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Previous treatments of the optical Geld eRect at direct interband threshold (Franz-Keldysh eRect) are
generalized to saddle-point edges (Seraphin eRect). The discussion demonstrates that nontensorial ani-

sotropies are present in both cases. For practical reasons, however, it appears that nontensorial anisotropy
should be easier to observe in the Seraphin eRect than in the Franz-Keldysh eRect. The anisotropy enables
one to assign an edge to interband critical points located in speciGc regions in the Brillouin zone, and thus

provides a powerful tool for solid-state spectroscopy. Straie and nonlinear eRects are discussed briefly.

l. INTRODUCTION the resolution achieved at threshold of 0.001 eV.
Another geometry for electro-reflectance has been
developed by Shaklee, Pollak and Cardona' which

appears to be even simpler and more flexible.

The utility of electro-reflectance experiments in the
fundamental absorption region stems, as we have
previously noted, ' from the fact that at saddle-point
edges in the imaginary part e2 of the dielectric response
an effect is found which is complementary to the
Franz-Keldysh effect at thresholds in t.2. This duality
theorem, which is illustrated in Fig. 1, has been con-
firmed experimentally. '

The purpose of this note is to explore in qualitative
fashion the polarization dependence of the electro-
reAectance signals, especially near saddle-point edges.
In doing so we borrow liberally from previous treat-
ments of the Franz-Keldysh effect, and transcribe only

e equations essential to our qualitative analysis.

HEN a static electric field is applied to an
insulator, optical absorption in the vicinity of

an interband threshold is altered. The theory of this
effect was first discussed by Franz' and by Keldysh'
who found that it produced an exponential tail below
the zero-field threshold, as well as oscillations above
threshold. The width of the tail, as well as the period of
oscillations, is of order

AJAR

= (eFtt)'"(L'ttz)"'.

In (1.1) the electric field is F, the lattice constant is tt,
and Essz=h'/mtt'=10 eV is roughly the kinetic energy
of a Wannier wave packet. The Franz-Keldysh terms
are different from the Stark splittings'

(1 2)bE=eFa,
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of the Wannier states. In practice DE,&106E, so that
the Franz-Keldysh effect is observable in many crystals
at fields below the breakdown field, while the Stark
splittings have so far not been resolved. Thus the
Franz-Keldysh effect is truly crystalline in character, in
contrast to the Stark splittings (1.2) which arise from
Wannier levels. '

The Stark effect is useful as a diagnostic tool in
identifying atomic transitions. Similarly we expect the
Franz-Keldysh effect to be useful in identifying inter-
band edges in the fundamental absorption spectra of
insulators. This has recently been shown to be the case
in beautiful experiments by Seraphin and co-workers. 4

They have demonstrated that in Ge modulated electro-
reflectance is capable of identifying edges in the
fundamental absorption spectrum with a resolution of
at least 0.003 eV, which is not much less accurate than

*Supported in part by 0%ce of Naval Research and a general
grant to Institute for the Study of Metals by Advanced Research
Projects Agency.

t Alfred P. Sloan Fellow.
' W. Franz, Z. Naturforsch. 13a, 484 (1958).
'W. L. Keldysh, Zh. Eksperim. i Teor. Fiz. 34, 1138 (1958)

)English transl. : Soviet, Phys, —JETP 7, 788 (1958)g.
a J. Callaway, Phys. Rev. 130, 549 (1963); 134, A998 (1964);

K. Tharmalingam, ibid. 130, 2204 (1963).
48. 0, Seraphin and R. B. Hess, Phys. Rev. Letters 14, 138

(1965l.

I
I

fl QJ

Photon Energy

' K. L. Shaklee, F. H. Pollak. , and M. Cardona, Phys. Rev.
Letters 15, 883 (1965).

' J. C. Phillips and B. 0. Seraphin, Phys. Rev. I.etters 15, 107
(1965).J. C. Phillips, Parenna Lectures, Italian Physical Society
(to be published).

B. O. Seraphin, Phys. Rev. 140, A1716 (1965).

584



OPTI CAL F I ELD EFF ECT AT THRESHOLD S

2. PHASE-SPACE INTEGRALS

Near an interband critical point k, defined by

v„[E,(k) —E„(k)]...—=[v,E,„(1)j,=,,=0, (2.1)

we may expand E,„(k) to second order in k—k, . For
convenience we set k, equal to zero and assume that the
valence and conduction bands are nondegenerate at
k, . Then choosing principal axes suitably we have

3xl05—

I I I

F=45 kV/cm

I I I I I

E-(k) =Eg+s&' 2'k''/u*,

Eg= Egg (0)=&Mt.

(2.2)

(2.3)
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For an arbitrary orientation of the static field F we

may write
F=Q;F,e;, (2 4)

where e; denote unit vectors along the principal axes of
(2.2) and

-0.12. -o.08 -0.04
I I I I I

O.O4 O.OS O.l2 e V

F,=Ii cosg;. (2.5)

We now put F;=Jib;; and separate phase-space
sums into longitudinal and transverse components.
Apart from constant factors the imaginary part of the
dielectric function e2 is given by

Pro. 2. The change 6~2 induced by an applied field at a parabolic
threshold (after Ref. 8}.Exciton and lifetime effects are neglected.

one obtains for co near ~~ a contribution to e2 of the form

es ~ P ~
M,„~ '8 (E —E„—A(u) 5 (k,—k„), (2.6)

&c,&v g 2

&max Tdkidk„Ai, (2.13)
0 A.gp

where the matrix element M„can be written as

M,„~C (0), (2.7a)

r =E E —-'k'(kP/tii+k„'—/p )

Op'= e'F'/2';,
where gp if real, as well as the Airy function

(2.8)

(2.9)

M,„~ [v„c(0)~, (2.7b)

according as the edge in question is dipole Eq. (2.7a)
allowed or Eq. (2.7b) forbidden. ' The wave function
C(r) is the envelope function giving the amplitude of
the Bloch states P, (r,)P„(rs) as a function of r= r,—rs, .
Henceforth we restrict ourselves to case Eq. (2.7a).

In the presence of the electric field F; it is convenient
to define

cf.- ~3j2g 1/2

(~~—~~I s~

p =p&P~P~.3=

For ~ &~~ the explicit result is

2rrds
j
Ai (s)

~

' (2.15)

(2.16)

where E,„is a fraction of a Brillouin-zone radius which
we may allow to tend to ~.

We now assume that both p~ and p are positive.
If p,, is positive also, we have the Franz-Keldysh case
of interband thresholds, with gp&0. Then if ~ &or~ from
(2.8) we see that r &0 and from (2.12a) one obtains an
exponential tail. Introducing new variables

tP= (kki)'/2ui8p, t '= (kk )s/2u~9p (2.14)

we find that with s=tP+t '

Ai(p) = cos (-,'u'+Pu)du. (2.10)
( i -)"'(E/(~ —~t))

)& exp[—s4 ((a~i—~/8p))'"j (2.17)

Apart from constant factors we then have'

C(0) ~ (F't /0, ) Ai( r/ke, ). —(2.11)

The Airy function is an integral function whose
asymptotic expansions for ~p~

—+ Do are

Ai(P) ~P 't exp( —2Pst'/3) (2.12a)

Ai( —P) ~ P "4 sin(';P'~'+~/4) . (2.12b)

When (2.7a) and (2.11) are substituted in (2.6),

which is not valid if to is too close to o~t. From (2.17) we
see that the strength of the linear tail is proportional to
u.= (tiigm)'".

The asymptotic expressions (2.12) are not convenient
for ~—a&i=0. Seraphin and Bottka' have evaluated
(2.15) with u 0.07 for a range of field strengths
appropriate to laboratory conditions, F= 10' volts/cm.
The results for A&2„ the field-induced change in e2„
are shown for a parabolic edge in Fig. 2, which exhibits

8 B.0. Seraphin and N. Bottka, &Phys. Rev. D9, A560 (1965).
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FIG. 3.The effect of lifetime broadening (Lorentzian convolution
with y=0.035 eV) on the values of b,e2 shown in Fig. 2 (after
Ref. 8).

the exponential tail for or&or~ and damped oscillations
for or&or~. When the effects of lifetime broadening are
included, the first dip for or&or~ gives the largest effect,
as shown in Fig. 3. The narrow peak at or = or~ is washed
out, and both the exponential tail and the second
oscillation appear as satellites to the main dip.

The oscillations for or) or~ arise as follows: According
to (2.8) in this case there is an elliptical region centered
on k/ ——k =0 for which 2.&0 and Ai( 2/h82) osc—illates
as indicated by the asymptotic expansion (2.12b).
Even using (2.12b) for all 2 &0 leads to sums over k~

and k which cannot be evaluated in closed form, and
when these are treated approximately the magnitude
of the first dip is found' to be independent of P, which
is not the case according to Fig. 2. When the effects of
lifetime broadening are included, as shown in Fig. 3,
the dependence of the magnitude of the dip on P is
greater still.

The period of the oscillations can be obtained roughly
from (2.12b). It is given by'

d, (co) =7r(2A) '"(F/2 //2J'/') (N (dy) ". ,(2.18)—

Through the factor /2;//222/2 this period is strongly
anisotropic; this anisotropy might be used to identify
the symmetry of an interband threshold.

Now suppose that one of the three p; is negative
while the other two are positive (M2-type saddle-point
edges). If /2; is negative (F parallel to the principal axis
of the saddle point), then 2. is unchanged, but ()/

reverses sign compared to the threshold case. This causes
the exponential tail in A&2 which is found below thresh-
old or(or~ to shift above the saddle-point edge or&or~'.
Also the oscillations in A&2 which are found above
threshold, or) ~~, lie below the saddle-point edge or &co~'.

Finally, the sign of he2 near the saddle-point edge or~' is

reversed compared to its contribution near the threshold
edge or~.

These results are summarized by the duality theorem
(indicated in Fig. 1):To obtain the effect of an electric
field on a saddle-point edge when the field is parallel to
the principal axis of the edge, replace (or —~~) by
(A&2' —cv), and replace 622 by —he2. This theorem may be
verified in detail by repeating each step of the calcula-
tions given, e.g., by Callaway. '

How are these results changed when P is not parallel
to the principal axis of the saddle pointP According to
(2.4) we must analyze the case /2;, /2/)0, i.e., F; is
perpendicular to the principal axis m of the saddle
point. According to (2.8) the transverse variable r no
longer has a threshold at or=or~, associated with which
there is a step function 8(~—co,') in the transverse,
two-dimensional density of states. Instead we have a
two-dimensional saddle-point, which gives rise to a
weaker logarithmic singularity in the transverse density
of states.

We have seen that the largest effect for both parabolic
edges and saddle-point edges (longitudinal orientation
on F) is the first dip which rnodulates the square-root
edge L(~—~2)'/2 or —(cv2' —~)'/2, respectively). This dip
is associated with the closed region centered on k~ ——k
=0 for which r&0. In the transverse orientation
P;=PS; the region is no longer closed. To treat this
case introduce

~ ~3/2~ 1/2

y/ 2 =e2F'/2' (2.19)

as well as the parabolic coordinates

u= Ak'/2/2 Ak p/2/2(—
2 =)2k,k2/2(/ )/ 2)'/2.

Including the Jacobean for the new coordinates the
phase-space sum analogous to (2.13) becomes

P de'v
&2cO,'

~
AiL(b(o —u)/y21

~

') (2.20)
2 2(u2+2|2))/2

where d'or = or —co~' and 5 is the open region making the
dominant contribution to (2.20). This is just the
region bordering the lines

A=0= k p, ~~/2+k~p, ,~/2. (2.21)

Denote the frequency difference between or&' and the
nearest edge at or2 by the cutoff frequency

ore= or~' —co2 . (2.22)

Also introduce the parameter I' as several times the
lifetime broadening or the period of the Airy function.
Then we can make a strip approximation to 5 and
(2.20) becomes

P + )or —~ c

dl Al
VF»—r - 72' — —ruq 2(u +2' )

(»+r)/v2
du in~ ~Ai(Bcd u) [2, (2.23)—

(2 —r)/y2 5 u

where we have assumed that ra&)I'.
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Comparing (2.23) with (2.15) we note two differences.
In place of the constant factor 2s. in (2.15) arising from
the angular integration the integrand of (2.23) contains
the amplification factor

A (I)= in(2(s, /I) . (2.24)

We may estimate the magnitude of A if or, and the
period 6 of the oscillations are known; then A = (2a&,/6).

The second difference has to do with the replacement
of 8s in (2.15) by ys in (2.23). The effect of this change
is difFicult to estimate. To the extent that the strength
of the dip is linear in F we may infer from (2.17) that
(2.15) is multiplied by p, 'i' while (2.23) is multiplied
by p '". According to Fig. 3 this may not be a poor
approximation for some edges.

3 RELATION TO EXPERIMENT

According to the results of the preceding section,
the dynamic contribution to the Seraphin field effect
on a saddle-point edge of type Mt (two principal
components of p)0, the third, along the j axis, &0),
is a sensitive function of the orientation of the applied
field F. Omitting the tensorially dependent oscillator
strengths we found that

(a) For F parallel to the j axis, the effect is conjugate
to the Franz-Keldysh effect as illustrated by Fig. 1, and

(b) For F perpendicular to the j axis, the effect is
similar to the Franz-Keldysh effect, but the integrand
contains an amplification factor, roughly of order
A/2~=in(2tu, /6)/2s. . With hcs, =0.5 eV, and 6=0.05
eV, we have A/2' =0.5.

Oscillator strengths in general will modify these
conclusions as follows: In case (a) the region determin-
ing the dip is closed and centered on the critical point.
It is easy to see that to lowest order in bk'= (k—k,)'
we may use the oscillator strengths of the bands at k, .
In case (b) the situation is more complex. The appear-
ance of the upper cutoff or, in the amplification factor

suggests that the k dependence of the oscillator
strengths as well as terms of order quartic and higher
in k; and k~ will affect the value of ~, that should be
used in (2.24). For qualitative purposes it may be
sufhcient to change co, slightly; because of the logarith-
mic dependence of A on co, this factor may not be
greatly altered. To proceed further, we must choose a
specific band model.

The model we consider places the critical points
associated with the interband edges along equivalent
cylindrically symmetric axes of the Brillouin zone. To
be specific we assume that the crystal has cubic sym-
metry, so that the equivalent axes could be 6=(1,0,0),
or A=(1,1,1). Then consider first a case of common
occurrence in semiconductors, that the initial states are
the two-fold degenerate states hs, which have (p„,p,)
symmetry, or As, which have (p,—p„, p,+p„—2p, )
symmetry. The Gnal states are 6t or At (s symmetry).

After summing over equivalent valleys the oscillator
strength transforms in general as a second-rank
tensor. In the case considered here we assume that
unpolarized light is rejected at normal incidence, so
that the radiation Geld E is transverse to the dc Geld. F.
Then the oscillator strength f; of the sth valley with
principal axis along the ith symmetry axis is

f; cc 1+cos'8;, (3.1)

6R=QA 61+pres, (3 4)

where a and P are known functions of ei and es, and hei
is obtained from A&2 using the Kramers-Kronig rela-
tions. With (p;/p, ~)'~'=5 and A/2m =0.5, the tableau
(3.2) will have the greatest contribution (for most

9 More quantitative evaluations of the integrals over Airy
functions have been carried out by D. E.Aspnes (to be published).

where 8; is the angle that F makes with the principal
axis j of the ith valley. We assume that at each angle
we can superpose the linear effects associated with the
longitudinal and transverse components of F. (This is
not strictly correct, but it represents a simple interpola-
tion formula for 0&8&m./2. ) According to (a) and (b)
above, e2, is positive for co co~' and negative for or&co~'

for both components. The largest contribution of the
longitudinal component, however, occurs as a peak
for co co~', while the transverse components give an
effect similar to the parabolic edge and make their
largest contribution as a dip for ts)cot'. (See Fig. 3.)
In each case the peak/dip is about 3 times greater than
the dip/peak at higher/lower frequency, respectively.

The separate contributions to e2, may be estimated if
we know co„h, the longitudinal mass p,;, and the trans-
verse mass p =p&. The peak and dip dynamical contri-
butions D; of each critical point have the explicit forms

CO ~GO] %+coy

long. 3
I cos8~l&i

' '
I
cos8

trans. [sin8, [pi 'i'A/2s —3 [sin8, (p~
'i A/2s (3.2)

In arriving at (3.2) we have made a number of
simplifying approximations. Some of these are not
essential, and could be removed by more accurate
computation of the phase-space sums over the Airy
functions. ' Some of the approximations, however, are
inherent because of lifetime broadening and uncertain-
ties in the band structure as regards the effective mass
components, nonparabolic kinetic energies, and k-
dependent oscillator strengths.

Now let us consider theA& ~A& edge in Ge studied by
Seraphin. Here (p;/p, )'~ =5 and A/2s. =0.5. Combining
(3.1) and (3.2) to obtain the intensity I;=f;D; of each
critical points contribution to the total change 5 ~2 at
the edge we have

Des=+; f;D;. (3.3)

From (3.3) the change in an observable such as the
reAectivity E is obtained as
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TxsLE I. Nontensorial anisotropy of the Seraphin eRect at a
direct interband saddle-point edge. The orientation of the static
6eld F parallel to either (1,1,1), (1,0,0), or (1,1,0) crystalline
axes is listed in the first row for the two cases I, and I . The
location of the critical points 0, associated with the saddle-point
edge along equivalent axes A=L1,0,0], or A=L1, 1,1] in the
Brillouin zone is indicated in the first column.

L1,1,1]
L1,0,0]

I~
(1,0,0) (1,1,1) (1,1,0)

1.00 0.75 0.90
1.00 1,59 1.50

I
(1,0,0) (1,1,1) (1,1,0)

1.00 1.10 1.03
1.00 0.90 0.90

values of 8,) in the lower right. Thus, we assume that
the dominant structure in A&2 comes from the dip for
co&or~' and estimate the relative magnitude of the dip
from (3.3) as a function of the location k. of the critical
point and the orientation F of the applied field relative
to the crystalline axes:

d, es P, (1+cos'8,)P ~
cos8; (+ /. 5

~

sin8,
~
j. (3.5)

We have evaluated (3.5) assuming four equivalent
edges along (1,1,1) axes or three equivalent edges along

(1,0,0) axes, and normalized the results in each case to
1.00 for F along the (1,0,0) axes. The results are shown
in Table I.

The Grst conclusion to be drawn from this table is
that the summation on i in (3.5) considerably reduces
the dependence of the effect on the orientation of F
relative to the crystalline axes. Thus within the limits
of the calculation the dependence of the A3 —+ A» edge
on surface orientation would be dificult to observe, and
little dependence was found for this edge in Ge."

In Si between 3.3 and 3.5 eV three peaks have been
observed in I-type samples' and only two in p-type
samples. ' The behavior of the middle dip in the e-type
samples closely follows that of the highest peak, but
the middle dip is absent in p-type samples. We therefore
exclude the middle dip from the following discussion.

The two remaining structures, a dip at 3.33 eV and a
peak at 3.41 eV, appear to be derived from parabolic
and saddle-point edges, respectively. The intensity of
the parabolic dip appears to be insensitive to the
orientation of F. It, therefore, provides a convenient
calibration for the intensity of the saddle-point peak.
Again normalizing to 1.0 for F along (1,0,0), the data
give 2.0 and 1.6 for F along (1,1,1) and (1,1,0) axes.
This agrees better with the second row of Table I
(i.e., k, along the 5=

1 1,0,01 axes) than the first row

(k, along the A = $1,1,1) axes).
This agreement with the 6 row is gratifying. Precise

piezoreAectance experiments by Gerhardt" do indicate
that the 3.4 eV edge has predominantly 6 symmetry.
This edge is still not entirely understood, however.
Appreciable temperature dependence of the edge is

' B.Q. Seraphin (private communication).' U. Gerhardt, Phys. Rev. Letters 15, 401 (1965);Phys. Status
Solidi 11, 801 (1965).

observed" at 100'K, i.e., at 58, where 8 is the Debye
temperature. Also the deformation potential parameters
are unusually large, ""

4 NONLINEAR EFFECTS

The Geld dependence of the magnitude of the central
peak or dip appears to be strongly dependent on
lifetime effects (see Fig. 3). Thus, while we expect to
observe harmonics of the optical Geld effect, and while
these should exhibit interesting anisotropies, their
interpretation will be quite complicated. A much
simpler nonlinear effect has been observed by Seraphin
and Bottka at the fundamental frequency. ' They vary
the dc bias Ii 0 and Gx the excursion BI' of the field about
Fo. They then find that as Ii 0 is increased the center of
the oscilla, tion shifts toward higher (lower) energies for
parabolic (saddle-point edges), a result which is
consistent with their calculations based on the duality
theorem.

S. POLARIZATION EFFECTS

The examples discussed so far indicate the magnitude
of effects to be expected in cubic crystals as the orienta-
tion of the static field F is varied relative to the crystal
axes. It has been assumed that the propagation vector
q of the light is parallel to F (which is the case in the
geometries used at present") and that the light is
unpolarized.

If we retain the condition that q be parallel to F,
but use polarized light, then interesting effects can
arise for F along (1,1,0)=Z a,xes. For example, in Si
and Ge it is believed" that M& edges of 6 symmetry
are quasi-degenerate with M& edges of Z symmetry.
The spin-orbit and heteropolar splittings of the M~
edges have been observed in a number of III—V and
II—VI compounds. "However, the M~ edge has so far
not been separated from the M& edge, nor has any M2
edge been explicitly identified. Moreover, it has been
suggested (see Fig. 55 of Ref. 15) that at low tempera-
tures the M& and M2 edges may be strongly distorted
by exciton formation. In these circumstances polariza-
tion studies which can vary the intensity of the M~
edge relative to the M~ edge would be of great interest.

Let us now suppose that experiments can be done
with q perpendicular to F. Then the E radiation field

may be either parallel (rr) or perpendicular (o) to F.
We may gain insight into the polarization effects
expected by considering the A3 —+ A. & or 65~ 6& edges
discussed in Sec. 3 for 0- polarization. Now we Gnd that
the dynamical factors associated with F are unchanged,

"B.0. Seraphin and N. Bottk.a, Phys. Rev. I.etters 15, 104
(1965)."I.GoroR and L. Kleinman, Phys. Rev. 132, 1080 (1963).

'4 D. Brust, J. Q. Phillips, and F. Bassani, Phys. Rev. Letters
9, 94 (1962). D. Brust, M. L. Cohen, and J. C. Phillips, ibid. 9,
389 (1962}.D. Brust, Phys. Rev. 134, A1337 (1964).M. L. Cohen
and J. C. Phillips, ibid. 139, A912 (1965)."J.C. Phillips, Solid Stutejr'hysics, edited by F. Seitz and D.
Turnbull (Academic Press Inc. , New York, 1966), Vol, 18, p. 56.
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but that the oscillator strengths are

f;(m) =1—cos'0, .
When weighted by the dynamical factors (3.2) approp-
riate to a saddle point edge, both edges should show a
dependence on polarization. The effects are of order
25—50'Po and can be studied for fixed orientation of F,
i.e., on the same sample. The polarization effects should,
therefore, be easier to study than the orientation
dependence.

0. CONCLUSIONS

Our purpose here has been to explore qualitatively
the anisotropy of the Franz-Keldysh effect at a para-
bolic edge or the Seraphin effect at a saddle-point edge.
Because of dynamical quantum-mechanical factors the
anisotropy of both effects is nontensorial in character.
However, the nontensorial character of the Franz-
Keldysh effect is expected to be more difficult to
demonstrate experimentally. The reason for this is that
although nontensorial factors enter (2.17) and (2.18),
these equations describe effects related to the magnitude
of the satellites of the central dip, whose own magnitude
is strongly influenced by lifetime effects. It is still
possible that nontensorial behavior could be observed
if thresholds not at k= 0=F were studied. The Pb salts
(PbTe, PbSe, PbS) appear to have direct thresholds at
the equivalent (111)faces of the Brillouin zone."

On the other hand, large nontensorial effects are
expected at saddle-point edges in most cases. Apart
from their intrinsic interest these anisotropies are
expected to provide detailed information on the location
k, of interband edges in the fundamental absorption
region comparable to the information provided by
cyclotron resonance and magneto-optic experiments at
band edges. Moreover it appears that the Seraphin

"P. J. Stiles, E. Burstein, and D. N. Logenburg, J. Appl.
Phys. 32, 2174 {1961);J. S. Conklin, Jr., L. E. Johnson, and
G. W. Pratt, j'r. , Phys. Rev. 137, A1282 (1965).

effect gives information not only over a much broader
energy range but also with much poorer samples.

In addition to the non-tensorial anisotropies discussed
here for cubic crystals, stronger anisotropies can be
achieved by studying crystals of lower symmetry. With
cubic crystals greater anisotropy can be achieved by
making the edges inequivalent and jor lifting the
degeneracies by applying uniaxial strains. The combined
strain and field effects should still exhibit nontensorial
anisotropies different from the tensorial anisotropy
expected from the symmetry of the strained crystal.
Thus, the Seraphin effect is intrinsically richer for
some purposes than piezo-optic differentials.
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Note added iN proof. Comparison of the results of
Aspnes (Ref. 9) with Eqs. (2.20)—(2.23) of this paper
shows several interesting differences. These arise be-
cause the integral (2.20) is divergent. We have ob-
tained a convergent result by restricting attention to
the strip S contained in one Brillouin zone. Aspnes'
integrals diverge, but by utilizing the elegant device of
subtracting the spectrum at F=O from the spectrum
with F=Iio, he obtains finite results for A&2 which
exhibit the anisotropy in a form that is much more con-
venient than the one given here. Aspnes' results appear
to provide an adequate basis for interpreting presently
available spectra, which are taken with inhomogeneous
applied 6elds. We believe, however, that the strip
approximation may be better suited to high resolution
studies of non-degenerate edges. I am grateful to Dr.
Aspnes for correspondence on these points, and for
providing a preprint of his paper prior to publication.


