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The theory of electron scattering by molecules is presented in terms of Feshbach's projection-operator
formalism with special attention to the problem of molecular rotational excitation. The absolute orders of
magnitude and the energy dependence of the cross section for resonance rotational excitation are calculated
for the (Nm, e) system. The characteristic multipeak structure for resonance elastic scattering and vibrational
excitation is again found for resonance rotational excitation. A comparison of the calculated results with
experimental measurements is made for peak positions in the cross section for resonance elastic scattering,
which may be considered as a special case of resonance rotational excitation (i.e., Alp ——0). Cross sections for
simultaneous rotational and vibrational excitation of N2 are also calculated. The total partial cross sections
for resonance vibrational excitation are then obtained as a sum of all the corresponding partial cross sections
with di6erent allowed rotational transitions. The energy dependence of the newly obtained vibrational
excitation cross section compares favorably with experimental observations.

I. INTRODUCTIOE

'HK problem of rotational excitation has been
actively studied' ' not only because it is a funda-

mental scattering problem but also because it is an
important energy-loss mechanism for slow electrons in
molecular gases. Gerjuoy and Stein' pointed out that
the long range of the interaction between an electron
and the quadrupole moment of a molecule is the origin
of the large energy losses observed in laboratory swarm
experiments. Later, Dalgarno and Mo6etts added the
contribution due to polarization force to the rotational
excitation and pointed out that this may in some cases
result in a decrease in the cross section. There are
discrepancies between results of these calculations,
based upon the Born approximation with the higher
order terms in the potential neglected, and analysis of
swarm data. ' Recently, a number of papers appeared
pointing out the importance of the distortion sects on
the incident electron. 4 ' In all these studies, the possible
resonance rotational excitation was not considered.
In the present paper, we consider the possible resonance
excitation mechanism and the effects of its interference
on the direct excitation mechanisms for rotational
excitation.
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The plan of the paper is as follows: In Sec. II, the
theory for electron scattering by moleculesv is presented
in terms of Feshbach's projection-operator formalism'
with considerations of Fermi-Dirac statistics for the X
electrons. In Sec. III, we illustrate how this theory may
be applied to the problem of rotational excitation of
molecules by slow electron impact. Various approxima-
tions that may be of use are examined in some detail.
The theory is then applied to the scattering of elec-
trons by nitrogen molecules in Sec. IV. The ab-
solute orders of magnitude and the energy dependence
of the cross section for direct and resonance rotational
excitation are calculated for the (N&,e) system. A

comparison of the results with experimental measure-
ments is made for peak positions in the cross section for
resonance elastic scattering which may be considered
as a special case of resonance rotational excitation
(i.e. Alp ——0).The eRects on vibrational excitation due to
the degrees of freedom provided by possible accompany-
ing rotational transitions are discussed. The total
partial cross sections for resonance vibrational excita-
tion are then obtained. as a sum of all the corresponding
partial cross sections with different allowed rotational
transitions. The energy dependence of the newly
obtained vibrational excitation cross section is then
compared with that observed experimentally.

II. PROJECTION-OPERATOR FORMALISM
OF THE THEORY

The Schrodinger equation for an S-electron system
consisting of an incident electron and a target diatomic
molecule ab having Ep (1Vp

——X—1) molecular electrons
is in relative coordinates with respect to the center of
mass of the nuclei'

(2.1)
with

&=ICp(rp)+ Vp(rp r R)+Z p(r R) (2.2)

~ J. C. Y. Chen, J. Chem. Phys. 40, 3507 (1964). This paper is
referred to as Paper I.

H. Feshbach, Ann. Phys. (N. Y.) 19, 287 (1962).
'Atomic units are used through this paper except where

indicated otherwise.
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N0 Z~ Zb
Vo(rp, r, R)= Q Iro —r;I

~pa rpb
(2 3)

(—(2u) '~R'+ h. (R))xv.(R)= &7Pv.(R)

with

(2.5)

1+M,+Mo &o
H" (r, R) = —P i7,o+P"(r R), (2.6)

2(M.+Mo) '=i

where the ('s denote the assembly of the coordinates
(i.e. the r's) and spin projections of the electrons, H'
is the Born-Oppenheimer electronic Hamiltonian,
@=M,iVo/(M, +3Io), V' is the Laplacian operator, and
U" is the potential energy of the molecular electrons.
The Hamiltonian for the target molecule takes the
approximate form

H.,= —(2&)-'V,'+H ~(r, R) . (2.7)

Both the electronic wave functions C„and the nuclear
wave functions X7„,having the respective eigenvalues
h (R) and B~„,form a complete orthonormal set in
their corresponding spaces with variables r and E,
respectively.

In dealing with subexcitation electron impact where
no electronic excitation is energetically allowed, it is
desirable to project out from the total wave function
Y the open channels in which the target molecule
remains in a ground electronic state and to treat the
remaining part of the total wave function as a field for
generating effective potentials in the new Hamiltonian
for the projectile electron. That is, we want to construct
a projection operator P such that

PY($o,4R) =Z.,~.,(R)@{4.,(f )C' (t,R)), (28)

where 6 is the antisymmetrization operator operating
only on electrons, and the P's are the channel wave
functions of the incident electron. The appropriate
projection operator takes the form

P PelPnu (2 9)

where P" is the electronic projection operator and P""
is the nuclear projection operator.

where rp and r (denoting ri, r& rN, collectively) are
the incident and molecular electron coordinates,
respectively, Ep is the kinetic energy operator of the
incident electron, Vp is the interaction potential of the
incident electron with the target molecule, B,b is the
Hamiltonian for the target molecule, Y is the total
wave function for the scattering system (ab, e) having
the total energy E as the eigenvalue, and finally the
rp's (i.e. rp, and rpo) are the position vectors of the
incident electron with respect to the two nuclei having
the Z's as their charges.

It is assumed that the unperturbed molecule is
described by the set of Schrodinger equations

H"(r,R)C„(&,R) = $„(R)C„(t,R), (2.4)

Po""——ZY, Pv, =2,.I Xv,)(XV,I, (2.11)

where P~0's are the elementary nuclear projection
operators, and po sums over all the energetically allowed
nuclear states associated with the ground electronic
state. This implies that the remaining Hilbert space
1—P still contains a component of ground electronic
state C p associated with excited nuclear states which
are not summed over in Eq. (2.11).The auxiliary elec-
tronic Projection oPerator Op(gp, &p ) aPPearing in Eq.
(2.10) is expressed in terms of solutions of an inhomo-
geneous integral equation of the Fredholm type'; its
complexity increases with the number of electrons. For
two-electron scattering systems, we have the following
simple expression for Qp,

«(5o (o') = —
2 IC'o((o))(c'o(6) I. (2.12)

Operating on the total wave function Y(gp, ),R) by
the projection operator given by Eqs. (2.9), (2.10),
and (2.11), we obtain the desired equation [Eq. (2.8)j
with the channel wave functions $7o defined uniquely as

0vo(ko) =(Xvo(R)C'o(k) IT(4,$,R))
+(x.,(R)c'o(k) I e(tokyo') I

T(&o' k»)) (2 13)

In performing the scalar products in Eq. (2.13), we

integrate over the coordinates which are common to
both sides of the scalar products.

Now, let the complementary orthogonal components
of PY be denoted by QT, then Q= 1 P. Operating o—n
Eq. (2.1) with P and Q, we obtain"

(E PHP) PT =PHQ—T,

(E—QHQ) QY =QHPT.

(2.14a)

(2.14b)

Solving Eq. (2.14b) for QT and substituting into Eq.
(2.14a), we obtain'

(Tp+'0 E)PY=0, —(2.15)

I'|A'e note that the coupling matrix elements found in the
Born-oppenheimer separation are contained in Eqs. (2.14),
since more explicitly we have, for example,

HEY=X „(LEo(ro)+V(ro,r, R)+s„o)x,(Rg, (b)Co(8, R)——
2p

X[2(VR@o(&,R) j Va+ (VR~4(t', R) j]x„o(R)io~o(oo)j.

The electronic projection operator P" capable of
projecting out from the total wave function Y the anti-
symmetrized electronic wave function representing a
projectile electron with the target molecule in its ground
electronic state has the general appearance'

Pp"= OlIC'o)[1+ &o(]o,oo')&(C'ol Ol (2.10)

where 8p(&p fo ) is the auxiliary electronic Projection
operator. The nuclear projection operator P"" capable
of projecting out from the total wave function Y all
the energetically allowed nuclear states associated with
the ground electronic state has the form
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with
Tp= P(Kp+H, o)P, (2.16)

&'=2-' PHQI+-)(~ —lf'-) '(+-IQHP (2 2O)

F=1+(F. T—, &—+t',q) 'W-'F, (2.21)
' +" Q' — Q) 'Q "'"

Pyp&+&=Pelf. &+&+(Z—up+', )- ~PPpi+& (2.22)
The last term in Eq. (2.17) is the nonlocal eRective
potential generated by QT. Equation (2.15) is iden-
tical to Eq. (2.22) in Paper I,' except now Eq.
(2.15) is properly antisymmetrized. We may divide the
potential into two components: 'U=%,+%.'. The first
component 'll, gives rise to the direct scattering which
represents the propagation of a projectile electron in
the field of the target molecule in its ground electronic
state and which includes both the eGects of distant
resonance and exchange scattering. The second compo-
nent %.' gives rise to the resonance scattering which
represents compound state formation involving excited
states of the target molecule.

The transition matrix 'Ep(vp ~ vp ) describing transi-
tions from the incident channel vp (the initial nuclear
state) to channel vp' (the final nuclear state) with the
electronic state of the target molecule remaining in its
ground state is"

&o(vo vo') =(&o' '(vo') l&IA"'(vo))
+go' '(vo')

I
tt'F I4o"'(vo)) (2 18)

with

k„,'=k„,s+2(h„—h„), (2.24)

where k~, and k~, are the initial and 6nal wave numbers
of the projectile electron, and dOr=sinerderdpr is the
scattered solid angle. Since the cross section is not a
linear function of the transition matrix, we have there-
fore not only the direct and resonance scattering
contributions but also the contribution due to their
interference to consider. Hence, we have

(vo vo') = (vo vo')+ .(vo vo')

+~'(vp ~ vo') (2 25)

where the prime on P denotes that only those com-
pound states + having comparable energies with the
given energy of the system may be included in the
summation.

The differential partial cross section for the transition
yo —+ yo' can now be expressed in terms of the transition
matrix

kyo~
&(vo-+ vo') = (27r)-' IEo(vo-+ vo') I'der (2.23)

k~,

%L= 'U —8,' ) (2.19) with

/k~;
&d(vp~ vp ) = (2s) 'I — I(&p' '(vo')

I ttl&o'+&(vo)) I
'd&f

y (2.26)

(k&,,"&
e' (volvo')=(2s) 'I

I IQ'o (vo')I&'Fld'o ho))I'&fir, (2.27)

(kpp~ )~;(vs~ vo') = (2~)-'I —

I
2 «{(&o'-'(vo')

I
&lop'+ (vo))64'-'(vo')

I
tt'F i4o"'(vo))}dier, (2.28)

where o-~, o-„,and o.; correspond to the direct, resonance,
and interference contributions to the cross section, and
Re signifies the real part of the quantity in {}.Unless
the interference is negligible, the cross section is not
an additive quantity.

III. ROTATIONAL EXCITATION OF
MOLE CULES

1. Direct Rotational Excitation

The direct transition matrix appearing in the cross
section for direct excitation given by Eq. (2.26) is

(11.&-&(v.') I~I&."&(v.))
=(P&p' '(v') I ttlPA"'(vo)) (3 1)

where, in obtaining the right-hand side of Eq. (3.1),
the Hermitian and idempotent properties of the projec-
tion operator are used. Now, utilizing the definition of
the projection operator P given by Eq. (2.8), we have

Pn, i-& =P„x„(Z)a{rr„&-&(gp)Cp(P, R)}, (3.2)

where II~p and P~o are the unperturbed and'distorted
channel wave functions, respectively. This permits us to
define, for transitions from nuclear state yo to state yo',
the direct transition matrix

&d(vp ~ vo') =(xvo'(R) I&70'vo(&~&) I xvo(R)) (3 4)

with

,...(~A) =(8{&..' &(5 )c'o(4R)}I&l"Since the antisymmetrization operator 8 commutes with I',
&, and &', it is not dificult to see that for the purpose of calculat- X O'{C'o($,R)4,"&(to)}) (3 5)
ing the transition matrix, it is sufBcient to antisymmetrize only
the initial state iPpi+& (vp). where R= R/R is the unit vector and n» ~o(R,R) is the
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effective potential responsible for the nuclear excitation.
Various orders of distorted channel wave functions can
now be obtained by considering the corresponding
terms in the expansion of the potential L weighted by
the molecular electronic wave function C p. In terms of
such distorted channel wave functions, the cross section
for direct rotation excitation may be evaluated to the
corresponding order of accuracy in the distorted wave
approximation. "

It is sometimes more convenient, however, to define
an equivalent direct scattering potential %,Ii~ so that

~„.„,(R,R) =(e{II„.t-l((,)C,((,R)) I&Fal
)& 8{Co(],R)rl„t+&(Po))) (3.6)

with

size, since the requirement »;/»a&1 for all molecular
electrons must be satisfied. Although it still deserves
further study, this approximation, however, accounts
for the most essential features for direct rotational
excitation.

In dealing with the problem of rotational excitation,
the vibrational motion is assumed to remain in its
initial state; and the vibrational wave functions may
be eliminated first by integrating over R'dR. Thus we
obtain, for direct rotational excitation of a diatomic
molecule in Z states, the transition matrix

v'a(lottto —& Jo'recto') = (lrt, „,(8)11„t—
&((,) I (ea(ro, R))

X I
ii„t+l(P,)I'„.,(A)) (3.1O)

with
Fe 1+(E—— To+i—rt) "llFg. (3.7) (~ ( R)) (~ i,i( g))

Equation (3.7) is derived with the help of Eq. (2.22).
The series generated by F& for direct transition matrix
is the well known Born series. Since for a given energy
all the bound states of the scattering system are
removed, this series does not have convergence diKcul-
ties." In general, the expression for n(R,R) is very
complicated and dificult to evaluate. We therefore
define an average direct scattering potential 'll~ so that

n;, (R,R)=(II„,' 'I (4(»o R») lll. '+9

In principle, t4 can be obtained from Eq. (3.6) by
integrating over all the molecular electron volumes.
Since ttFa appearing in Eq. (3.7) is nonlocal, %4 is
necessarily nonlocal.

If we neglect for the moment the nonlocality sects
and assume that tte(»o, R,R) possesses a multipole
expansion, ' we obtain

%,g(fp, R,R) =%,at l (rp, R,R)
+(» ) '2'(q (R)/» ')F (t' R) (3 9)

where the q's are the various electric moments for a
fixed nuclear configuration, the F;(t'o,A)'s are the
Legendre polynomials and 'llaN&(ro, R,R) is the remain-
der of the averaged direct scattering potential. This
expansion presupposes, of course, that the projectile
electron can never penetrate closer than the molecule

+2 ((qs)/«'+')F (»o») (3 11)

IX„,I sARsdR, (3.12)

where for definiteness the nuclear states yp and yp' are
labeled explicitly as vptpmp and eplp'mp, respectively,
and the nuclear vibrational and rotational wave func-
tions are denoted, respectively, by X„(R)and I' t, ,(R).
For Z states, the rotational wave functions are simple
spherical harmonics. Thus, approximate cross sections
for direct rotational excitation can be evaluated from
Eq. (2.26) with the transition matrix approximated by
Eq. (3.10), provided we know the averaged electric
moments (q;).

2. Resonance Rotational Excitation

The resonance transition matrix appearing in Kq.
(2.27) is formidable in its complexity. In application
we must rely upon meaningful simplifications. For our
present purposes, we adopt the isolated resonance
model, "which is capable of accounting for the most
essential features of resonance elastic scattering and
resonance vibrational excitation. "

In the framework of the isolated resonance model, the
transition matrix takes the form

Y'(»~ ~o') =So' 'h o')
I

tt'F Iso"'(vo)) = {(lbo"'(vo') l~&QI+-)(~—~-—R-)

'(+-IQ»llano"'(~o)&&

Assuming that the resonance field is effectively generated by an electronic target state, say e, we have for the
compound state

{Q,„zQ,„—~,„t"&)Q„„e(&„)=0 (3.13)

n M. L. Goldberger and K. M. Watson, Collision Theory (John Wiley tk Sons, Inc. , New York, 1964); T. Y. Wu and T.
Ohmura, QNarttttm Theory of Scatterigg (Prentice-Hall, Inc. , Englewood Cliffs, New Jersey, 1962).

"H. Levinson, Kgl. Danske Videnskab. Selskab, Mat. Pys. Medd. 25, No. 9 (1949); R. Jost and A. Pais, Phys. Rev. 82,
840 (1951); W. Kohn, ibid 87, 539 (1952).; Rev. Mod. Phys. 26, 292 (1954); R. G. Newton, J. Math. Phys. 1, 319 (1960);
H. Davies, Nucl. Phys. 14, 465 (1960)."J.D. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecnlar Theory of Gases and Liglids (John Wiley Bz Sons, Inc. , New
York, 1954).

r' J. C. Y. Chen, in Atomic Collisiort Processes, edited by M. R. C. McDowell (North-Holland Publishing Company,
Amsterdam, 1964), p. 428."J. C. Y. Chen, J. Chem. Phys. 40, 3513 (1964); 41, 3263 (1964). These papers are referred to as Paper II.
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with
(3.14)

where Q„„is the component of Q capable of projecting onto the target electronic state oo, and P~„( ) is the com-
pound channel wave function.

This permits us to write for 9"„(pp~ po ):
~.b vo') =2,.((~W, (-)(7o') l&IQ,P-(v.)&(E—~,.(")—».("))-'(Q.P-(v-) l&I~So(+)(~o))} (3»)

with
Vn Vn 2 Vn

~,.(-)=&Q..+.(v.) I &»(E 2'o —'(t+—in) 'I'&
I Q.P-(v.))

I',.(-)= (2~)-'Z„ i~No(-)(vo) i&IQ,.+.(7-)I'4,«~,

(3.16)

(3.17)

(3 18)

where 6„„™is energy shift in the position of resonance from% ~„& &, and F~„™is the half-width of the resonance.
It is convenient to define a quantity 8~„& & in place of%'7„& ~

h (m) —~ (m)+ g (R (n)) g (3.19)

where 8„(R,(")) is the nth electronic energy of the target molecule evaluated at its equilibrium internuclear distance
R,&"', and S~„is the total energy of the target molecule in its y th nuclear state of the eth electronic state.

Interchanging the order of integration in Eq. (3.15), we obtain, with the help of Eq. (3.14), the transition matrix

&.(»~ vo') =Z..((x., In....(R,Q~) IX..)(E—E..' )+ill'..( ') '(X .In...*(RQp) IX )} (3.20)

I,„(-)=g„ I(x„l„,„(R,Q,)lx,„)ldQ„
4x'

(m) —qg (m)+Q (m) h (m)+Q (o3)+g g (R (n))

n - o*(»Qo) =(&8v.(")4'-}
I &I ~(C'pavo")})

n„,„(R,Qy) =(8(P,' 'Cp}
I VI ()',fC„Q„„'"'}&,

(3.21)

(3.22)

(3.23a)

(3.23b)

where 00 and Qf are the incident and scattered solid angles of the projectile electron.
The eGective potentials, the o, s, responsible for the resonance nuclear excitation are formidably complicated.

For rotational excitation of homonuclear diatomic molecules in Z states, the effective potential may be approx-
imated by

n„„„*(R,Qo)—(-',or)')'no„,~(R,Qo)g ~ Fp (R),

neo v.(R Qf)—=(p~)"'n" o(R,QI)Z- I'p- *(&)o

(3.24a)

(3.24b)

where the vibrational states are explicitly labeled by the vo's and the I"'s are the spherical harmonics, Substituting
this expression into Eqs. (3.20) and (3.21) and the resultants into Eq. (2.27), we obtain, for resonance rotational
excitation, the cross section

with

p.,' l'k., ), ) 1 C)„(lp'lomp'mp) I(x„,lX„„)l''.(lo~lo')=
I

—
I Z Z

16)rob k„o)o&2lp+1~o~o' "(. E Eo„)„()+i,'I',„(„()—-
~oolo' ~opto +2(8oolo @oolo') )

(3.25)

(3.26)

P„,= in„,p(R, (o),Qg) I'«g, (3.27)

~)-(io'lomo'mo) = l~ &-.&I'~ ~ (R) I
I'p. -. *(R)

I
I').-—.(R)&(I'(.-.(R) I

I'p. -.— (&) I F(,-,(R)&

= (2l +1)I (2 lp +1)(2lp+ 1)j~)P

(lp' 2 l„y~l 2 lo~ ) ~
lo' 2 l„~~l„

(3.28)
0 0& ~$=&a E —mp' mo' —m„m„&(—m„m„—mo mo&
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where we have averaged the cross section over the initial states mp and summed over the final states mp', made
the approximation l(xp„*(R,('),Qol'=p„o/4or with the incident angles Qp arbitrarily chosen, and finally adopted
the Wigner's "3j"symbols for the Clebsch-Gordan coeKcients" appearing in Eq. (3.28). In deriving Eq. (3.25)
the n's have been taken outside of the R integrals because they vary slowly and most of their contribution to the
integration comes from a narrow range of the internuclear separation R=R, ('&, the equilibrium distance of the
ground state of the diatomic molecule.

The total width given by Eq. (3.21) takes for approximation (3.24) the form

p„,t4, &, to 2 t„i' tp 2 t
F & .'"'= p l(x., lx..)l'(2to+1)(2t-+1)

I Z~
eptp 0 0 Oj —mp mp —m m 3

(3.29)

To remove the weak dependence of the total width on nuclear states m, we averaged, in Eq. (3.25), the width
over m„.Applying the operator (2t„+1)' P „

to Eq. (3.29), we obtain

p.o&.o(o ( to 2 t.~'
F...'"'= 2 (24+1)I

@pip 4~2 &O 0 oi
(3.30)

Now, the approximate cross section for resonance rotational excitation can be calculated from Eq. (3.25) with the
P's estimated from the total width (3.30).

Because of the coeScients C&„,we have the following selection rules for resonance transitions between /p and lp'

rotational states:
Alp=—lp —lp=0, +2, +4.

Thus, for two-quantum rotational excitation and de-excitation, we have from Eq. (3.25)

ft'e„,&,ys'& C(,(to+2, tomo'mo) I(x, I
x.„)Ia'„(to~to&2)= (p 4 /16or )I I(2tp+1)

o o Z—E„,&,
( )+i-,'F„„&,( &

C&,+s(t,&2, tpmo'mo)
I (x„lx,„)I

'

(3.31)

(3.32)

and for four-quantum rotational excitation and de-excitation,

p., (p„,„~4 1 l(x„,lx„„)l'
~,(to~to+4)= —

I

— —2 I&&,+2(to~4, tome'mo)l' & - (333)
16oro( k„o&o 2tp+1 memo' E„&,s( '+i ,'F—, -

IV. ROTATIONAL EXCITATION OF
NITROGEN MOLECULES

A model calculation of resonance rotational excitation
of Ns is carried out from Eq. (3.25), treating the
averaged with I'pp~ ~ the electronic resonance energy
(hpp(")+hop( &), and the excited 6eld of the target
molecule as adjustable parameters. The procedure of
the calculation is identical to that used in paper II"
in which the resonance energy E~„(~)LEq. (3.22)) is
now approximated by

(m) g (m)+A (m)+(t& +r)~ (n)
(t& +I)s~ (n)

Xx,(")+t„(t„+1)l8 '"&—
(t& +-,') .'"'j, (4.1)

where p&,(")/2 is the zero-point energy of the corre-
sponding harmonic oscillator, X,&"& is the anharmonicity
constant, 8,&"~ is the rotational constant, and n, &"~ is
the vibration-rotation coupling constant. The nuclear
vibrational wave functions are approximated by the

rs See fpr example, A. Messiah, QNaltgoa Mechanics (North-
Holland Publishing Company, Amsterdam, 1962), Pol. II.

Morse anharmonic wave function. The coe%cients
C~„, involving the Clebsch-Gordan coefficients, are
evaluated using the tables provided by Rotenberg
et al."

In Fig. 1, the cross section for resonance elastic
scattering which agrees fairly well with the previous
calculation" using harmonic wave functions, is plotted
as a function of the incident electron energy. For
Fpp' &=0.152 eV and hop( )+Ape(~)=1.89 eV, the
calculated cross section for Alp ——0 is indistinguishable
from that calculated for hop ——0 obtained as a special
case for vibrational excitation. "A comparison of the
maxima and minima of the resonance elastic cross
section with those observed experimentally" is dis-
played in Table I. The agreement is very good on the
whole. In the experimentally observed curve, the first

"M. Rotenberg, R. Bivins, N. Metropolis, and J. K. W'ooten,
Jr., The 3-j and 6-j SymboLs, (The Technology Press, MIT,
Cambridge, Massachusetts, 1959)."G. J. Schulz, in Atomic Collision Processes edited by M. R. C.
McDowell (North-Holland Publishing Company, Amsterdam,
1964), p. 124.
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TABLE I. Comparison of the experimental and theoretical
maxima and minima in the cross section for elastic resonance
scattering of electrons by N2 molecules.

Identi6ca-
tion for

the maxima
and minima

Electron energy (eVl
Maxima Minima

Exper- Kxper-
imentala Theoretical imental' Theoretical

1.92
2.M
2.46
2.69

1.98
2.22
2.47
2.70

2.04
2.29
2.59
2.82

2.09
2.36
2.60
2.86

a Reference 19.
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Fxo. 1. Calculated cross section for elastic resonance scattering
of electrons by N2 molecules as a function of the incident electron
energy.

The results of our calculation for resonance rotational
excitation of N2 are shown in Figs. 2 and 3. Figure 2
shows the resonance excitation function for the excita-
tion of ground rotational state lp=0 to the second- and
fourth-excited rotational states lp' ——2, 4. Excitations
from the first excited rotational state lp=1 to the
third- and fifth-rotational state lp =3 5 are shown in
Fig. 3. The characteristic multipeak structure'P for
resonance elastic scattering and vibrational excitation
is again found for resonance rotational excitation. In
addition, we observe for each case a tail for the cross
section, extending towards the low energy region.

In this model calculation, we have made the tacit
assumptions for the resonance structure of the scattering
system that in the energy region pertinent to the present
problem only an isolated compound state is primarily of
importance and that this compound state is formed
largely as a result of virtual excitations of target
states. In Paper II," we have found that the set

~ G. J. Schulz, Phys. Rev. 125, 229 (1962); 135, A988 (1964).

peak at the low energy side is, however, larger then the
second peak in contradiction to the calculated curve
(Fig. 1).This is due to the direct elastic scattering which
is not included in the calculated curve. Since the latter
scattering does not affect the positions of the resonance
peaks, the agreement obtained in Table I is very
encouraging.
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FIG. 2. Energy dependence of the partial cross sections for
the resonance rotational excitation of the ground state N2 molecule
by slow electron impact.
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FxG. 3. Energy dependence of the partial cross sections for the
resonance rotational excitation of the Grst excited rotational
state of the N& molecule by slow electron impact.

of molecular constants needed for the excited fieM of
the target molecule is very similar to that of the
x'Z, state of N2. It was misleading to interpret this
finding as an indication that the excited field of the
target molecule is generated solely by the x'Z, state
of N2. Rather, it should be interpreted that the simi-
larity between the set of constants and that of the
x'Z, state is coincidental. The set of molecular constants
thus really describes an effective molecular geld created by
virtual excitations of the target molecule in which the
projectile electron propagates. It should be noted that
the Q-projected subspace (i.e., the subspace involving
virtual excitation of the target molecule, Q= 1—P) also
contains a substantial component of the ground elec-
tronic state of the target molecule with excited nuclear
vibrational and rotational states Lsee Eqs. (2.9) and
(2.11)).

Since calculations for direct rotational excitation
have been carried out by several workers, ' ' we will
not repeat them here but merely investigate briefiy the
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effects due to interference between the direct and
resonance excitations. If, following Dalgarno and
Moffett, ' we approximate the averaged direct scattering
potential Eq. (3.11) by

( I4 (rp, P))—2 (q/rpo+eL'/2r p )Pp (rp,R),

X p ~= Re{f(k„,),mpmp'Q))dQ,

fmo ~= Im{f(ksp(pmomp'Q))dQ,

(4.7)

(4.8)

the direct transition matrix elements take the expression f(k m m zQ) (lq+ (1 t )k )y (Q)

with

~(.'(Io'Io) I(X.IX.)l'
X 2 (4.5)~„(„(gg ) (m))o+& (p (m))o

2lp+ ) ' (lp' 2 Io)c.'(to'Io)=,
l I l 2 (—)"'+'

2lo'+1) E 0 0 03 mo, ~p'

X{X .„,(E—E„„,„")+-',I'„,, &„„,„")
( lp' 2 Ip)

XCi„(Io'homo'mo)
l

5 —mo mo —mo mor

(4.6)

1'g(lpmp ~ tp mp )
= —(32 '/5)(I'g, , (R) l

r', , *(R)
l V, ,(R))

X{-:q+(—:,--)k . .)F. -.--. (Q) (43)
with

k)o (p= (k.,), '+k„,)o'—2k„op,.k„(,cose)'(', (4.4)

where q is the quadrupole moment of N2, o.' is the
nonspherical portion of the polarizability of N2, includ-

ing both parallel and perpendicular polarization

l
a'=-', (n&&+a&)j, and finally Q=(II,@), includes the

angles between the scattered and the incident direction
of the electron.

Substitution of the transition matrix eIements V'q

and K, as approximated by Eqs. (4.3) and (3.20),
respectively, into Eq. (2.28) yields with the help of
approximation (3.24)

fk„(o)
o;(lo + &o') =8/(5)r)"'I

E k„„,i

Xnp. ,*(R,(o)Qo)a„,o(R, (o)Q)), (4.9)

where in Eq. (4.5) we have averaged the interference
cross section over initial states mo and summed over the
final states mo'.

From the coefFicient C~„', we observe that in the
framework. of the present approximation, the inter-
ference for four-quantum excitation is zero. Any
interference which may be of importance should appear
in the two-quantum excitation. Unfortunately, we do
not know at the present a reliable method for estimating
quantities X and f In Fig. 4,. we plot the sum of direct
and resonance cross sections for two-quantum rotational
excitation without consideration of the interference
sects. The direct excitation cross section is calculated
from approximation Eq. (4.3), taking the experimental
values —1.1eap' (or —1.48 Debye A) and 4.18aoo

respectively'' for the quadrupole moment and the
nonspherical polarizability of N2. For comparison, we
also included in Fig. 4 the case where the nonspherical
polarization term is omitted for the direct excitation
cross section. ' The distortion effects on the direct
excitation are not included in Fig. 4, since it has been
shown' that they are very sensitive to the approximate
potential used in the investigations.

We thus conclude that in problems concerning slow
electron scattering by molecules, one may distinguish
two types of scattering: the direct and resonance
scattering. In the direct scattering, the projectile

"J.D. Poll, Phys. Letters 7, 32 (1963).
~ M. Born, Optic (Julius Springer-Verlag, Berlin, 1933).
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Fro. 5. Energy dependence of the
partial cross section for simultaneous
resonance, vibrational and rotational
excitations of ground state N2 mole-
cules by slow electron impact.
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electron propagates (except for distant resonance)
mainly in the unexcited field of the target molecule,
tolerating comparatively smaller distortion; but, in
the resonance scattering, the projectile electron propa-
gates in the excited 6eld of the target molecule, suffering

considerable distortion in forming compound states.
This classification is, however, not unique, since the
distant resonance in the direct scattering may become
rapid varying resonance scattering as the incident
electron energy reaching into the appropriate energy
region. Also this classification does not distinguish the
broad potential resonance from the direct scattering.
Nevertheless, this classification of direct and resonance
scattering is physically desirable and mathematically
convenient.

It is of interest to discuss the effects on resonance
vibrational excitation due to the extra degrees of free-
dom provided by possible rotational transitions. Thus
for a given vibrational excitation, we may have possible
accompanying rotational transitions vplp~ 8p Ip 8plp~
'vp, to&2, vplp ~ 'vp, fp&4 (see Fig. 5). Since the rota-
tional level spacings are within the uncertainty of
electron beam width used in measuring vibrational
excitation, it is reasonable to assume that the observed
cross sections for vibrational excitation are given by

2
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FIG. 6. Energy dependence of the partial cross section for the
excitation of the ground state N2 molecule to various excited
vibrational states by slow electron impact. The circles and the
crosses are the experimental data of Schulz measured at the
forward angle and at an angle of 72 deg, respectively. These
experimental data are normalized to our calculated values by a
single scale factor.

+ P o„(voto—+ vp', lp —2j). (4.10)
j=0

2j(lo

A comparison of the calculated vibrational excitation
cross section from Eq. (4.10) with that measured by
Schulz'P is given in Fig. 6.The increase in the magnitude
of the cross section shown in Fig. 6 results in a rise of
the calculated total virbational excitation cross section
Li.e., P, Ir„(0—+ v')$ from 3.52 A'oto 5.13 A' at 2.2 eV
which is consistent with the analysis of the swarm data. '


