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IP = V,gp+V„Gp++ V„GO+VpGp+, (39)

where Go+= LE—Ho+is j ' is the free-particle Green's
function. Now in the Neumann series solution of the
integral equation (34), the series in E

1+K+K ~ ~ ~ (40)

contains a subseries in Eo

1+ED+Ko' ' (41)

where E and Eo are dehned by Eqs. (36) and (38),
respectively. The operator Eo, which permits particle p
to propagate freely, is not completely continuous' and
the subseries (41) diverges for the same reasons as the
Born series considered by Aaron, Amado, and I ee.' If
the Born series expansion of the two-body t matrix for
the interaction V~ diverges for any energy, then the
series (41) diverges for utl positive energies of the three-
body system. As was the case in Ref. 5, the strengths of
the potentials V~ of Eo, and Vp and V of K' are inde-
pendent, and it is reasonable to expect that the diver-
gence of this subseries cannot be exactly compensated by
any similar divergence in the remainder of the series
(40) which involves the kernel X'. Moreover, there is
good reason to expect E' itself to be completely con-
tinuous since it contains no disconnected diagrams.
Hence the divergence of the series (40) will in general
occur, and furthermore the divergence is independent

of the specihc choice of the distorting potential m p made
in connection with Eq. (36).

In summary, the desired amplitude Tp cannot be
obtained from the integral equation (34) since there are
no techniques available for solving equations with
pathological kernels which give rise to a divergent
subseries like (41).As a result, the DWB inhomogeneous
term of Eq. (29) cannot be regarded as the 6rst- or
lowest order approximation to Tp . In other words, the
DWB model does not constitute a mathematical
approximation to the transition amplitude.

The problem of 6nding a solvable integral equation
for Up depends on whether the pathological part Eo
can be removed from the kernel E.This in turn depends
on whether the series (41) can be explicitly summed and
added to the inhomogeneous part of the original equa-
tion (34). This procedure should indeed be possible
since E'0 in general contains only a single two-body
potential, i.e., V» in Eq. (38), and the series (41) can be
rewritten in terms of the I matrix for that potential, '
With the new connected kernel, one may be able to
solve for the exact transition operator Up, or at least
to 6nd a mathematically sound 6rst-order approxi-
mation to Up in the new inhomogeneous term. Ex-
plicit calculation of this term mould yield an improved
distorted-wave theory, and comparison of this term
with the standard DWB model should provide criteria
for the success or failure of the latter model. A sub-
sequentpaper" will attempt to deal with these problems.

"L.R. Dodd and K. R. Greider, Phys. Rev. 146, 675 (1966).
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General methods are developed for obtaining convergent solutions to the exact nonrelativistic three-body
scattering amplitudes within the framework of the distorted-wave representation. A simplification pf the
Faddeev-Lovelace coupled integral equations is obtained when the mass of one particle is either much larger
or much smaller than the other two. When this mass restriction applies, it is shown that each amplitude is
determined by a single, tractable integral equation. The kernel of a typical equation is well-behaved and
depends only on calculable, two-body operators. The inhomogeneous term consists of two parts, one of
which is the usual distorted-wave Born term and the other, a term involving excitation of a set of twp-body
intermediate states. Applications are made to a variety of nuclear scattering processes, and the implicatipns
for the distorted-wave Born model discussed.

I. INTRODUCTION
' 'T has recently been shown that the nonrelativistic
- ~ solution of three-body scattering problems in terms
of the Born series' or the distorted-wave Born series2 is

* Supported in part by the U. S. Atomic Energy Commission.' R. Aaron, R. D. Amado, and B.W. Lee, Phys. Rev. 121, 319
(1961).

~ K. R. Greider and L. R. Dodd, Phys. Rev. 146, 671 (1966).

in general divergent. The reasons for the divergence and
methods for curing it have been explained in a variety
of ways' —' and we brieQy review the problem below.

'L. D. Faddeev, Zh. Eksperim. i Teor. Fiz. 39, 145 (1960)
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vrhere

E=Eo+E

Eo= VGo+

(2)

(3)

contains all the disconnected diagrams. In Eq. (3), V is
one of the two-body pair interactions and Go+ is the
Green's function for all three particles propagating
freely. The divergence problem becomes apparent if we
attempt to 6nd the Neumann solution

T= (1+E+E' )I (4)

of Eq. (1).The series (4) obtained by iteration contains
a subseries in Eo,

3+Eo+Eo'+Eo3. ~ ~

which diverges. The divergence arises since the summed
series (5) is related to the t ma. trix for the two-body
interaction V and must be singular at the energies
corresponding to the bound states of the two-body
system. It is evident that the divergence will not, in
general, be cancelled by other terms in the series (4).'
Furthermore, other standard methods of solving inte-
gral equations, such as the Fredholm technique, are
equally futile in providing a solution of Eq. (1).

The problem of obtaining a convergent solution for
three-body scattering processes has been investigated
extensively by Faddeev, ~ Lovelace, ' steinberg, ' Rosen-
berg, ' and Amado. ' The conclusions reached by these
authors are essentially the same: In order to obtain a
nondivergent solution for the three-body amplitude,
it is necessary to replace the Lippmann-Schwinger
equation by a set of coupled integral equations. The
kernel in the coupled equations is a 3&3 matrix which,
when squared, contains no dangerous diagrams. These
equations, originally proposed by Faddeev, were the
6rst that gave a mathematically sound formulation of
the three-body scattering problem.

The divergence difhculties can be understood fairly
easily if the exact three-body amplitude T is vrritten in
an integral equation of the Lippmann-Schvringer type,
having the general form

T=I+ET.
In Eq. (1), the inhomogeneous term I is just the Born
term of the undistorted-Born formalism of Ref. 1, while
in Ref. 2, I is given by the distorted-wave Born (DWB)
term. The essential difhculty is that the singular nature
of the three-body kernel E of this equation invalidates
the standard methods of obtaining a solution. In the
language of graphs, the kernel has pathological proper-
ties because it contains the so-called dangerous diagrams
or disconnected diagrams. The dangerous diagrams are
those in which one of the three particles propagates
freely vrhile the other two particles interact via a two-
body potential. Such diagrams vrill always occur in the
kernel IC of Eq. (1) since it can be shown' ' that IC can
be separated into tvro parts

The success of these methods is due to the fact that
each of the two-body pair amplitudes has been already
solved, It is just this point —that the two-body ampli-
tudes must be known —that allows meaningful approxi-
mation methods. The dangerous diagrams in Eo of Eq.
(3) can be explicitly removed and summed as in the
subseries (5), which has physical meaning in terms of a
wave operator and is calculable if Eo contains a single
two-body interaction as in Eq. (3).' Then the series (5)
can be expressed in terms of the tvro-body I, matrix for
the interaction V. In other vrords, it is just the dis-
connected part or the troublesome part of the kernel
that we know how to sum and calculate in closed form.

The application of these methods by Lovelace and
others has been conhned to elementary-particle proc-
esses like the three-nucleon system at low energies,
where it is sufhcient to include a small number of bound
states and resonances in each two-body amplitude,
leading to a simpli6cation of the three basic equations.
This approximation, equivalent to the introduction of
separable potentials, appears to be less useful in nuclear
and atomic problems which are usually formulated with
local central potentials.

Ke present in this paper an approximation vrhich,
unlike the Faddeev-Lovelace solution, obtains just two
coupled integral equations (which can be trivially
solved for a single equation). However, it requires the
restriction either that the mass of one particle be much
larger than the other tvro, or that it be much smaller
than the other two. Our method obtains two coupled
integral equations instead of the usual three equations
of Faddeev and Lovelace, because we do not require
that only a single two-body potential appear in each of
the Green's functions G~ in the kernel matrix.

The Green's function used by Faddeev and Lovelace
1s

(6)

where Bo is the three-body kinetic-energy operator and
V; is one of the two-body pair potentials (i=a, P, y).
The subscript j. in G&+ indicates the presence of only one
two-body interaction (V; in the example above).
Instead, we use a Green's function which we designate
G2+, that contains two of the pair potentials, V, and V, ,

E ap V' —Vg+—ip—
A Green's function of this type is usable or solvable in
terms of known two-body states only if the kinematics
of the problem are such that the kinetic-energy operator
Po separates exactly into one part h, depending only on
r; (the argument of V;) plus a second part h;depending
only on r, (the argument of V;). This separation is
possible, for instance, if r; and x; are the coordinate

' F. Coester, Phys. Rev. 133, Bi516 (1964).
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vectors of two particles relative to a heavy third
particle (e.g. , two electrons plus a proton. ) It is also
possible if one of the coordinates r; gives the relative
separation of two heavy particles while the other (r,) is
the separation of the third light particle from either of
the massive ones (e.g. , two protons plus an electron).
We will call these types of Green's functions factorable
three-body Green's functions.

Of course, the explicit dependence on tw'o-body
amplitudes is accomplished more generally by the
Faddeev equations without any restriction on the
masses but with the disadvantage that not only are
there three coupled equations to be solved but that also
physical insight into a meaningful first-order approxi-
mation is lost. Our method obviates the need for
approximations like the separable potential to uncouple
the Faddeev equations, since only one integral equation
must be solved, and an evaluation of the transition
amplitude by the usual, more realistic two-body ampli-
tudes is possible. It is apparent that the approximation
may work well for many problems in nuclear and atomic
physics for which the mass conditions are satisfied
rather well. Our method, like the Faddeev method,
requires the knowledge of the two-body pair amplitudes
off the energy shell, which for the remainder of this
paper we assume are known and present no difhculties.

In Sec. II, the formal solution to the three-body
scattering problem is given under the mass restrictions
mentioned above. The resultant single integral equation
for the transition amplitude is obtained in a general
distorted-wave formalism. It is shown that the kernel
of the equation contains no dangerous diagrams, and
assuming w'ell-behaved two-body interactions, the
kernel is completely continuous.

The formulation of the three-body scattering problem
of Sec. II in terms of a single, tractable, integral equa-
tion allows us to consider the very important question
of what is a meaningful first-order approximation to the
scattering amplitude. The fact that the usual three-
body Born series or distorted-wave Born series of (4)
diverges makes the validity of many previous calcu-
lations of rearrangement scattering suspect. Many of
these calculations, like the distorted-wave Born
approximation, are intuitive models based primarily on
semiclassical concepts of direct reactions. However, it
is becoming increasingly clear' that intuitive direct-
reaction models may not aGord an adequate approxi-
mation to the solution of quantum-mechanical three-
body problems. We take the point of view here that a
meaningful model must provide a starting point for a
series of successively more accurate calculations of the
scattering amplitude.

By a comparison of the inhomogeneous terms of the
equations obtained in Sec. II, specialized to specific
processes, and the DWB inhomogeneous term of Eq.
(1), we are able to see how the usual DWB calculations
must be modified to provide true first order solutions.

In this paper, we do not attempt to show the conver-
gence rate of any practical, iterative solutions but
confine our attention to obtaining equations which are
soluble by available methods. However, it seems plausi-
ble that one of the advantages of the distorted-wave
representation is the rapid convergence of an iterative
solution. As we shall see in Sec. III, the lowest order
term in this representation often has each of the two-
body subsystems interacting to all orders of the tw'o-

body potential.
A certain freedom is available in the choice of the

inhomogeneous term by the methods of Sec. II, and
Sec. III contains a description of the class of solutions
which contain the DWB model as a part of the lowest
order term. Section IV describes another class of solu-
tions in which the usual DWB model does not appear
at all in the lowest order term. Finally, in Sec. V, the
implications of the results, and further applications of
the methods are discussed.

II. FORMAL SOLUTION OF THE THREE-
BODY AMPLITUDE

H =HO+V =—H—e,
and for the exit channel P,

&p= &o+ Vp=&—vp.

(10)

Equations (10) and (11)define the channel interactions
and ep, as well as the channel Hamiltonians H and

Hp. These Hamiltonians have energy eigenfunctions P„
and @p, respectively, with eigenvalue E.

The exact transition amplitude for the reaction (8)

We consider the amplitude for a nonrelativistic three-
body rearrangement process for spinless particles and
use the notation of Ref. 2. LThis formulation may be
easily extended for a wider class of three-body reactions
other than that given by Eq. (8), below. ] We review
briefly the results of Ref. 2, and refer the reader to that
paper for the derivations. Consider three particles a, P,
and p interacting through two-body potentials V, Vp,
and V„. In this notation the potential V, (i =ot, P, y) is
the pair interaction between those two particles not
labeled with the index i. We assume an initial channel n
in which the particle designated n is free while P and y
are bound by the interaction V, and a anal channel P
in which P is free while a and y are bound via Vs. The
rearrangement process is written schematically,

~+ (0+v) ~P+ (~+v),
where a parenthesis indicates a bound state, The
complete Hamiltonian for all particles is

&=&o+V.+Vp+V„
where Bo is the kinetic-energy operator for the relative
motion of the three particles. The Hamiltonian for the
entrance channel n is
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is given by Eq. (6) of Ref. 2,

Tp== Apl Up- I&-) (12)

K=~p '(vp wp')Gp+— (17)

contains the dangerous diagrams and upon iteration
produces the divergence discussed in the Introduction.
With this brief resume of Ref. 2, we are ready to in-
vestigate nondivergent solutions for Up, by two
diferent, though equivalent methods, which lead to
Eqs. (20) and (34) below.

An obvious method of overcoming the difhculties
that arise from the disconnected diagrams in the kernel
of Eq. (17) is to explicitly subtract all the dangerous
diagrams from E. This procedure is not as systematic
as the solution in terms of two coupled integral equa-
tions introduced later, but it exhibits the main principle
of our method. (We use the distorted-wave formalism
of Ref. 2, although the methods and results are equally
applicable to the ordinary nondistorted Born formula-
tion for which w =wp=0. ) We rewrite Eq. (14) as

ol
Up, = Up,

—nws+(K —Eo)Up +KoUp

(1 Ko)Up, =Up nwn+—(K—Ko)Up, . (18)

It was found in Ref. 2 that the transition operator Up
in the distorted-wave formulation of the Lippmann-
Schwinger equation is

Up= =~p 'f(v- w—-)+(vp w—p')G'(v=w-)7~-', (13)

fcf. Eqs. (24) and (34) of Ref. 27.
The corresponding integral equation for Up is

Up, ——oop t(v —w )(o ++cop t(vp —wpt)Gp+Up —. (14)

Equations similar to (12), (13), and (14) hold for Tp +
and Up +, and can be found in Ref. 2. For the discussion
that follows, we restrict ourselves to Tp and Up . In
Eq. (14),w is a model interaction which must be chosen
so that it does not connect p with @p while my is an
interaction whose choice is completely free. The wave
operator or + operating on p gives scattering states due
to the potential m . Likewise the wave operator cop

gives the scattering of the 6nal state pp due to mp. The
Green's function G+ in Eq. (13) is the complete Green's
function, G+= (E—II+io) ', whereas Gp+ in Eq. (14)
is defined by

Gp+= fE—IIp+io7 '. (15)

We note that Eq. (14) has the general form of the
integral equation given in Eq. (1).The inhomogeneous
term is

I=cup t(v —w )a) +=—Up w (16)

and gives the distorted-wave Born amplitude for
rearrangement scattering,

Tp w=(If' ~Upp, ~(y )
fsee Eq. (29) of Ref. 27. The kernel in Eq. (14),

= 1+(vp —wp')
(vp wp )+vo-

(21)

is just the wave operator for the interaction (vp —wpt)
and, with a suitable choice for mp, should be calculable
without encountering any pathologies. ' If the distorting
potential wp is chosen such that either (a) only a single
two-body potential appears in (1—Eo) ', or (b) the
Green's function in (1—K,)—' is factorable, then the
operator (1—Ko) ' is a bounded operator, o ' and its
product with the completely continuous (or Schmidt)
operator (K Ko) yields a—nother Schmidt operator K',
where

K'= (1—Ko) '(K—Eo). (22)

A speci6c example of this procedure will be considered
in Sec. IV.

A meaningful solution to the scattering problem is
now possible either by iteration of the new inhomoge-
neous term (1—Eo) ' Up, n~ or by other methods that
apply to integral equations for which the kernel is
completely continuous. ' In any case, the new in-
homogeneous term

(1 K )
—1

Up
—DWB (23)

has at least a chance of being shown to be a true 6rst
approximation to the exact amplitude, whereas the pure
distorted-wave Born term Up does not. '

There may be applications for which (1—Eo) ' has
little elfect and the inhomogeneous term of Eq. (23) is
well represented by Up, n~. However, Eq. (23) or its
more general form Eq. (34), permits an explicit calcu-
lation of a genuine irst approximation to Up, and by
obtaining a quantitative evaluation of this term,
the accuracy and applicability of the distorted-wave
Born model for the scattering process is determied.

Our second solution for Up, equivalent to Eq. (20),
' B.Buck and J.R. Rook, Nucl. Phys. 67, 504 (1965).

The choice of the kernel Eo is free, except that it must
at Least contain the pathological part of E.For instance,
in connection with Eq. (17), or Eq. (38) of Ref. 2, Ko
could be taken as

K,= (vp —wpt)Go+, (19)

where Go+ is the free three-particle Green's function. By
eliminating all the dangerous diagrams in this way, we
assume that the new operator (K—Ko) is completely
continuous. 4' lf we multiply Eq. (18) on the left by
(1—Ko)

—', we 6nd a new integral equation and our 6rst
solution for Up —,

Up = (1 Ko) '—Up w +(1—Eo) (K Ko)U—p
(20)

The operator (1—Ko)
—' is rather simple if Ko has the

general form of Eq. (19), since

(1—Ko)-'= (1—
(vp

—wp')Go) '
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Cp
E—a,—V,—~p~yi&

and the distorted-wave operator &op,

(31)

cop- = 1y u p. (32)
E—Ho —Vp —mp —ie

Comparison of Eq. (29) with Eq. (24) yields the second
of the two integral equations,

U, = (v w)&u ++v+p+U—p (33)

is obtained in terms of coupled integral equations. The
general form of the Faddeev-Lovelace integral equations
for (channel n) —+ (channel P) is obtained by expressing
the operator Up in terms of the operators U for
(channel a) —+ (channel n), and U» for (channel o) ~
(channel &), and if necessary, Uv

—for (channel n) »

(channel 0), channel 0 being the channel in which all
particles propagate freely. This procedure leads to the
coupled equations of Refs. 3, 4, and 5. However, under
the mass conditions set down above, it is only necessary
to write Up

—in terms of one other operator, which we
call U, . The channel "x" is as yet unspecified, and,
as we shall see, its choice leads to a certain freedom for
the kernel of the final single integral equation for Up„.
This freedom in the kernel often allows one to choose
between several sets of the two-body intermediate
states that will eventually appear in the inhomogeneous
term.

We return to Eq. (13) for the operator Up

Up- =~p '[(v- ~-)+(vp ~ )pG'( -v~-)]~-', (24)

and write the general operator identity

G+ —
g +(1+v++] (25)

where e, is a potential or sum of potentials as yet
unspecified. From Eq. (25) it is evident that

g,+= $E H+vg+»c]—
= $E—Hp V~ —Vp —V»+v,—+ic] ' (26)

Substitution of Eq. (25) into Eq. (24) obtains the first
of the two integral equations,

Up= =~p '(v=~-)~-'+~p '(vp ~p')g'U-, (27)

where
U,.—= (v —w.)co ++v&+(v —u )s).+. (28)

By repeating this same procedure, we can express U,
in terms of Up

U —= (v —m )co ++v gp+L1+ (vp
—Mp~)G+] (v —n )or +

= (v rv )(u ++v—+p+cop t

X$1+ (vp —wp~)G+](w. —w. )co.+, (29)
where

Gp Mp ~=gp (30)

Equation (30) follows from Eq. (15) and from the
definitions of gp+,

%=cop ~(vp —apt)g +v+p+, (36)

and by suitable choice of the potentials z p and e, each
of which is completely arbitrary, ' E can be made to be
connected. To examine this point further, we look at
that part of E that could be most troublesome, by
taking only the free Green's function Go+ in the ex-
pansion of both g,+ and Gp+, and by taking only the
unit operator in the wave operator cop ~. Then the
pertinent part of K is

Ito= (vp —apt)Gv+v Go+. (37)

Certainly if Eo is well-behaved, the remainder, (K—Ev),
will also in general be well-behaved. The divergence
difhculties of Refs. 1 and 2 can now be systematically
eliminated by requiring that Eo contain no disconnected
diagrams. This condition is met if no two-body potential
in (vp —wpt) is repeated in v, . It is generally possible,
under the mass approximation already made, to find

Equations (27) and (33) are the two coupled integral
equations for Up which can be solved if the kernel is
completely continuous and if the Green's functions Gp+

and g + are manageable. The first of these, Gp+, given in
Eq. (15), is just the three-body Green's function with
the single potential Vp, and requires only the knowledge
of the (n+p) system, which we have assumed already
solved. The other Green's function g

+ will in general
contain two potentials, and can be solved for those
cases that satisfy the mass condition discussed earlier.

The two integral equations (27) and (33) provide our
second solution for Up . However, it is more instructive
to combine them and obtain a single integral equation
of the form of Eq. (1) for the transition matrix. Sub-
stituting Eq. (33) into Eq. (27), we obtain finally,

Up
—=(gp—t(v —~ )(g ++(gp—

t(vp —~pt)g +(v —~ )~ +

+~p (vp ~8 )g* v+p Up (34)

This integral equation is the desired end result of our
manipulations, and should be compared with our first
solution given by Eq. (20).

We conclude our derivation with a brief discussion of
the terms in Eq. (34). The inhomogeneous term in this
equation is

I=(up t((v —u )+ (vp —rvpt)g, +(v —w )]co +, (35)

and is similar to the inhomogeneous term of Eq. (23),
except that the intermediate states represented by g,+,
as yet unspecified, are explicitly displayed in Eq. (35).
The important thing to note is that the direct reaction
term cop ~(v —w )ar + always appears with the term
cop t[(vp —wp&)g, +(v —w )]o& +, representing excitations
to the two-body intermediate states in the spectrum
of g . Furthermore, it is this combination of terms
which is the mathematically meaningful first approxima-
tion to the exact amplitude, rather than the Born term
alone. ' '

The kernel of the integral equation (34) is
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at least one set of potentials we and v, such that: (1) Zp
is connected and (2) all Green's functions are calculable.
That is, the Green's functions must obey the conditions
set down following Kq. (21).They must either be of the
two-body form of Eq. (6) in which case they present no
problem, or they must be factorable three-body Green's
functions, of the form of Eq. (7), and obeying the mass
restrictions made following Kq. (7).

If it turns out that for a particular reaction, the
conditions (1) and (2) above are met with a variety of
potentials mp and v„ then the choice between the several
sets of potentials can be determined by the rapidity of
convergence of the iteration procedure for a particular
set, or can be made on physical grounds based on the
importance of particular two-body intermediate states
in the spectrum of g,+, appearing in the inhomogeneous
term, Eq. (35).

To complete this section, we write without derivation
the relevant integral equations for the opeartor Up+
that obtains the transition amplitude Tp+ LSee Eq.
(27) of Ref. 2j,

Ue-+=~e '(ve we')—~.++Ue'g*+(v- w-)~—-', (3g)

Us*+ =~e '(ve we")+ U—e-+G.+v' (39)

These two coupled equations combine to yield the
single integral equation for Up +,

Ue +=cue t(ve —wet)cv ++ppe t(ve —we~)g,+(v —w )a& +

+Ue+G+v g+(v —w)pp+. (40)

The inhomogeneous part

~'=~e 'Dve we')+(ve—we')g'(v—. w-)3~' —(41)

and the kernel

E'= G +v,g.+(v w. )&u
+—(42)

can be compared with I and E of Eqs. (35) and (36),
respectively. Note that the second term (added to the
DWB term) in Eq. (41) has apparently the same form
as the corresponding second term in Kq. (35). The
difference between these two forms arises from the fact
that in Eq. (35), w must be chosen so as not to lead to
the rearranged state Pp while mp is completely free. The
opposite is true of Eq. (41): we must not lead to the
rearranged state p while m is free. %hether one chooses
the post or prior forms of the integral equations (34) or
(40) will depend on convenience of calculation for the
specific physical process considered.

However, in either case, one must choose v, and mp
in Eq. (34), or v, and w in Eq. (40) so that the kernel
of the integral equation contains no disconnected
diagrams. Then one must either try to solve for the
exact amplitude directly, 4 ' or use the approximation in
which the inhomogeneous term is the lowest order
approximation to the total amplitude. If the latter view
is taken, the particular choice of v and mp that gave the
connected kernel will also determine the mathematically

meaningful distorted-wave approximation. The follow-
ing two sections give specific examples of this latter
procedure.

III. REARRANGEMENT SCATTEMNG
EXPRESSED IN TERMS OF THE

DWB AMPLITUDE

The integral equation (34) for Ue can be formulated
in terms of the usual distorted-wave methods" by
choosing cop

— as the exit-channel elastic-scattering
operator, and co + as the entrance-channel elastic-
scattering operator. This choice for ~ + satisfies the
condition (20) of Ref. 2 in that co + (or w ) does not lead
to the rearranged state P. On the other hand, since we
is completely arbitrary in this formulation, the usual
distorted-wave method picks out a specie model for
ppe (or we), in requiring that it represent elastic scatter-
ing. The elastic-scattering operators co + and cop are
then obtained from optical-model potentials w and mp,

respectively, and these potentials are usually chosen to
produce the best fit to the measured elastic scattering
in the particular channel. "

Since a part of vp is cancelled by mp in the kernel Eq.
(36) of the integral equation (34), one can only choose
the potential v, after knowing what part of vs= V~+ V
remains in the expression (ve —wet). This is only
possible if mp is known, which means that the particular
exit channel ti must be specified. Therefore, it is appar-
ent that the preceding generality must be abandoned
and particular reactions considered.

A. The (P,n) Knockout Reaction

We choose as the first example the (p, n) knockout
reaction on a heavy nucleus, and ignore spin and charge
exchange effects. The three particles in this model are,
n=proton, P=neutron, y=inert core. The distorted-
wave theory approximates the exit-channel (neutron
+residual nucleus) interaction by V, the neutron-core
interaction. The other potentials are Vp

——proton-core
interaction, and V~= neutron-proton potential. Under
this approximation, (ve —wei) = V~, which leaves three
obvious choices for v, such that E in Eq. (36) remains
connected, i.e., such that V~ is not repeated in E:

(a) v.=V. ,

(b) v*=Ve

(c) v, =V +Ve.
(43)

The corresponding Green's functions are from Eq. (26):

(a) g+=(E Hp Ve—V,+ip) ', — —
(b) g+=(E Hp V V„+ip) ', —(44—)—
(c) g+=(E Hp V~+ip) '. — —

' W. Tobocman, Theory of Direct Nuclear Reactions (Oxford
University Press, London, 1961)."See, for example, N. Austern, Selected Topicsin Nuclear Theory
(International Atomic Energy Agency, Vienna, 1963).
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It is evident that the Green's functions (a) and (b)
above are nonfactorable three-body Green's functions
and are not calculable even under the mass approxi-
mations made earlier. In each case, the two potentials
(V +V„) or (Vs+V„) are functions of coordinates in
which the kinetic-energy operator does not separate.
Thus the choice (c) gives the only calculable one for use
in our integral equation.

With the choice (c) of Eq. (43), the inhomogeneous
term in Eq. (35) becomes

I=cop t(V,+V,G,+V,)(u+, (45)

since in the distorted-wave model m Vp and hence
(v —w ) = V~. The operator appearing in the paren-
theses of Eq. (45) is just t„ the two-body neutron-
proton (matrix in which the particle y (i.e., the core)
propagates freely. As a consequence, for the knockout
reaction we 6nd the not too surprising result that it is
t, (rather than the V„of the DWB) that gives the
mathematically meaningful 6rst-order term in the
distorted-wave picture. It should be emphasized that
t„ is the free neutron-proton l matrix, for which neither
the neutron nor proton interacts with the core.

Insofar as V~ accurately represents t~, the DWB
model will be successful in providing a 6rst-order
approximation. This is apparently the case for electron-
hydrogen scattering at high energies. "However, for the
strong interactions found in the neutron-proton system,
it is unlikely that V~ is ever a good approximation to
I~; that is, the Born approximation is rather bad for
strong interactions at nonrelativistic energies. ' Cer-
tainly if the energy of the reaction is low enough so that
the bound triplet deuteron and the singlet n presonan-ce
are important in intermediate states, the Born term is
manifestly inadequate. Even in the higher energy
regions, the normalization of the DWB amplitude
depends on V~(= V„~) which, in general, is quite
different from the normalization based on I~, and again
the Born approximation may fail. In any case, it should
not be dificult to calculate the new inhomogeneous
term, Eq. (45), by using one of the various models for
the free ts pt matri-x off the energy shell proposed by
several authors. 4 '4

B. Deuteron Stripping and Pickup Reactions

As our second example we consider the well-known
and often-used deuteron pickup reaction. (The analo-
gous deuteron stripping reaction can be obtained in its
usual distorted-wave form from the amplitude Tp + by
applying the results below to the integral equation for
Up+, Kq. (40)$. As in the knockout reaction, the
entrance-channel elastic interaction m is approximated
by the proton-core potential, which for pickup is V~.

'2 E. Gerjuoy, Rev. Mod. Phys. 33, 544 (1961).
'8 M. L. Goldberger and K. M. Watson, Collision Theory (John

Wiley 8t Sons, New York, 1964), p. 307."K.L. Kowalski, Phys. Rev. Letters 15, 798 (1965); H. P
Noyes, ibad. 15, 538 (1965).

The neutron-core potential is V, and the neutron-

proton potential Vp. The usual distorted-wave method
then chooses the exit-channel potential mp as the elastic
deuteron-core potential. With this choice, we 6nd from

Kq. (37) that the possible pathological part of the kernel
ls

Eo (V,——+V —wst)G0+s,GO+, (46)

from which it is apparent that v, must be set equal to
Vp, the neutron-proton potential, if E0 is to be well-

behaved, i.e., contain no disconnected diagrams. Then
the Green's function g,+ is

g,+= (E Ho V—V—~—+ie) ' . (47)

The new meaningful 6rst approximation to the transi-
tion operator Us is, by Eq. (35),

I= t V+(V +V —w&t)

X Vp (o+. (48)
~—&o—V —V +is

The spectrum of intermediate states contained in the
second term of Eq. (48) are those of proton-core
(interacting via V ) and neutron+core (interacting
via V,).Although both V and V„appear in the Green's
function, this operator is of the factorable three-body
type under the mass condition of an in6nitely heavy
core made in the previous sections. Consequently, the
spectrum of states is calculable in terms of the separate
neutron-core and proton-core Green's functions. It is
not at all evident how important these intermediate
states are, compared with the pure DWB term,
cop ~V~+. However, a calculation, or at least an
estimate, is now possible with Eq. (48).

A calculational simpli6cation of the second term may
be reasonable if it is assumed that the deuteron-core
interaction my approximately cancels part of the poten-
tials (V +V~). For example, at very low energies, the
important part of mp is the deuteron-core Coulomb
potential which is approximately cancelled by the
proton-core Coulomb potential in V~. The errors in this
approximation depend on the polarizability of the deu-
teron, which has been shown to be small by Clement'5
and by Kerman and Gibson. "

At higher energies, the dif6culty of incomplete can-
cellation of the elastic deuteron-core and nucleon-core
potentials inherent in the usual distorted-wave theory
is overcome in several ways. First, the deuteron-core
potential mp could be chosen so as to provide the mux-
imgm cancellation in (V„+V —wst) of Kq. (48), thus
minimizing the contribution of the intermediate states.
This choice of mp would undoubtedly not 6t the experi-
mental elastic scattering in the P channel; however, as
we have seen, zap is completely arbitrary anyway and
"C. F. Clement, Phys. Rev. 128, 2728 (1962)."A. K. Kerman and F. P. Gibson, Argonne National Labora-

tory Report No. ANL-6848, p. 43 (unpublished).
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need not represent the P-channel optical-model poten-
tial. Calculations with this choice of mp are in progress
and the results appear quite promising. The second
obvious way to avoid the incomplete cancellation of mp

is to never introduce the deuteron-core potential in the
6rst place, i.e., let mp ——0. By avoiding such artihcial
potentials between two composite systems (like the
deuteron and the core), we can avoid both the difhculty
of the theoretical justi6cation of the existence of
equivalent local potentials of this type, as well as the
problem of incomplete cancellation of potentials. This
point will be discussed further in Sec. lV.

and this operator factors into the product of the
separate neutron-core scattering operator and the
proton-core operator. [See Eq. (56).j Since vo contains
all potentials and w, = V +V~, the kernel E of Eq. (36)
is now

E=cdp ~(vo —wo)gz+v+Gcc+

=coo ~Vpg,+~+o+. (50)

As with the (p,u) reaction, there are apparently three
choices for ~: V~, V, or V~+V . But, as was the case
in the former process, only the choice e =V~+V
permits a factorable or calculable three-body Green's
function, g += (E Ho Vcc+ic) '=Gcc+- —

Thus the inhomogeneous term, the 6rst-order
approximation to Uo, is [by Eq. (35)]

I=(oo t(Vcc+VpGcc+Vcc)a) +

=coo ~t~+. (51)

Thus the lowest order amplitude is expressed in terms
of tp, the neutron-proton t matrix which appeared before
in Eq. (45) for the (p,u) knockout process. As was the
case for the (p,u) reaction, this is also not a surprising
result for the breakup reaction. The probable im-
portance of using tp, rather than the more usual Born
term Vp, has already been conjectured and discussed by

C. The Breakup Reaction

As the next example of a speci6c reaction described
by the usual distorted-wave formalism, we consider the
(p,pu) reaction on a heavy nucleus. The particles are
called by the same names here as in the (p,d) reaction:
a=proton, P=core, y=neutron. The transition opera-
tor Up now becomes Uo„, the 6nal state being desig-
nated "0"when all three particles are free. The integral
equation (34) for Up holds also for Uo, if "0" is
substituted everywhere for "P".'

The distorted-wave theory again approximates the
entrance-channel elastic-scattering potential w by the
proton-core potential V~. The exit channel is now
distorted via ~o which contains both the proton-core
potential V~ as well as the neutron-core potential V .
That is,

cdo =[1+(E—Ho —V —V —i&) '(V+V )j (49)

McCarthy for (p, 2p) reactions"; what we have shown
here is that ice automatically appears in the lowest order
term if one is interested in a rigorous approximation
scheme. [However, see Eq. (64) for a somewhat differ-
ent result for the lowest order term. $

As was the case for rearrangement scattering, the model
potentials rv and tv ~ differ in that w (or the wave
operator a& +) must not connect g with g ., while w ~ is
completely free. Et is now possible to write two coupled
integral equations for U ~ and U, where the channel
x is as yet unspecified, similar to Eqs. (27) and (33) for
the rearrangement case. These two integral equations
then lead to the single integral equation

U ~ =cd &(v —w )(g +

+cd t(v —rv t)g.+(v —w.)cd+

+o& ~(v —w t)g+v, G+U ~ —. (54)

Again, in analogy with the rearrangement case, the
spectrum of states g+ in the inhomogeneous term
depends on the choice of v, in the kernel of Eq. (54).
For the (p,p') case considered here as an example, we
take zv ~ as the proton-core potential Vp, so that
(v —w .)= V~, the proton-nucleon potential of the
usual DAB. Then to produce a connected kernel, the
choices for ~, and the corresponding Green's function
g,+ are the same as in Eqs. (43) and (44) for the knock-
out reaction. Again, only the choice e,= Vp+ V yields
a calculable Green's function, g,+= (E—Ho —V~+ie) '

"K. L. Lim and E. E. McCarthy, Phys. Rev. Letters 13, 446
(r9u).

D. Inelastic Excitation

As the last example of these methods, we consider the
three-body description of inelastic scattering for which
both the entrance- and exit-channel states are eigen-
functions of the same channel Hamiltonian H . Particle
cr is incident on the bound (J3+&) system (in its ground
state) in the entrance channel, and the same particle n
leaves the (P+y) system in a specific excited state
called n' in the exit channel. This three-body model
would apply in the "microscopic" description of (p,p')
reactions, for instance, for which P is a nucleon bound
to the massive core y.

The exact matrix element T ~ is obtained from the
exact three-body transition operator U ~, in a manner
similar to Eq. (12),

(52)

The prime serves to indicate that the 6nal state P and
the initial state p are diGerent eigenfunctions of the
channel Hamiltonian II . The transition operator is
given by Eq. (13), if P is replaced by n'.

U~~~ =c0~ t (v~ wa)(da-

+(u .—~(v —w .t)G+(v —w )(o +. (53)
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=G~+. Hence, the inhomogeneous term the wave operator

I=(o t(V„+V~G„+V~)u) +=oi ~t~ + (55)

gives the mathematically meaningful first-order term
for inelastic scattering. Here again, the mathematically
correct lowest order interaction operator is t„ the free
proton-nucleon $ matrix, rather than the potential V~
of the DWB model.

It should be noted finally that the form of the first-
order term of Eq. (51) for the (p,pn) reaction as well as

Eq. (48) for the (p,d) process, Eq. (45) for the (p,n)
reaction, and Kq. (55) for (p,p') inelastic scattering is
not unique. The next section will obtain forms for the
inhomogeneous term in the (connected) integral
equation different from those above, by relaxing the
condition that demands the usual elastic exit-channel
distorted-wave choice for ioe (or wo).

IV. REARRANGEMENT SCATTERING
EXPRESSED IN TERMS OF THE

BREAKUP AMPLITUDE

In the preceding section the final-state wave opera-
tors ~p and coo were chosen to conform with the usual
DWB picture of rearrangement and breakup reactions,
respectively. As has been indicated, ' these wave
operators and the corresponding potentials mp and mo

are, however, quite arbitrary in the post forms of the
equations, and in this section, we show that other
choices for cop and uo

—lead to integral equations for
Up and Uo with well-behaved kernels. In general,
there are many different ways of constructing an
acceptable kernel. In the specific case of pickup (or
stripping, if Ue is used) the equations derived below

appear to have valuable advantages over the usual
DWB treatment. The method described in this section
is characterized by setting mp ——0, thus avoiding ambigu-
ous potentials such as the deuteron-nucleus potential.
As a result, we find the DWB amphtude for a breakup

process appearing as the first term in the iterative
expansion for the rearrangement amptitude, and find a
general relation between the transition operators for
rearrangement and breakup.

A. Rearrangement Scattering (Deuteron Pickup}

We recall from Sec. II that the essential point in
dealing with the divergence problem was to sum those
disconnected diagrams, for which one particle does not
interact with the other two particles, into a wave
operator (21). This operator was required to be calcu-
lable in terms of known two-body operators. Now if
particle P is very massive compared with particles o, and
y (and this is the essential restriction of this section),
it is not necessary to introduce an auxiliary potential
zvp to cancel a part of the channel interaction vp, since

1+ vp
E—Bo—vp+i e

1+
E—Bo—V —V~+i e

is already factorable. This follows from the exact
separation of the kinetic-energy operator Bo into two

parts h and h, for the kinetic energy of particles 0. and

y relative to the center of mass of particle P. Thus

1+ vp
E—Bo—vp+ie

l~.+(E)= 1+— — V.
E h V+ie——(5g)

and E~ and E are the kinetic energies of y and 0.
relative to the center of mass. Thus if the two-body
problems have been solved completely, and in the limit
that the mass of particle P becomes infinite, the operator
(56) can be calculated and there is no need to introduce
a distorting potential mp.

This choice, zap
——0, gives cop ~ ——1, and the inhomoge-

neous term of the integral equation (20) for Ue becomes

I= (1—Ko)
—'Ue.— ——X

—
uE,

—t(v.—W.)co.+. (59)

The new kernel is

E= (1—Ep) '(Z —Eo) =li 9 ~ iveGO+VpGe+

=P tlat,
—

~ —1jteGo+, (60)

where the two-body wave operators P ~, X~ ~ of Eq.
(59) and the two-body transition operator te for the
scattering of particles n and y are to be evaluated off the
energy shell.

1 V
E h h„—V ——V,—+ie

1
X 1+ V, . (56)

E—h —h~ —V~+i &

When this operator acts on a state l@0}=la,y},where all
three particles are free, the resulting state is the product
of two distorted waves describing particles o. and y
scattering independently on P via the potentials V~ and
V, respectively. Therefore, the three-body operator
(56) inay be replaced by the product of two-body wave
operators, evaluated off the energy shell:

1
1+ . ee lo,v}

E—Bo—vp+i &

= li.+(E—E,) l }X,+(E—E.) l ), (57)
where
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The kernel (60) obviously satisfies the requirement
that it contain no disconnected diagrams since only the
scattered parts of the distorted waves (and interference
terms) are included. It was just the unit operator in the
wave operator cop t that was troublesome in the kernel
of our original equation (14). This result may also be
obtained directly from the general equation for the
kernel, Eq. (36), by noticing that if we

——0 and cue ~= 1,
then the choice e = Vp will not repeat a potential.

The physical interpretation of the inhomogeneous
term and the kernel may be readily seen by introducing
a complete set of free 0, and y states in the expression
(12) for the transition amplitude. For convenience let
us consider a deuteron pickup, (p,d) reaction, for which
particle 0. is a proton, y a neutron, and P the massive
core. Introducing a complete set of plane-wave proton
and neutron states relative to the core, and specifying
the distorting potential m, in the initial channel as the
proton-core interaction, we have

2'e==Z &ee I o,»&o,v I ~e= I e-& (61)
a, y

The amplitude (a,yI Up IP ) satisfies the equation

(a,~I Ve- Iy.&=&+-,~I~ ~;tVe .+Iy.)

+ g (a,~I@;tX„-t—1jteG,+I~',~'&

X(-',~ I
~~-l~.&. (62)

The lowest order term is the first term on the right-hand
side of Eq. (62) and has the following meaning: The
incident proton scatters elastically from the core
through the wave operator co +, then interacts with the
bound neutron via the potential Vp, the outgoing
proton and neutron scatter independently on the core
via the wave operators X t, X~ t. The probability
amplitude that they will then have the correct momenta,
etc., to form a deuteron in the final state is taken into
account in Eq. (61) by appropriately weighting the
breakup amplitude with the projection of the free
proton and neutron states on the wave function of the
deuteron. The wave operators are evaluated o8 the
energy shell since the breakup is unobserved. Successive
iterations of the kernel then allow the proton and
neutron to interact between scatterings from the core
to all orders through the two-body I, matrix Ip taken o6'
the energy shell.

One important advantage of the present formulation
is that in the lowest order approximation, Eq. (59), the
deuteron is not scattered as a point particle as it is in
the DWB approximation, which introduces the deu-
teron-core distorting potential. Such an optical-model
potential is not only ambiguous, but more important,
it does not reproduce the separate neutron-core and
proton-core scattering which, owing to the loose struc-
ture of the deuteron, are undoubtedly important in
physical pickup or stripping reactions. On the other

hand, the picture given here is that, in lowest order, the
neutron and proton scatter individually on the core,
without rescattering on each other via Vp. Thus the
DWB model [the first term in Eq. (48)7 and the
inhomogeneous term of Eq. (59) represent two extreme
viewpoints of deuteron scattering. In the former, the
deuteron never breaks up while scattering on the core
(although breakup is crudely described to some extent
by the imaginary part of the optical potential), whereas,
in the latter, the deuteron always dissociates. The
actual deuteron scattering lies between these two
extremes and is obtained approximately from calcu-
lation of the term involving neutron and proton
intermediate states in Eq. (48). It is obtained exactly
by solving either form of the integral equation for Up

Recently, Butler, " Tanifuji, " and Austern~ have
independently derived deuteron stripping amplitudes
based on a physical picture involving the free neutron
and proton scattering, similar to the one in this section.
However, they do not use the integral equation tech-
niques given here, and consequently they obtain calcu-
lable matrix elements only by direct simplification of
the three-body amplitudes. Their arguments, like those
used to give the D%8 model, are difEcult to justify
since estimates of the errors incurred are not possible.
However, Butler's fit to experiment" for Ca~(d, p)Ca4'
is in good agreement with the usual D%8 analysis. 2'

g
+

&—Bo—V~ —V +&~
(63)

which is a factorable three-body Green's function. The
resulting integral equation for Uo has the inhomoge-
neous term

I=X;V.-V;~V~.+, (64)

'8 S. T. Butler, Nature 207, 1346 (1965)."M. Tanifuji, Nucl. Phys. 58, 81 (1964).~ N. Austern, Brookhaven National Laboratory Report No.
BNL 948, 1965, p. 539 (unpublished)."S.T. Butler, R. G. Hewitt, and R. M. May, Phys. Rev.
Letters 15, 1033 (1965).~ L.L.Lee, Jr., J.P. Schi6er, B.Zeidman, G. R. Satchler, R. M.
Drisco, and R. H. Bassel, Phys. Rev. 136, B971 (1964).

B. The Breakup Reaction

The integral equation for the amplitude Uo for a
(p,pe) reaction was given in Sec. III.C in terms of the
usual distorted-wave formalism. One can alternatively
obtain a diferent expression for the breakup amplitude
which is closely related to the amplitude for pickup
given by Kq. (61). We take the distorting potential wo

in the final state as the interaction between the two
light particles (proton and neutron), wo ——Ve, instead of
the customary interaction of each light particle with the
core [w&——se, cf. Kq. (49)j.Then a well-behaved kernel
is obtained from Eq. (36) by taking s,= Ve, and the
corresponding Green's function is



146 RIGOROUS SOLUTION OF THREE —B OD Y SCATTERI NG PROCESSES 685

and the kernel is

K=Xs—tP. 9 ~ t—11VsGO+. (65)

It is interesting to note that the lowest order term, Eq.
(64), is obtained from that of the usual distorted-wave
method, Eq. (51), by commutation of the operators
Xs t and X tX~ ~(=coo "). Note that Xs t in Eq. (51)
acts on Vs to yield the neutron-proton t matrix fs before
the proton-core and neutron-core final-state scattering
occurs, whereas in Eq. (64) Xs t serves as a final-state
interaction after the neutron and proton have scattered
separately on the core via 'A t and X~

—t.
The connection between the breakup amplitude with

the pickup amplitude is obtained by comparing Eqs.
(64) and (65) for (p,pl) with Eqs. (59) and (60) for
(p,d). This comparison yields the identity

(66)

where Xs t is defined by Eq. (58). Thus if the pickup
amplitude (or a lowest order approximation to it) is
known, the breakup amplitude can be calculated by
application of the final-state neutron-proton interaction
operator Xp t. Conversely, a knowledge of the breakup
amplitude gives, as we have already seen in Eq. (59),
the amplitude for pickup.

V. DISCUSSION

The integral equations derived in the preceding
sections afford a calculable method of obtaining the
three-body transition amplitude for a wide variety of
interesting reactions. This simplification of the usual
three-body Faddeev-Lovelace equations is obtained
here for two reasons: First, the mass restriction allows
the use of factorable three body Green's functions which
would be uncalculable without this restriction. Second,
in many cases, the distorted-wave formalism permits
cancellations in the potentials (ss —est) of the general
kernel in Eq. (36), and as a consequence, the choice of
v, (and hence of the intermediate states of g,+) is not as
limited as it would have been without the use of dis-
torted waves. Both the mass restriction and the
distorted-wave formalism should also prove useful in
simplifying the connected integral equations for four-
body and more complicated many-body reactions.

However, it must be emphasized that the pioneering
work of Faddeev showed the way to the most general
solution of the three-body problem in terms of tractable
integral equations. Furthermore, Lovelace, Weinberg,
Amado and collaborators, and Rosenberg developed
and refined these general methods, in particular, for the
scattering of three bodies of comparable masses. Un-
fortunately, the significance of the work of these
authors has not been as widely recognized as it should,
particularly in the field of nuclear physics.

One reason for this perhaps is that the divergence of
the Born series or of the distorted-wave Born series is
not sufFicient to prove the Born approximation or the

distorted-wave Born approximation invalid. It is
possible that the Born or distorted-wave Born ampli-
tude may be shown to be valid approximations by
methods of solution which have yet to be formulated.
For example, it has been conjectured that the Born
amplitudes are perhaps first-order terms in asymptotic
expansions of the exact amplitude. "However, in the
absence of such a scheme it seems reasonable and
necessary in the authors' opinion, to at least question
the validity of these often-used "approximations. " A
general and rigorous mathematical proof that the
distorted-wave Born (or the ordinary Born) model is,
or is not valid, would be extremely valuable, but
probably diKcult to find.

A most promising approach to this problem is the
direct comparison of the DKB amplitude with an exact
calculation of the three-body amplitude for a simplified
model process, which is now possible using the Faddeev
equations, and extensions of these equations, such as
those developed in this paper. Of course, the work
involved in the exact calculation of real physical
interest is considerably greater than that in the DKB
model. One must know oG-energy shell amplitudes for
which the potentials at present are only defined phenom-
enologically on the energy shell (optical-model poten-
tials). Even if we are given these as yet unknown
amplitudes, the computer problem in solving for the
exact three-body amplitude is enormous.

So one might reasonably ask again from a general
standpoint to what extent the present DAB calcula-
tions are valid. The integral equations technique
presented here attempts to answer this question by
putting the DWB model into a wider and more rigorous
mathematical context than is customary. Under the
assumed mass conditions, we have arrived at rather
simple forms for the inhomogeneous part of the dis-
torted-wave integral equation for specific rearrange-
ment processes. Since the kernel of the integral equation
was chosen in each case to be connected, there is a
strong possibility that the inhomogeneous term is a
reasonable first approximation to the exact amplitude.
Although the convergence of the iterative solution must
be examined for each specific process, well-known
methods of improving the convergence rate are avail-
able when the integral equation has a connected or
completely continuous kernel. "As a consequence, we
have at least found a firm starting point for accurate
calculations.

The inhomogeneous term contains not only the DWB
amplitude, but also a term describing virtual excitations
in one (or at most two) of the two-body subsystems.
This additional term is like a second-order Born term,
and in principle is not difficult to calculate, especially
if the intermediate states are those of the nucleon-
nucleon system, which have received some theoretical

~ See Ref. 8, and also S. Weinberg, Phys. Rev. 131,440 (1963);
R. Sugar and R. Blankenbecler, ibid. 136, B472 (1964).
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attention lately. '" In any case, the magnitude of the
second-order term can now be estimated. The important
points are the following: It is the sum of the first Born
term and a term involving excitations of intermediate
states that together afford the meaningful 6rst approxi-
mation in the distorted-wave method, and a necessary
condition for the DAB model to be a realistic approxi-
mation is that the latter term be shown to be negligible.

A result similar to this is obtained from variational
methods in rearrangement processes. ~ In order that the
three-body transition amplitude Eq. (13) be stationary
for small variations of the wave functions, the correct
lowest order variational amplitude is the sum of the
6rst-order Born (or distorted-wave Born) amplitude
and a second-order term that involves the spectrum of
intermediate states of one of the two-body subsystems.
This result is very similar to our own and strengthens
our argument that both the direct-reaction DWB
approximation and the second-order DWB approxi-
mation must be calculated to obtain a meaningful
approximation in lowest order. An approximate
calculation of the second-order term for a deuteron
stripping reaction in the undistorted-wave representa-
tion has been made by Joachain, who 6nds its magni-
tude is of the same order as that of the first Born
term. " His result also lends concrete calculational
support to the argument that the pure direct-reaction
term, or the Born term, is not a general, demonstrable
6rst approximation to the three-body amplitude.

It has been recognized for several years that second-
order terms of this kind were necessary to understand
the inelastic excitations of collective nuclear states
induced by proton and neutron scattering. It was found
that the virtual excitation and de-excitation of strongly
coupled low-lying rotational states must be calculated
in addition to the usual direct excitation, in order to
explain experimental results. Although the general
spirit of these methods is similar to our own, there are
several differences, however, between these strong-
coupling calculations and the three-body model for
inelastic scattering of Sec. III.D. First, the usual
strong-coupling methods use a "macroscopic" reaction
model which is, in effect, a two-body collective-model
approximation to the actual many-body problem. ""
As a consequence, this model avoids the divergence
difhculties inherent in actual three- (and more) body
situations since the graphs for two-body kernels are not

~4 B.A. Lippmann, Phys. Rev. 102, 264 (1956).
~5 C. Joachain, Nucl. Phys. 64, 548 (1965).
~6 D. M. Chase, L. Wilets, and A. R. Edmonds, Phys. Rev. 110,

1080 (1958); and B. Margolis and E. S. Troubetzkoy, ibid. 106,
105 (195/).

~~ B.Suck, Phys. Rev. 127, 940 (1962}.
's See T. Tamura, Rev. Mod. Phys. 37, 679 (1965) for a review

of the coupled-channel methods.

disconnected. Second, even in the more realistic many-

body or "microscopic" models developed recently, "the
strong-coupling approximation would explicitly put a
truncated subset of target intermediate states, cor-
responding to a discrete set of bound states in the
spectrum of G + in our Eq. (54) and transitions between
these states would be caused by the potential V~.

However, the microscopic model, like the macro-
scopic model, again avoids the divergence problems
simply by ignoring the disconnected diagrams which
result from the unbound scattering states in the spec-
trum G+. In other words, by truncation of the spec-
trum of G +, all the disconnected diagrams are discarded.
Our philosophy is that one should not throw away
these dangerous diagrams; instead, the divergence
should 6rst be cured (by application of Faddeev-like
methods), and then approximations, like the truncation
of a set of states, can be made with a great deal more
mathematical justi6cation.

Speci6cally, for this case, we show in Eq. (55) the
effects of keeping and curing the divergences. The
mathematically meaningful calculation of the amplitude
is possible only if all the diagrams involving the two-

body interaction V~ have been previously summed into
the interaction operator t~, the t matrix for the y sub-
system. It is this operator rather than V~ which appears
in the kernel and causes transitions among the states in
the spectrum of G + when the complete integral equa-
tion is solved.

We should like to point out that the mass restrictions
of this paper may not yield a good approximation in
some physical processes, particularly at high energies.
It was found earlier that these same mass restrictions,
when used in a model for medium and high-energy
nuclear-rearrangement processes, gave results in strik-
ing disagreement with experiment. When the recoil
terms (terms of the order of the mass ratio of the light
particle to the heavy particle) were included, it was
found that they were not negligible and that they
changed the entire character of both the angular dis-
tribution as well as the magnitude of the reaction cross
sections. Furthermore, reasonable agreement with
experiment was obtained by the inclusion of recoil
effects. Although this previous work was carried out in
the framework of the DWB model, we would expect the
same general results to obtain in the framework of the
more exact 6rst-order calculation advocated here. Since
the recoil effects become important only at high
energies, our neglect of them in this paper is probably
justifiable for low-energy nuclear reactions, E&50 MeV.

~ N. K. Glendenning and M. Peneroni, Phys. Letters 14, 228
(1965); Phys. Re v. 144, 834 (1966); V. A. Madsen and
W. Tobocman, ibid. 139, 8864 (1965).~ L. R. Dodd and K. R. Greider, Phys. Rev. Letters 14, 959
(1965)~


