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A theory of the influence of the environment on y-y angular correlation is presented. The theory is formu-

lated by using the damping theory, and the perturbation factor of the perturbed angular-correlation function,
which contains the effects of the changes of the states of the environment on the angular correlation, is ob-
tained. In the solid environment, the effects of the lattice vibrations on the electric quadrupole coupling
have been analyzed by using the normal-mode expansion of the lattice displacements; and the perturbed an-

gular correlation function is shown to be a function of the crystal temperature. In order to determine the
nuclear electric quadrupole moment in an excited state, which cannot be done by the usual microwave

methods, a rotational technique is suggested and the theory has been developed for the case of asymmetric
Gelds. For the special case of an axially symmetric crystalline field, the present theory predicts a phase shift
in the rotational pattern of anisotropy.

I. INTRODUCTION
' 'N recent years, several experiments' ' have pointed
~ ~ up the need for a generalization of the theory of
environmental e6ects on the perturbation of y-y angular
correlations. The conventional theory has treated the
environment as a static magnetic-dipole or electric-
quadrupole field of prescribed symmetry. However, it
has been observed that the environmental perturbation
of the angular correlation is often measurably tem-
perature-dependent, indicating a significant coupling
between the decaying nuclei and the dynamical char-
acteristics of their surroundings. It is the purpose of
this work to incorporate this dynamic coupling into a
calculation of the angular-correlation perturbation fac-
tor. The present approach to the problem utilizes an
adaptation of Heitler's damping theory of transitions
among decaying states. Since the strictly computational
details of this treatment of transition probabilities have
been discussed extensively elsewhere, we give them no
further consideration here. The physical model envis-
ages the decaying nucleus as an integral part of a larger
system to which its translational and orientational de-
grees of freedom may be more or less tightly bound,
depending upon whether the large system is a solid,
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liquid, or a gas. However, the present calculation will

be explicitly restricted to large systems in solid phase.

II. THEORY

The total energy (3C) of the system is divided into
two parts,

3C=Hp+V; (2.1)

each of which is further subdivided as

and
Ho H&+HN+——Ho+ VP~,

V= V&+V,"o.
(2.2a)

(2.2b)

The energy, II&, is that of the free radiation field; II~
is that part of the energy of the decaying nucleus which
is independent of its environment, B~ is the energy of
the crystal, including the kinetic and potential energy
of the decaying nucleus which depends upon the posi-
tion and velocity of its center of mass; and VpN~ is the
energy of interaction of the decaying nucleus with any
stationary electric and magnetic fields that may be
present. The energy V& arises from the interaction of
the decaying nucleus with the ambient radiation field,
whereas V,~~ is the energy of interaction between the
decaying nucleus and the environmental atoms which
depends upon the displacement of the latter from their
equilibrium positions. Thus V~ is the interaction re-
sponsible for the emission of the observed gamma rays
as well as a radiative widening and shifting of the
nuclear levels involved in the cascade, whereas V,~~

produces a further widening and shifting of the nuclear
energy levels —due to dynamic coupling with the en-
vironment —especially those populated after the emis-
sion of the first gamma ray. It is this latter shifting
and broadening which introduces an explicit tempera-
ture dependence into the calculations of the perturba-
tion factor in the angular correlation.

The states of the system will be presumed char. -
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and
(II++VONc)

I
qIK)= Ear& I qIK),

II'I-&=E-I-)

(2.3b)

(2.3c)

The eigenfunctions Ig) are the eigenfunctions of the
photon number operator; thus E„=P qkcsg (vrX), where
s is a photon wave number and q(~,X) is the number of
photons with wave number m and polarization X in the
radiation state speci&ed by Ig). The functions lqIK)
are linear combinations of the angular-momentum
eigenfunctions, IqIrw), of the decaying nucleus. The
label (q) represents a set of labels sufhcient to specify
the internal states of the radioactive nucleus with the
exception of its total angular momentum and s com-
ponent. The eigenfunctions of IID, corresponding to the
eigenvalue Ep, are then taken to be

I p&= I qIK& l~& ln&. (2.4)

Kith this representation the correlation function
descriptive of a direction-direction correlation measure-
ment can be expressed as

I &p*l U( ) I p &I'
W(a„O,)=p p P(p, ) . (2.5)

)1)2 PsPf

acterized by the eigenfunctions of Ho. These eigen-
functions are constructed according to

(2.3a)

The eigenfunctions lp;), lp), and lpi) belong to the
orthonormal complete set of eigenfunctions ( I p) }which
satisfy HOIP)=EslP) and correspond to the initial
state, the intermediate state and the final state of the
radioactive nucleus in the cascade. The quantity U(r)
is the time-evolution operator and is given by U(r)
=exp( —i3'.r/k) where r is a small time interval (but
large compared to relevant lifetimes). P(p,) is the
probability that the system is in an eigenstate lp, ).
By means of the damping theory the oB-diagonal
matrix elements of U(r) can be calculated as, '

1&p*l U( ) I pf) I'

s&peE, s Ep,+—2hyp( i-Ep,)—
&&&(Es;—Es ), (2 6)

where

I Vs.sl'
—',hap( —iEp,.)= Vss+lim Q . (2.7)"~ smwp Es, Ep„+iX—

In deriving (2.6) the width and shift of the initial and
final states of the decaying nucleus have explicitly been
ignored.

Combining Eqs. (2.S) and (2.6) one has

V'e;~~'t ~f ~'*~'~ ~'*~ ~f
W(Q„Q,) =p p p p p p&p;)

'
. ~(En; Esi) (2 8—)

w& Ale& pip/ sp'wpipi LEs—Ep, +gk rp( —1Epi) J[E. s Esi+2kY—p'( —zEpi)]

where P denotes the summation of all possible energies
of the p ray. It will be shown in the next section that
Eq. (2.7) can be displayed as:

—:k»(-'Es,) =~s(V," )—k{Ps(V," )+ = }, (29)

where Ss(V,~c) and —', hFii(V, ~c) can be interpreted as
the nuclear-energy-level shift and width corresponding
to an intermediate state

I p) due to the dynamic part of
the coupling, and r~ is the experimentally determined
radiative mean life of the radioactive nucleus in the
intermediate state.

It has been shown that' V& can be separated into
two parts when the nuclear momentum is small com-

pared to the nucleonic momentum, i.e.,

s ix RV(~—) (2.10)

I qIK&—= lx&=Z II~&&I~I x), (2.11)

and using Racah's technique the perturbed correlation
function of Eq. (2.8), for the case in which the nuclear-
energy-level width is much less than the level splitting,
can be calculated as;

where V(y) depends only on the internal degrees of
freedom of the radioactive nucleus and the photon
field. The vector R is the position vector of the center
of mass of the radioactive nucleus and ~ is the wave
vector of the emitted photon. By making the expansion

where

W(Q2, Q|)= Q Q Ap, (1)Ag, (2)l ( kg2+1)(2 +km1)P'i'g p»Fg & (e,p,)F, 2(g, p,)
1~2 +1+2

g viNs=g P(p.)G„N&Ns
Py

(2.12)

(2.13)
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and I I kg I I k2
Gp, p,~'~'= Q Q (—1)' +~'+"$(2k&+1)(2k2+1)))'" (Im i «)(« i

Im')
mm' ag' m"' —m'

ling

m" —m g2

~(E, E„—)r~
X&I~'"i.')(.'iI~") &1+-;, (l„(V, c)+1..(V,~c)j—

and

X 1
(V Nc) 5', (V Nc) - -I

(2.14)

E.—E"=2 L&I~'I «)&«II~) —&I~'I")&«'II~))&I~ I
Vo"'II~') (2.15)

The perturbed directional correlation function of Eq. (2.12) has exactly the same form of Steffen and Frauen-
felder s Eq. (8), except the perturbation factor in the present calculation is given by Eq. (2.13) which is a time-
integrated and thermally averaged perturbation factor. The function Cq,~,~'~' is the averaged perturbation factor
over the initial state of the system.

If the system is initially in thermal equilibrium, and in doing the thermal average we follow an approximation
which is made by replacing the average of a ratio of two functions by the ratio of the average function, ' then Kq.
(2.13) can be written

(I I kg I I k2 )&» ""'=&&(—1)"~'~t.(2ki+1) &»2+1)i'"I „, , „ 1&I~I«)&«II~')
mm' a~' km'" —m' 1Vg m" —m X2)

i(E„—E„.) rA
X(Im"'i«')(«'iIm") L1+-,'r„((r„(V,Nc)),+(r„.(V,"o)),)]-

h

(S.(v. ))r—(8"(V." ))r
X 1+

jV
(2.16)

The quantities (S,(v,~c))& and —,'k(1', (V,~c))& are,
respectively, the averaged nuclear-energy-level shift
and width due to V,~~ over the initial state of the
system and will be explicitly calculated in the next
section. The factors Aq, (1) and Aq, (2) depend on the
multipolarities of the consecutive gamma rays and the
spin of the successive nuclear levels and are inde-
pendent of the extranuclear perturbing fields. A de-
tailed discussion and calculations of these two factors
have been given by Biedenharn and Rose." The in-
ftuence of the extranuclear fields on the angular correla-
tion is entirely contained in the averaged perturbation
factor Gq, q,~'~'. The probability function I'(P,) in Eq.
(2.13) is a diagonal element of the density matrix which
contains all the information of the whole physical sys-
tern at the initial state.

Particularly, the average over the crystal states will
take into account all the effects on the correlation due
to the lattice vibrations and all kinds of lattice imper-

' R. M. Steven and H. Frauenfelder, in Perturbed Angular Cor-
relations, edited by E. Karlsson, E. Matthias, and K. Siegbahn
{North-Holland Publishing Company, Amsterdam, 1964), Chap. I.' A. Ziya Akcasu, University of Michigan Technical Report
{unpublished)."L. C. Biedenharn and M. E. Rose, Rev. Mod. Phys. 25,
729 {1953).

fections due to, for instance, the nuclear recoils, the
radioactive decays and the variations of the crystalline
field within the crystal and so on. Recently Matthias,
Schneider, and Steffen~ have pointed out that a normal
distribution of the electric interaction frequency can
be assumed in order to estimate the effects on the
perturbation factor due to the variations of the axially
symmetric electric field gradients at the diferent sites
of the nuclei in an imperfect crystal lattice. The fre-
quency distribution effects will also be contained in the
probability function in the present theory. However,
our knowledge about all the imperfections and the
distributions of these imperfections in a crystal lattice
is quite limited and it becomes very difBcult for one to
investigate all these effects at the same time. In the
present calculation, the effects of the lattice vibrations
on the perturbation factor are investigated and the
result shows a temperature dependence of the perturba-
tion factor.

If the level shift is negligible and the nuclear relaxa-
tion times are long compared with the life time of the
nucleus in the intermediate state, Eq. (2.12) reduces to

"E.Matthias, W. Schneider, and R. M. Steffen, Phys. Letters
4, 41 {1963).
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Alder's" and Abragam and Pound's" results for the case
of static fields.

For vanishing perturbation, Eq. (2.16) reduces to

(2.17)

Substituting Eq. (2.17) into Eq. (2.12), one can
show that Kq. (2.12) reduces to the well-known un-

perturbed correlation function which can be expressed
as the sum of even Legendre polynomials.

%hen the source is in an external 6eld of axial sym-

metry, e.g., an external magnetic 6eld, one can choose
the symmetry axis as the quantization axis and the
perturbed correlation functions of Eqs. (2.12) and
(2.13) can be reduced to";

W(a„a,)
Q A gg (1)A p, (2)$ (2k&+ 1) (2k2+ 1)]

XGa "NVa "*(~i v i) V~ "(~2,v 2), (218)
where

GI„I„~"=QL(2kg+1)(2k2+1))'~'

where

-', »„(V&)=lim Q
pm&p Ep,—Ep +Q,

(3.3)

fn Eq. (3.1) we have neglected the changes of states
of the lattice system due to the emission of the cascade
photons. The quantity -', »„(V&) can be expressed' as

,'»„(-V&)=$„(V&) ', ih—F,-(V&), (3 4)

where S,(V&) is the radiative shift function and for our
purpose we will only note its existence and will not be
concerned with its effects. The quantity —,'hF, (V&) is the
radiative width function and is independent of the
substates of the intermediate and the 6nal nuclear
states but depends on the angular momenta I and If
and also on the type of transitions. In our calculation
we will let F, (V&) = rz ', here r~ is the experimentally
determined life time of the radioactive nucleus in the
intermediate state. Then Eq. (3.4) reduces to

&k». (V.'o))r

=limg I'(8;)P, (3.2)" 0 p; p'wp Ep,.—Ep+iX

—,'», (V&) = ih/2r~— (3.5)

X{1 i(E —. E)r—/k) ' (2.1.9)

If the 6rst detector is placed along the symmetric
Geld, Kqs. (2.18) and (2.19) can be reduced to the
unperturbed angular correlation function. This is a
well-known result, that the correlation is unperturbed

by such a coupling if either one of the two radiations is
emitted along the axially symmetric 6eld."

(—1)rQr
(2) V~(2) (3.6)

where Qr"' and V r"' are, respectively, the nuclear
electric quadrupole moment tensor and the 6eld tensor
and can be written as

The electric quadrupole interaction Hamiltonian can
be expressed as

III. THE PERTURBATION FACTOR-
SIHGLE CRYSTAL

Qr"'=2 &nr'V2r(~. , v n), (3 7)

Extranuclear perturbations experienced by a radio-
active nucleus sitting in a lattice site may be the atomic
hyperfine interaction, the nuclear magnetic dipole-dipole
interactions with the surrounding nuclei, or the mag-
netic interaction with an externally applied magnetic
6eld, and the nuclear electric quadrupole interaction
with the crystalline Geld. In our discussions we will
focus our attention on the electric quadrupole inter-
action. By substituting V= V&+V,E@ into Eq. (2.7)
(V,E~ denotes the dynamic part of the electric quadru-
pole interactions), the thermally averaged shift and
width function can be expressed as

&k». ( ihip;))r=&l» —(V )")r+2» (V')

"K. Alder, Helv. Phys. Acta 25, 235 (1952)."A. Abragam and R. V. Pound, Phys. Rev. 92, 943 (1953).
'G H. Frauenfelder and R. M. Steffen, in A/pha-, Beta- and

Gamma Ray Spectroscopy, edited by K. Siegbahn (North-Holland
Publishing Company, Amsterdam, 1965), Chap. XIX A.

(3.8)

The charge e~ is the nucleonic charge in the nucleus
at the position r„with respect to the center of the radio-
active nucleus. In Eq. (3.8) we have assumed that the
electrostatic 6eld is caused by the point charges in the
lattice system and p; is the effective point charge at the
ith lattice point located at r„which is the relative
position vector between the radioactive nucleus and
lattice point. The vibration of a nucleus in a crystal can
be described by a displacement vector u from its equi-
librium position and the relative vector becomes r„
= ao„-—u„; here ao„ is the relative equilibrium posi-
tion vector between the radioactive nucleus and the ith
lattice point, and u„ is the relative displacement vector
between these two nuclei. %hen the temperature is far
below the melting point of the crystal one has N„&(ao.;
and then the field tensors can be expanded at the equi-
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librium positions as"; with

15 p;
V- "'=1—"'(0)+—2 P Fo "(eo.;, (pp. ~)

2 i pv g Oci

X (7,„2&;„N„(i)N„(i)+, (3.9)

and

VoEQ= Q (—1)rQ (2)V (2)(0)

15h {~ ~)

2 2 ZE(—1)r
4M, ao„o)&

(3.12)

where V r('& (0) is an irreducible component of the 6eld
tensor evaluated at the equilibrium positions, g;„and
p;„are, respectively, the directional cosines of ao„. in
the &2th and vth directions and N„(i) is the &2th component
of the relative displacement u„. By using the normal
mode expansion of the displacement, the vector u(i)
= u, (rp ) u;(rp;) can be expressed as a function of the
phonon creation and annihilation operators";

u(i) =P
o2' 2M~(q j)

e(qj)(at(qj)e ""'
X (1—o e—*2 "-)+a(qy)e'o. "

X (1—o„e'o'p-) j (3.10)

where o„=M,/M, is the ratio of the mass of the radio-
active nucleus to the ith nucleus in the crystal. In the
case of a single crystal, e„ is the isotopic factor. When
the wavelength of a phonon is appreciably larger than
the interatomic spacing, we make the approximation
exp( —iq ap„)~1—iqap„(q do, ~). This approximation
will considerably simplify our calculations. Although it
may break down at the upper end of the Debye spec-
trum, it will not affect the results appreciably. "Using
Eqs. (3.6), (3.9), and (3.10), the electric quadrupole
coupling Hamiltonian can be expressed as;

X[~(e )~(q'v)3 "'[d-—io.;q(q &o.;)g

X[d„+io„q'(q' dp„))V2 r(t&p„, (oo.,)

XQ (2)at(q' )a(q&2)e((o—2') &o (3 ]3)

where yo Q represents the static electric quadrupole
coupling Hamiltonian when the crystal is considered as
a rigid lattice system and V, Q describes the dynamic
part of the electric quadrupole coupling induced by the
Raman processes. For the summation of q in Eq. (3.13),
one should sum over all the possible values of q in the
first Brillouin zone of the reciprocal lattice space. How-
ever, for our purpose it is sufhcient to take Debye's
assumption that the vibrational frequency spectrum is
a continuum and the sound propagation velocity v is
independent of the direction of propagation and of the
polarization of the wave. Furthermore the total number
of nuclei in a crystal is much greater than unity, so one
can replace the first Brillouin zone by a sphere. Then
by substituting Eq. (3.13) into Eq. (3.2) and using the
relation

lim(i&(+ y)
—' =P (y)-' —iorb (y),

where P(y) ' is the principal value of y ', the quantity
(22hy„(V, E&))r can be expressed as

(2hy. (V,E&)) = (S„(V, O))r —i(-,'hr, (V, O)), (3.14)

yEQ y EQ+y EQ (3.11) with

15h V 2 (mn) p. )2 I 2 I
I(IIIQ"'III) I' 2 2 2 & 2,I, vo '(&p.*,o o.*)

4M,e' 2 a'Wa m, m' i Vv ap~( j —m f m

x
I (Im I

&()(&('I Im') I'2&;„'2&;„2P d(p

(2& kf rr '
072

dQ dQ (p(J d~( + o~P (q. d )2
0 (q) 0' ((I') 7,

(p" n( r)[(p-(n(r)+p1]
X d 2+2.,2—(q' ao, ~)2 (3.15)

Aa) —Aced' —ho) „„.
2 {s n) p I

(r, (v, o)) =2 h(15v/4M. e')'l(IIIQ(')III)l' g Q Q Q Q v —r(8o„,(o„~)
&=2 «'Wr ~~' s Wo CO&, —m g m

x
I
(Im I.)(.'I Im')

I
'&,„'~,„2

GO

dQ dQ Qxp dg(, + og(, (q apg,
'o—

0(c) 0'(e')

X d.,2+ ooP—(q do.~)2 nr (p)) [nr ((p')+ 1](&(hp) —hp)' —h(o„, ), (3.16)

"M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Qxford University Press, New York, 1954)."A. Maradudin, E. W. Montroll, and G. H. %'eiss, Solid State Physics, edited by F. Seitz and D. Turnbull (Academic Press Int-. ,New York, 1963), Suppl. 3.' A. Abragam, The I'rinciples of NNclear Magnetism (Oxford University Press, New York, 1961).
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where 4u„, denotes E„—E„,and is the nuclear-energy-
level splittings due to the static part of couplings and
can be expressed as

E„—E„.= 2 2 (&lm'l~&&~llm& —&lm'l~'&&~'llm&)

I 2 I
X( 1)r m

, V-«"'(0)—m i' m'

x&IIIQ ' III&. (3.17)

The quantity nr(n) =g„& &P(n(n))N(n) is the ther-
mally averaged phonon occupation number in the crys-
tal, and d„stands for (1—e„)/uo„. and V is the volume
of the crystal. For a Raman process the frequencies of
the two phonons co and or' satisfy Ace —Ace'=Ace„. and
co can take all the values inside the frequency spectrum
from co„„ to ~~, where au~ is the maximum frequency of
the Debye spectrum.

The electric-field tensor appearing in Kqs. (3.15) and
(3.16) is produced by the ith lattice point charge in the
neighborhood of the radioactive nucleus in the absence
of the nucleus and is referred to as the direct field. This
point-charge model cannot take into account the shield-
ing, antishielding, and covalent eGects. In order to
compensate this point one introduces an adjustable
multiplication parameter g; such that the effective point
charge of a lattice point is taken to be p;= $,e. This
parameter $; is determined by comparing the experi-
mental results and theoretical calculations in the micro-
wave techniques. "20 Combining Eqs. (3.15), (3.16), and
(2.16) one has the perturbation factor which describes
the lattice vibration sects on the angular correlation.
It is due to this eGect that a temperature dependence of
the perturbed angular correlation can be established,
and this will be shown in Sec. V.

IV. THE ROTATIONAL DEPENDENCE

It has been shown experimentally by the Zurich
group' 4 that the anisotropy of the y-y angular correla-
tion is a function of the orientations of the symmetric
axis of the crystalline field with respect to the detectors.
Recently Paul and Brummer, "Alder et al.~ have in-
vestigated the rotational dependence of the anisotropy
functions for the case of axially symmetric fields. In
the following we will investigate the effects on the
rotational pattern of the angular correlation by the

Then an irreducible Geld tensor of rank 2, *V('& in the
principal-axis coordinate system Z* can be transformed
into the laboratory coordinate system by

(i)V~(2) Q Dq (2 (nPy)D ' (@011)*V " (4.1)
p, t'

where ('& V ~
"& is a Geld tensor in 2('&. The electric-field

tensors can be defined in their principal axes by two
parameters, namely the field-gradient anisotropy q and
the Z* component of the Geld gradient. Then the trans-
formation of Eq. (4.1) can be expressed as

i& V &a) e V,&2&LP (np~ C,OQ)

+r«G «(npy, COO)5, (4.2)

where the functions Ii ~ and 6 ~ can be calculated as a
function of the Euler angles between these three sets of
coordinate systems. With this field-gradient tensor
operator, the electric quadrupole interaction Hamil-
tonian can be expressed as

VEo =Q (—1)«LF~(nPy; 4 OD)+»G~ (nPy; 4 OQ) j
X+V (2)Q «(2) (43)

where *Vo"& is an irreducible component of the Geld
tensor in Z*.

By using the normal-mode expansion of the nuclear
displacement as in the previous section, Eq. (4.3) can
be expressed as

VEo(R&R2) = VORE(R&R2)+ V,Eo(R2)
with

(4.4)

asymmetric crystalline field by taking into account the
lattice vibrations.

Ke let xys be an arbitrarily chosen laboratory co-
ordinate system, XI Z be a fixed coordinate system in
the crystal and X~Y*Z*be the principal axis coordinates
system of the crystalline field. The Euler angles be-
tween the XYZ and X*I'*Z~ coordinate systems are
taken to be (nPy) which can be determined by EPR and
NMR techniques. The Euler angles between the crystal
coordinates XFZ and the laboratory coordinates ryan
are taken to be (C O~Q). The Euler angles are defined in
a right-handed coordinate system and the rotational
relations between these three sets of coordinates can be
expressed as;

R(«st) R(e eo)
Z"(X*PZ*):Z &"'(XFZ):Z &"

(hays) .

(&a4) =P«(—1)"LF «(nPy; C 80)+YJG~(nP/, C en) j *V, ' (0)Q, & & (4.5)

(15h) &,~)
V."(~2)=

l
I 2 2 2 2 2(—1)«D,~"&(c'Oil) (5, / ego)Jg;,g;, l ~( )q~«( ~q)] 'I &.,die. ,&I-(&f u„;—)g(4M, ' «n

XId„+iE.;rt (g &io )$Y,—«(0„;,'«„,)Q«&'&a(q«&)at(q'&)e «-~'& ", (4.6)"F.Seitz and D. Turnbull, in SolQ State I'hysics, edited by F. Seitz and D. Turnbull (Academic Press Inc. , Net York, 1957),
Vol. 5, p. 322.' J. Van Kanen Donk, Physics 20, 781 (1954).

"Von Hang Paul and Witlof Bummer, Ann. Physik 9, 323 (1962).
K. Alder and R. M. Ste6en, Phys. Rev. 129, 1199 (1963}.
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where Ri and R, represents the rotations of R(aPp) and R(C OQ). Equations (4.5) and (4.6) describes, respectively,
the transformation of the static part and the dynamic part of the electric quadrupole coupling under the rotation
of the crystal coordinate system. With this coupling Hamiltonian the function &-', Ap, (V,~'))z, as given by Eq.
(3.2), can be calculated as;

with

&2Am. (V. (R2)))r=&S (V.' (R.)))r—~&kAP. (V.' (R2)))r, (4.7)

15AV ~' $e '
t I 2 I q'

&S.(V."(R2)))r= ll&IIIQ"'III)I'2 2 E Z Z, IFr(R28o-«~)l'J
4M,~') $~2 4 gK tllrrs s flv ~oct k —n' t m&

co M—toss'

&& ( (Im (
x)&a'( Im') ('s,„'q;„2F des

/2

d&' d '+e.p—(j 80 )'
~(e) @'(a')

X d '+g, '—(j' do, )' nr((u)[nz((o)+1]Puu —Aa&' —hu„]—', (4.8)

a11d
2 $,e)' I 2 I)'

&P.(V.~(R))) =2 A(15V/4'. v')'l&IIIQ"'III)l'2 2 2 2 2, I IF (R 8o.*«-)l'
2 a'Wc tnwa' i yv goop j —m' f mi

X [&Im[~)&~')Im')('g, „~f,„
J eppes'

dQ dQ'sxo' d '+q, p—(g do, )'
(a) ~'(c')

X d,P+ ~,P (g'—8,.;)' nr(~)[nr(~')+1]8(A —A
' —A,„.), (4.9)

where
Fr(R2, 80.;«„)=p Dp~o&(C 80)F2~(80.;«„). (4.10)

The quantity E, E; in the den—ominator of Eq. (2.14) can be calculated as:

2 I 2 I
E„(RiR2)—E„.(R R2)=*VO "(0)(I)[Q"((I)P P (—1)' '( [&Im'[~)(x(Im) —(Im'(x')&x'[Im)]

2 mm' k —m' i' m

X[F r(nPy;CO~A)+sG~(aPy;400)]. (4.11)

where the irreducible component of the field tensor *Van'i(0) is evaluated at the equilibrium positions of the
lattice system in the principal axes.

In order to calculate the functions &S,(V, o(R2)))r and &-', AP, (V, o(R2)))r one has to know the multiplication
parameter P;, the asyrmnetry of the crystalline field, the Euler angles between Z* and Z&r'&, and the s component
of the field gradient. Once these data are available, one can find the reduced matrix element &I~~Q&'&(~I) of the
nuclear electric quadrupole moment in an excited state by comparing the experimentally measured anisotropy as
a function of the rotations of the crystal axes with the theoretically calculated anisotropy.

V. AN EXAMPLE FOR AN AXIALLY SYMMETRIC FIELD

As an example of the application of the general theory, let us consider a simple case of a lattice system of octa-
hedron structure. In a regular octahedron structure a nucleus will experience a cubic symmetric 6eld. However,
if we assume that an axial symmetric 6eld exists due to a vacancy at a nearest neighboring lattice site, one im-
mediately has the following properties; (1) q=O for axial symmetry field, (2) the Euler angles between Zirr& and
Z* vanish, since the field is axially symmetric one can choose X along X~ and Y along F~, (3) ao„*=a the lattice
constant, (4) pi= =p~=$e, pq=O due to a vacancy at the 6th neighbor, (5) e,i—— =e,&=1, e,&=0 (here we
have neglected the isotopic eGect and assumed that all the nuclei have exactly the same mass so that d, ~

——~

=d, 5——0, d, 6——1/u), (6) q,„q;.=it;, b„„and all the angles of 80„and q o„are known. Using these properties of the
lattice system and making use of the fact that the phonons obey Bose statistics so that the number nz (co) of the
phonons of energy fscv present in a crystal at temperature T is given by Planck's law nr(ra) = ( pe(Axru/AT) 1) ', —
(which we here approximate as nr(~)~AT/Aced), the perturbation factor for 180' and 90' correlation can now be
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calculated as:
(I I ki) (I I k2'&

g „00(~) Q Q ( 1)21+m ~[(2ki+ 1) (2k2+ ] ))&/21 I&Iml. )&.[Im &

mm' ««' &m' —m' 0&'Em —m 0&

X(Im'[K'&( '[Im){[1+B„„(R)T )—(zE.;(R R) /k)[1+G„(R)T )) ', (5.1)

I ki) (I I kA
Gk, k,'"(~/2) = 2 2(—1)"~'~[(2k&+1)(2k2+1))'"I l(Im[~)(~ I

Im')
mm' ««' 'Em' —m' 0 ) im" —m Nl

where
X(Im'I/~'&&~'IIm"){[1+B„„(R2)T')—(iE,„(RRi)2r~/k)[1+G„„(R2)T')) ', (5.2)

/'15k V)euQ) ' I 2 I )'
G.. (R ) =

I
11&IIIQ"'III&I' 2 2 2, I IF-r(e*; t&o-«.*) I'D (0.&o.~)') a(.-i)'

5 SAM.s'a' ) r=2 mt'' /=1 —m | ml
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X I Fr( ei t&0~'cpa~ ) I L 2 1&Im I
~)&z"[Im') I + 2 I &Iml //'&&~"'[Im'&I ). (5.4)

«"A« «'"g«'

We have kept the symmetry axis in the plane of the detectors and let C =0=0 in the rotation R2(C 0~0). Then
the perturbation factor depends on the angle 0, which is the orientation of symmetry axis with respect to the first
detector. From Eqs. (2.12), (2.16), (5.1), and (5.2) one can calculate the rotational pattern of the anisotropy as a
function of the orientation of the crystal axis. Clearly these equations are very complicated functions of 0. and
no exact calculation has been attempted. However, if we make some simplification for illustrative purposes; namely
by ignoring the rotational dependence of the unitary transformation coeflicients and the level width due to the
perturbation and evaluating the first derivatives of the function G„„.(O~,) at zero rotation; then a considerably
simplified solution for the condition BA/80, =0 (A is the anisotropy function) can be calculated as;

[O.), =i~sin '
P G„.'(0)T'

A„„.
(5.5)

where
( 1)I—m'

a.„.=*v,& &(o)&I[IQ"'III& Z [&Im'l. &&K IIm) (Im [K &(K [Im))
mmr

I 2 I) I 2 I)x 6'"1
I

—3
I

(5 6)
E—m' 2 m/ —m' 0 m//

and
/' 15kV&e~/i/' ' » I 2 I )'

G...'(o) =2[
I &IIIQ "&II»I' E Z Z

Eg (k)'/'~, v'a' 2mm' i=1 —m f m

X[{(i &0.,)') a&a&)'[ 2 I (Iml ~'&&~"'IIm') I'—2 I &Iml ~&("'IIm'& I') (5.7)
«ill+«l «"Ar

The quantity [0), is the angle between the sym-
metry axis and the first detector for the maximum
anisotropy in the rotational pattern. From Eq. (5.5)
one sees that when the crystal can be considered as a
rigid lattice one always has [O~,), =0. This result
has been pointed out by Abragam and Pound. "How-
ever the present theory predicts for the rotational
pattern a phase shift due to the thermal vibrations of

the lattice system, and this simplified solution also
predicts a T' dependence of the phase shift. The sign
of the phase shift depends on the geometry of the ex-
perimental arrangement and the product of the reduced
matrix element, (Il[Q "&[[I), of the nuclear electric
quadrupole moment in the excited state and the s-
component of the crystalline field gradient *V/&i'&(0).
A phase shift in the rotational pattern of anisotropy
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was experimentally observed by Albers-Schonberg et
at.m by using a metallic indium single crystal. Qualita-
tively, the observed phase shift can be explained from
the present theory as due to the thermal vibrations of
the lattice points. The effect of these thermal vibrations
is to produce, at the site of the radioactive nucleus, an
asymmetric fluctuating electric field gradient which is
responsible for the phase shift in the rotational pattern
of anisotropy.

IV. CONCLUSION

In this formalism one has a systematic treatment
which contains a description of the effects of the changes
of the state of the environment. For a solid-state en-
vironment the present theory predicts a temperature
dependence of the anisotropy.

The rotational dependence of the angular correlation
has been developed for the cases of asymmetric crystal-
line fields. This will greatly increase the interpretability
of experiments and the possibility of investigating
nuclear quadrupole moments in excited states. For the

case of an axially symmetric crystalline 6eld, Eq. (5.5)
predicts the phase shift in the rotational pattern of
anisotropy as a function of crystal temperature.

The accuracy of the calculation of the nuclear electric
quadrupole moment depends highly on the computa-
tions of the electrostatic field gradient at the nuclear
site. The calculation of this crystalline field is very
dificult and a model for the charge distribution in the
lattice system is needed. Here we use the point-charge
model and introduce an adjustable parameter $;, to take
the shielding, antishielding, and covalent effects into
account. For the determination of this parameter one
has to rely entirely on other measurements. ~

Since a sufhcient knowledge of the wave function of
the electronic shell is available, " the present theory
$i.e., Eqs. (2.12) and (2.13)j will be suitable to investi-
gate the effect of the nuclear spin relaxation due to cou-
pling with atomic electrons on the angular correlation. '4

~ K. D. Bowers and J.Owen, Rept. Progr. Phys. 18, 304 (1955}.
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a-Binding Energies in Heavy Hyperfragirrents (35&A&SO)
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Analysis of 16 short-range ( &&10') hyperfragments, produced from 1.S-GeV/c Z interactions in I.4 hyper-
sensitized emulsions and decaying m=mesonically, is presented. Of these, 9 are classiied as due to the residual
spallation products of silver and bromine nuclei, 5 as beloning to lighter species (A &&20), and 2 as ambiguous.
The masses of the 9 spallation hyperfragments are determined using the "spallation model. " It is concluded
that for hyperfragments of masses A~35 to 80, the upper limits of Bjt, could vary from 21.9 to 24.5 MeV.

I. INTRODUCTION

FOLLOWING Jones et aL, ' it is now generally be-
lieved that the majority of hyperfragments (HF's)

of ranges &~10 p produced by high-energy E inter-
actions at momenta 0.8' 1..3 and 1.5,4 2.2 and 3 0'
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GeV/c and of ranges &3 p produced by E -at-rest'
interactions are the residual spallation products of
silver and bromine nuclei, and possess mass numbers
in the range A~20 to 100, the limits on A depending
on the E momentum used. The determination of the
A binding energies (B~) and masses of these heavy'
HF's is of great interest since these can be effectively
utilized for estimating the potential well-depth Dq seen
by a h. particle in nuclear matter.

In their first investigation, Davis et al.' used K
interactions at momenta 0, 0.8, and 1.5 GeV/c and
reported 5 examples of ~ -mesonic decays of short-range
HF's attributed to mass numbers A 60 to 3.00.
Although the calculated values of the upper limits of
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Letters 9, 464 (1962).


