

then the "left-hand" equation (14) reduces to

P',+IV,+~-.) la(0))
=N(@(1, ,N) l

Vol l f(1)4 (0,2, ,N)), (23)

that is to say the last two exchange terms on the right
in Eq. (14) vanish by virtue of orthogonality.

This already presents a dilemma. If we use target
wave functions of the form of Eq. (19), as for example if
we use a Slater-determinant wave function, then we

must necessarily drop the last two exchange integrals in

Eq. (14). However, since the exact eigenfunction of the

target Hamiltonian cannot be of this form, we have no
estimate of the importance of such exchange terms.

For the "right-hand" equation (18) the assumption of
a target wave function of the form of Eq. (19) does not
lead to the energy-independent solution, Eq. (20). This
occurs because when operating to the right we rearrange
and operate on the separate parts of the total antisym-
metric wave function. Thus, unless we were dealing with

the exact eigenfunction we preclude the possibility of
the trivial, or energy-independent, solution.

' D. R. Bates, A. Fundaminsky, and H. S. W. Massey, Phil,
Trans. Roy. Soc. London A243, 13 (1950).

'E. Feenberg, Phys. Rev. 42, 17/(1932).

VII. ELECTRON-HELIUM SCATTERING

In the case of the scattering of electrons by neutral
atomic helium the operators in Eqs. (14) and (18)
become

lq 2
7

IV;= 2/r;, —

V;=lr —r
l

—'

in atomic units.
For the target wave function we pick

(2S)

(26)

(27)

P(i,j)=f(r;, r,)2 'I'L.n(i)P(j) —P(i)n(j)g, (28)

where n and P are the usual spin eigenfunctions. The
single-particle state P can be written as

4 (s) =X(r')n(i) . (29)

The use of Eqs. (25)-(29), in Eqs. (14) and (18) yields
the explicit "left-hand" and "right-hand" equations:

(Vp +4/ro —2'U(ro)+2e}xr(ro)

f*(rr,rs)( —2/l rp rrl+7p'+—4/rp

+2e—2/lrp —rsl }f(rp, rr)xr(rr)dr~drs, (30)

VI. CORRELATED WAVE FUNCTIONS

We have seen that the difficulties under discussion
arise from the fact that we are not dealing with exact
eigenfunctions of the target Hamiltonian. If instead of a
wave function of the form given by Eq. (19) we take a
"correlated" function then the condition given by
Eq. (21) cannot occur. In that case Eq. (14) no longer
possesses an energy-independent solution and the last
two exchange integrals need not be dropped. In the
following two sections we shall investigate the use of
correlated target wave functions for the particular
problem of the elastic scattering of low-energy electrons
from helium atoms.

Numerical results will be given which relate to the
diGerence between the "right" and "left" solution, the
importance of the "many-body77 and "T—e" exchange
terms, and the use of different types of correlations.
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{Vp +4/rp —2'U(rp)+2s}Xa(rp)

where

f*(rx,rs) {—2/~ ro —rr ~+&t'+4/rr

+2p —2/( rl —rs
~ }f(ro,rt)X~(rr)«t«. , (31)

'U(ro) =2 If(rt, rs) I'lro —rtl '«t«s (32)

' R. Marriott, Proc. Phys. Soc. (London) 72, 121 (1958).

VIII. NUMERICAL RESULTS

Substitution of the partial-wave expansion,

X(rp) =P( rp g~(rp)F((cosHo) (33)

into Eqs. (30) and (31) leads to integro-differential
equations for the functions g&(ro) of the form

g~"(ro)+ L&o'+4/ro —2U(ro) —~(l+1)/ro'jg~(rp)

V~I, (rp, rt)g&(rr)drt. (34)
0

For certain types of target wave functions the non-
local kernel V~r, (rp, rp') is a sum of separable terms.
Equation (34) can then be solved numerically in a non-

iterative fashion using an extension of the method of
Percival. ' We have done this for s-wave scattering using
the following form for the normalized wave functions
of the helium atom:

g(1,2) = (Cp+ Ctrrrs+ Cs
~
rr —rs

~

')
Xc—~&a+~»2 '~sLn(1)P(2) —P(1)n(2)$. (35)

The above function is spatially correlated as long as C&

and C2 are not both zero. The coeKcients C; which

minimize the expectation value of the Hamiltonian of
the helium atom have been given by Hylleraas. ' We
have considered those cases in which either C~, C2 or
both are zero.

Using the values of the C s given by Hylleraas the
spatial function f(r&,rp) of Eq. (28) is determined. Inte-
gration over the target position coordinate r2 in Eqs.
(30)—(32) then gives explicit expressions for the single-

particle potential in Eq. (34). With the choice of Cs
equaling zero for example, in the "left-hand" case, the
nonlocal part Uzl, (ro,rp') is given by

VNI (ro,rt) =«{L ) ro —rt (
—(ro+r1)

+rort(Vp +4/rp+Eo )jF(rp, r&)—2rpr&W(rp rr)} (36)

and in the "right-hand" case

U+r(ro, rt) =4~{L ~
ro—rr

~

—(rp+rt)
+rort(V'r'+4/rs+Eos) jF(rp, rr) —2rortW(rt, rp) }, (37)

where

F(rp r&) (CosPr/np)c
—n(ro+r»

X{1+(3Cr/2nCo) (ro+rr+2rorrCt/nCo) }p (38)

Table I gives the parameters of the target wave func-
tions for the three cases we have calculated. The param-
eter C0 is determined from over-all normalization. The
uncorrelated wave function of case E0 is a Slater deter-
minant with its single-particle states given by hydro-
genic wave functions characterized by an effective charge
0..This wave function has been used previously in calcu-
lations of electron-helium scattering. ' From the discus-
sion given in Sec. V it follows that the calculations using
the target function of case Ep will only involve "direct
exchange" terms, the "many-body" and "(T—e)" ex-
change terms being deleted due to orthogonality. The
wave functions of cases Ej and E& represent two types
of spatial correlations with the latter having its ground-
state energy value closer to the true value of —5.807ap '.'

TABLE I. Ground-state energies and parameters for the
various target wave functions considered.

Case

Ep
E$
E2

—5.695 c0 2

—5.712—5.755

Cx/Cp

0.0—0.100
0.0

Cp/Cp

0.0
0.0
O.iii

1.6875
1.58
1.85

In Table II the s-wave phase shifts are given for the
cases considered calculated with both the "right" and
"left" solutions. Case E0 does not have formally diferent
"right" and "left" results since, as previously stated, it
requires only "direct" exchange terms. Examination of
this table shows that for both case Ej and case E2 the
"right" and "left" phase shifts are essentially identical.
This is an interesting result since "post" and "prior"
solutions give quite different values when calculated in
Born approximation. ' It should also be noted that the
agreement is better for case E2 supporting the idea that
the differences in "right" and "left" come from the fact
that we are not dealing with exact eigenfunctions of the
target Hamiltonian.

TABLE II. 5-wave phase shifts for electron-helium scattering
using the "left" and "right" equations.

Energy
(~) Case: E0 E11,

B0(e)
I"-'1Z E2~ E2a

0.544
2.18
4.90

16.45

2.84801 2.88489 2.88453 2.85244 2.85240
2.56731 2.63546 2.63476 2.56434 2.56432
2.30962 2.39983 2.39880 2.30410 2.30416
1.79480 1.89469 1.89309 1.79561 1.79559

P B. L. Moiseiwitsch, Proc. Roy. Soc. (London) A219, 102
(1953).

W(ro, rt)=(Co'pr/np)e ~'"p+" '{Uo(rp,n)+(Ct/Co)

X L(rprt) Vt(ro, n)+ (Cr/Co)rort Vs(ro, n) 7}, (39)

~ n~—2crr2

df2.
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FIG. 1. S-wave scattering cross sections as a function of energy
comparing solutions with (case E&) and without (case Z,) the
"many-body" and "(T—c)" exchange integrals.

The effect of the "many-body" and "(T e)" ex-—
change for case E~ is exhibited in Fig. 1. The s-wave
cross section for case I& differs significantly from that
of E&, where E& is obtained from E& by removing the
"many-body" and "(T e)" exchange i—ntegrals. Cases
E~ and Eo only differ in the form of the target wave
functions used, both having only the "direct" exchange
terms. The close agreement between the curves for these
two cases indicates that the need for more exact target
wave functions (correlated wave functions) is minor
when only "direct" exchange terms are involved. How-

ever, when all exchange terms are included and different
target wave functions are used the results cue diBer
significantly (see Fig. 2—cases Et and Es). Thus for the
cases considered, the importance of using correct target
wave functions is coupled to the inclusion of all con-
tributing exchange integrals.

The s-wave cross section computed from the phase
shifts given in Table II are plotted in Fig. 2 for cases
E~ and E2. These curves show that the diferent forms
of correlation chosen for the target wave function give
cross sections which differ by as much as 25%. The
recent experiment data of Golden and Bandel' have
also been included in Fig. 2. To 6t the experimental data
it would probably be appropriate to add a term due to
polarization of the target to the formalism.

In both the left and right equation we have made no
approximation except that of no polarization. Therefore,
if we use exact eigenfunctions of the target Hamiltonian
our result is exact within the no polarization approxi-
mation. By using a target wave function which is not

Golden snd H. Handel, Phys. Rev. 138, A14 (1965).

FIG. 2. S-wave and total scattering cross sections as a function
of energy. The short dashed curve represents the recent experi-
mental total-cross-section data of Golden and 3andel. The tri-
angles represent the total-cross-section calculations by La Bahn
and Callaway. The solid curve represents the s-wave cross section
calculated by La Bahn and Callaway with dipole polarization
effects considered. The long dashed curve and the dash-dot curve
are results of the present calculation.

an exact eigenfunction we can in some sense allow for
polarization eBects. This follows from the physical
argument that the target is distorted due to the presence
of the incident particle. Also, comparing the results of
cases E~ and E2 with the experimental data of Golden
and Bandel (Fig. 2) indicates that some type of cor-
related function exists which rejects the distortion of
the target due to the incident particle and also gives a
good 6t to the experimental data. However, use of a
distorted target wave function in Eq. (8) probably will
lead to "post-prior" problems and also it is not clear
that all polarization effects Lreplacement of Eq. (4) by
Eq. (8)j can be allowed for in this manner.

Calculations' "(La Bahn. and Callaway's results are
given in Fig. 2) have been made which include a local
polarization potential having an asymptotic form of

rr/r4. The inclusion of —this attractive potential has the
effect of increasing the value of the phase shift and thus
decreasing the low-energy cross section (see Fig. 2).
Consequently, it seems that the best description of the
electron-helium problem requires accurate representa-
tion of the target wave function, i.e., a correlated wave
function, ' all exchange terms, and then inclusion of
target-polarization eftects.

8 R. La Bahn and J. Callaway, Phys. Rev. 135, A 1539 (1964) .
9 E. Bauer and H. Browne, Atomic Collision Processes I'North-

Holland Publishing Company, Amsterdam, 1964), pp. 16—27.
~0 N. K.estner, J. Jortner, M. Cohen, and S. Rice, Phys. Rev.

140, A56 (1965).


