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The band structure of silicon has been computed using the Heine-Abarenkov pseudopotential method.
The theoretical Fourier coefficients of the potential were then varied on the order of 30'Po to give agreement
with measured cyclotron masses and the indirect gap. The resultant band structure is close to that obtained

by Brust, Cohen, and Phillips using only the three lowest potential coefficients. We find that the higher
potential coefficients are not weak but are nearly linearly dependent in their e6ect on the band-structure
parameters investigated. The distribution in k space of contributions to e2(co) was studied and found to be

poorly described by contributions from the symmetry points at F, X, and L. Nevertheless, the optical gaps
at F, X, and L are fairly close in energy to the three prominent peaks, 3.5, 4.3, and 5.4 eV in e&(ao). For the
4.3-eV peak, at least, this proximity in energy is found to be relatively insensitive to variations in the po-
tential which maintain cubic symmetry.

I. INTRODUCTION AND CONCLUSIONS

'HE pseudopotential method' ' has permitted the
characterization of crystal potentials in terms of

a very small number of parameters, the Fourier co-
eKcients of the potential, V(E), for the K vectors of
the reciprocal lattice. The number of parameters is de-
termined by how many "different" plane waves (waves
inequivalent under the symmetry operations of the
lattice) interact strongly with the free-electron basis
states. The reduction of the band-structure problem to
a small number of parameters allows one to determine
these parameters empirically as soon as one can measure
a few experimental quantities closely related to band
structure. Phillips' was the first to note that a "reasona-
ble" band structure for silicon could be obtained with
the use of only two parameters. A third parameter was
later added as a refinement.

In metals the pseudopotenti*1 parameters have been
determined by fairly unambiguous Fermi-surface meas-
urements. ' In silicon, germanium, and other semi-
conductors the main emphasis has been on fitting the
band structure to reproduce the fundamental optical
absorption.

It is generally believed that structure in es(oi), the
imaginary part of the dielectric constant, is due to criti-
cal points' in the optical energy bands, E,(k) —E„(k),
where c and e refer to conduction and valence bands,
respectively. A critical point is defined as a point where
V'&(E, (k) —E„(k))=0. Critical points are required by
symmetry at I' and I. in the diamond lattice but may
also occur at points of lower symmetry.

In the interpretation of optical-absorption spectra it
has been common practice to associate critical-point
structure with high-symmetry points. ' ' The most

' J. C. Phillips, Phys. Rev. 112, 685 (1958).' J. C. Phillips and L. Kleinman, Phys. Rev. 116, 287 (1959);
M. H. Cohen and V. Heine, ibid. 122, 1821 (1961);B.J. Austin,
V. Heine, and L. J. Sham, ibid. 127, 276 (1962).

3 W. A. Harrison, Phys. Rev. 126, 497 (1962); N. W. Ashcroft,
Phil. Mag. 8, 2055 (1963).

4 J. C. Phillips, J. Phys. Chem. Solids 12, 208 (1960).' D. Brust, M. L. Cohen, and J. C. Phillips, Phys. Rev. Letters
9, 389 (1962).

H. Ehrenreich, H. R. Philipp, and J. C. Phillips, Phys. Rev.
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recent empirical band structure of silicon and ger-
manium, that of Brust, Cohen, and Phillips, ' was de-
termined on the basis of this assumption. We shall refer
to this work. as the BCP band structure. The three
peak. s in the optical absorption spectra were used to de-
termine the three lowest pseudopotential coefficients,
V(L2n./a] (1,1,1)), V(L2s-/a] (2,2,0) ), and V (L2s-/a j
X (3,1,1)).All other coeKcients were taken to be zero.
A local (k-independent) potential was assumed.

We have undertaken to re-examine this problem
because we felt that a number of the above assumptions
were questionable.

Our approach has been to do as good a "first prin-
ciples" calculation as possible without an undue amount
of labor and then to adjust the a priori potential by as
little as possible to fit those experimental band structure
parameters which are most reliably established, namely,
the cyclotron masses in the valence and conduction
band and the indirect band gap. We have chosen the
Heine-Abarenkov' pseudopotential method as the best,
simple "first principles" model. This we describe in

Sec. II.
On the basis of our calculation we have then tested

the assumptions made by Brust, Cohen, and Phillips'
for silicon. We find that, although their assumptions
were rather poor, their band structure is very close to
ours. This seems to be attributable to the fact that the
silicon band structure is, indeed, characterizable by a
very small number of parameters.

We have found that optical-energy critical point
structure in silicon cannot be accurately attributed to
regions near I', X, and I. but instead comes from very
large regions in k space where the optical energy surface
is nearly k-independent. These regions are apparently
due to several critical points of nearly equal energy.

Even though the symmetry critical points make only
a small contribution to the optical-critical-point struc-
ture, it is true that the optical gap at the symmetry

Letters 8, 59 (1962); J. C. Phillips, Phys. Rev. 133, A452 (1964);
M. Cardona and G. Harbeke, J. Appl. Phys. 34, 813 (1963);
M. Cardona and D. L. Greenaway, Phys. Rev. 131, 98 (1963).

7 V. Heine and I. Abarenkov, Phil. Mag. 9, 451 (1964).
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points is close in energy to the absorption peaks with
which they have been associated.

We have studied the k distribution of the 4.3-eV
peak in most detail. This is the largest of the experi-
mental peaks and we find that it originates from the
largest region in k space. The X point is on the edge of
this large region. We have tested the "stability" of this
large region to variations of the potential and find that
to within 20/o the region tends to shift in energy as
a whole. The resulting peak then moves in energy as the
potential is varied but does not broaden rapidly. The
X point is 0.2 eV lower than the main peak, but it also
shifts with the main peak.

A pseudopotential is inherently angular momentum-
dependent because "s" functions sample more of the
core than p or d electrons. This results in a k-dependent
or nonlocal potential. We have included this k depend-
ence and find that it contributes 10'Po to the cyclotron
masses. The empirical potential of Brust, Cohen, and
Phillips was k-independent but, again, this has not led
to significant discrepancies between our resulting band
structures.

Exchange also makes a k-dependent contribution to
the potential, in principle, at least. We have computed
the exchange potential for free electrons at the density
of silicon using dynamically screened exchange as cal-
culated by Quinn and Ferrell. ' We find that the ex-
change energy varies by less than 0.03 eV between the
Fermi energy, EF, and EF+7 eV. It appears that ex-
change will primarily act to shift the bands as a whole,
so we have not included it in our calculation.

The Heine-Abarenkov potential gives considerable
importance to the high plane wave components of the
pseudopotential. This might seem to invalidate the
three parameter approach of Brust, Cohen, and
Phillips. ' We find that the BCP band structure is good,
not because the high Fourier coeKcients of the potential
are unimportant, but because they are not linearly in-
dependent in their effects on the band structure con-
stants which we have tested.

The largest discrepancy between the BCP band struc-
ture and our own is the F25 —F2 separation which we
find to be 3.3, or 0.5 eV lower than BCP.

II. HEINE-ABARENKOV MODEL POTENTIAL

We have chosen the Heine-Abarenkov~ method as
the simplest way to obtain a reasonable zeroth approxi-
mation to the silicon band structure. We then adjust
the potential obtained in this manner in order to fit the
well-established indirect energy-gap and cyclotron-
resonance masses.

Following Heine and Abarenkov, ~ we calculate an
angular momentum-dependent (nonlocal) potential for
the bare ions which we then screen by a k-dependent
dielectric constant as calculated for a free-electron gas

' J. J. Quinn and R. A. Ferrell, Phys. Rev. 112, 812 (1958).

TABLE I. ERective square-we11 depths which reproduce the
atommic levels of Si3+; 1.15ao well radius. Potential energy given by—4e'/r outside square well.

0
1

Atomic level
binding energy

in rydbergs

3032—1.55—0.59—2.66—1.33—0.53—1.86—1.04—0.46

—2.3
2 03

2.3

EGective square-
well depth

in rydbergs

—1.74—1.46—1.22—3.37—3.59—3.67—10.3—10.4—10.5

—1.59—3.43 Interpolated—10.3

of the same average density as the valence charge
density of silicon (4 electrons per atom).

The bare ion potential is represented as a super-
position of contributions from each individual ion. The
single ion potential is approximated by a square-well
core and a Coulomb potential with Z=4 outside the
core. The radius of the square well core was arbitrarily
taken as 1.15 ao (Bohr radii). The depth of the core was
taken to be 1-dependent and was determined to re-
produce the free-ion energy levels of Si'+.

The effective square-well depths for Si'+ are shown
in Table I. The depths are seen to be strongly /-depend-
ent. Although the energy dependence is much weaker,
it is not negligible, expecially for l=0 states. We have
not included the energy dependence of the square-well
parameters in our calculation but have instead evalu-
ated them at a fixed energy which we think is a reasona-
ble average value for the bands of greatest interest.

The valence electron-core interaction is chief
governed by the energy difference between the valence
electrons and the core electrons. Donley' has obtained
a value of 6.92 Ry for the 3s-2p separation in Si'+
using a Hartree calculation. Herman and Skillman"
find a 3s-2p separation of 6.96 Ry for the neutral silicon
atom using a Hartree calculation with a "free-electron"
exchange potential. Although the 3s level in Si'+ and Si
differs by 2.3 Ry, the 3s-2p splitting is independent of
this large shift to within the accuracy of the calcula-
tions. We assume that this also holds true for the 3s-2p
separation in the crystal. We are primarily interested
in the energy region around the valence band maximum
which lies approximately 1 Ry above the crystalline
s state (lowest I"r valence band at k =0). Hence, we
evaluate the pseudopotential coefficients at 1 Ry above
the 3s state in Si'+, namely at —2.3 Ry. The inter-
polated square-well depths at this energy are shown in
Table I.

~ H. L. Donley, Phys. Rev. 50, 1012 (1936).
'0 F. Herman and S. Skillman, Atomic Structure Calculations

(Prentice-Hall, Inc. , Englewood CliBs, New Jersey, 1968).
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TAsLE II. k-dependent pseudopotential Fourier coefficients,
pF(k1,k2). The numbers in parentheses in the right-hand column
are the values of kp and k22 in units of {27f/u)~; they are followed
by the energy, VF(k1,k2) in Ry. K=k&—k2. F(E}are the factors
required to adjust the Heine-Abarenkov potential to give cyclo-
tron masses and an indirect energy gap agreeing with experiment.
&L; q is the Lindhard dielectric constant. EH b is the Lindhard di-
electric constant with the Hubbard exchange correction.

IC in units
of 2n/o

(0,0,0)

~%) eLind(lt) snub(ft)
Vp(h, h')
(in Ry)

(0.722,0.722)0.004
(1.322,1.322)0.000

(2.022,2.022) —0.008'
(3,3)—0.018
(4,4) —0.028

{2,2,0)

1.29 1.97 1.76

1.26 1.18

(0.722,2.022) —0.213
(1.322,2.022) —0.214

(3,4) —0.224

(2.022,2.022)0.0385
(3,3)0.0370
(4,4)0.0352

(3,1,1)

(2,2,2)

(4,0,0)

0.71 1.12 1.07

0.086 i.09 1.06

1.02 1.05 1.03

(3,4)0.0640

(3,3)0.0082

(4,4)0.101

E') 19 0.58

Following Heine and Abarenkov, ' we construct an
ionic potential, Vs+(r, r') by taking a lattice sum over
the individual ionic potentials, ps+(r —R;, r' —E;)

Va (r,r') =P ps+(r —R;, r' —R,) .

We have to use a nonlocal potential, s(r, r') or p(k, k'),
because our model potential is angular momentum-
dependent. The sum is over lattice sites, R;. The lattice
sum is easily performed in k space:

The dielectric constant eL;„~, is evaluated in the free-
electron self-consistent-field approximation" (Lindhard
dielectric constant) using an electron density equal to
4 electrons per silicon atom. The Hubbard exchange
correction is then added with the formula'

sH.b(E) = (eLi.d—1)
X(1—LE'/2 (E'+k p'+ (2k p/7ras) )g)+1,

(4)

where k~ is the Fermi momentum. Penn" has shown that
the free-electron approximation is not too bad for the di-
electric constant of an insulator for large k vectors.
Since the principal lattice vectors are of the order of
kp, the free-electron approximation should not be too
bad in our case. The eGect of introducing a Gnite band
gap is to reduce the dielectric constant from the free
electron value.

Heine and Abarenkov~ make further re6nements on
their potential which we shall not include. We are ad-
mittedly seeking an empirically determined band struc-
ture and we use the a priori calculation mainly as a
guide to maintain reasonable contact with reality.

We adapt the Heine-Abarenkov potential, VHa(k, k')
to experiment by introducing factors F(E) which
depend only on the momentum transfer.

Vp(r, r') = g Vp(k, k') cos(K ~/2)e's'e 'i'""

V, (k,k') =F(Z)V, (k,k') .

We further set the structure factor cos(K ~/2) equal
to unity for the "forbidden" E' vector, (2sr/a)(2, 2,2).
The vanishing of this term is a consequence of super-
imposing identical atomic potentials, but is not re-
quired by group theory. We expect that if the Heine-
Abarenkov approach is a good one, F(2,2,2) will be
close to zero while the other F(E) will be near unity.

Vs+(r, r') = Q —cos(K ~/2)ps+(k, k')e'" "e—'"' "
j,K P

K= k—k', (2)

ps+(kk')—= e '" "p (, ') "'"&d ',

UHa (r,r ) = P VHa (k k ) cos
e

fest

~2k r~-ikr zp

where K is a principal vector of the reciprocal lattice.
The origin is taken midway between two nearest
neighbors so that matrix elements will be real. 1V/V is
the number of atoms per unit volume. The valence elec-
trons are taken into account by screening the ionic po-
tential with a k-dependent dielectric constant, ea„b(E)

Ã
VHa(k, k') =—ps+(k, k')/en b(K),

V

A. Effect of Exchange

In our calculations we have not made any allowance
for the eGect of exchange except for making the
"Hubbard correction" to the Lindhard dielectric con-
stant. Of course, the use of the experimentally deter-
mined factors F(K) will include exchange as well as
any other effects that have been left out or miscalcu-
lated. Exchange" is well known to be an important
e8ect in calculations of the cohesive energy. The 6rst-
order perturbation treatment of exchange for free elec-
trons shows a rather strong k dependence of the ex-
change energy" which would be expected to produce
important contributions to the shape of energy bands.
However, the use of screened exchange greatly reduces
the k dependence.

"J. Lindhard, Kgl. Danske Videnskab. Selskab, Mat. Fys.
Medd. 28, No. 8 (1954};H. Ehrenreich and M. H. Cohen, Phys.
Rev. 115, 786 (1959);S. L. Adler, ibid. 130, 1654 (1963).

'2 D. R. Penn, Phys. Rev. 128, 2093 (1962}.
rs F. Seitz, Modern Theory of Solids (McGraw-Hill Book Com-

pany, Inc., New York, 1940), p. 365.
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TABLE III. Sensitivity of band-structure constants to variation of the Fourier coe6cients of the potential. Tabulated numbers are
8A/BIi (E) except for the last column which is Zx BA/BIi (E); EP) (2pr/o)P19. Tabulated values are computed for the values of Il (E)
given in Table II.

2p /u (1,1,1) 2p /g (2,2,0) 2pr/a (3,1,1) 2pr/a (2,2,2) 2~/o(4&0, 0) E'& (2~/o)'19

(2m/its) G'
(2m/its) H'
(2m/ltP) P
mp/m)(
mp/mr
Eg in eV

—0.04
3.7
0.22—0.14
307
43

—0.02—0.80
3.7
0.017—0.40
0.32

0.06
2.5
6.5
0.14
1.7
2.3

—0.25—4.3—5.5—0.011
1.2—2.2

0.03
1.0
1.4
0.12—0.57
0.63

—0.10—0.37—1.0—0.04—0.17—0.30

Quinn and Ferrelis have calculated the exchange
self-energy of a free-electron gas using co and k-depend-
ent dielectric screening of the exchange. We have
evaluated their formulas for an electron density appro-
priate to silicon and have found that the real part of the
self-energy is independent of k to within 0.03 eV in the
energy range from the Fermi level EF to SF+7.0 eV.
The effect of exchange may be thought of rather accu-
rately as rigid lowering of the free-electron energy
bands without very much change in their shape. We
assume that a similar rigid band shift will be the major
eGect of exchange in a solid as well.

III. METHOD OP CALCULATION

We have followed the procedure used by Brust" to
compute energy bands from the crystal pseudopo-
tential; namely, we have treated exactly all inter-
actions between plane waves of kinetic energy less than
35 eV and have used Lowdin perturbation theory" to
second order to include interactions with plane waves
of kinetic energy between 35 and 90 eV. In the Lowdin
method, the total interaction, h;;"', between two plane
waves i,j of energy less than 35 eV, consists of the
direct interaction, h,;, as computed from the potential,
plus a second-order perturbation correction due to
states, J, of kinetic energy between 35 and 90 eV:

(6)

The E; are the kinetic energies. Brust" has made a
careful study of the convergence of the energy computed
by this method and finds changes as large as 0.1 eV as
the 90 eV bound is increased. We take this 6gure as an
estimate of the limit of computational accuracy of our
results. This figure could be improved with the use of
more computer time, but we suspect that errors at
least as great and possibly greater are inherent in the
model which we use. We have no reliable way of esti-
mating the errors due to approximations in the model.

The effective Hamiltonian of Eq. (6) is k-dependent

'4 D. Srust, Phys. Rev. 134, A1337 (1964).
'5 P. Lovrdin, J. Chem. Phys. 19, 1396 (1951).
"Reference 13, p. 340.
"D.Brust, Phys. Rev. 139, A489 (1965).

for two reasons. First, h,, is k-dependent because of the
angular-momentum dependence of the potential.
Second, the perturbation term in Eq. (6) gives a k de-
pendence through the kinetic energy in the denomina-
tor. In computations of the effective mass, both of
these sources of k dependence must be included in
addition to the simple "k p effect'"' from the kinetic
energy of states below 35 eV. Table II demonstrates a
rather weak k-dependence of the direct interaction,
h„. We had accordingly supposed that most of the
effective mass would be accounted for by the simple k p
effect. Actual calculations showed that both sources of
k dependence made comparable contributions to the
mass, their sum amounting to as much as 20% of the
total.

G'= G+ sHs,
H'= Hr+Hs,
F'= F——'H, .

(7)

'8 E. 0. Kane, J. Phys. Chem. Solids 1, 83 (1956)."A. Frova and P. Handler, Phys. Rev. Letters 14, 178 (1965)."J.C. Hensel, H. Hasegawa, and M. Nakayama, Phys. Rev.
138, A225 (1965).
"J.C. Hensel and G. Feher, Phys. Rev. 129, 1041 (1963)."G. Dresselhaus, A. F. Kip, and C. Kittel, Phys. Rev. 98, 368

(1955).

IV. EMPIRICAL ADJUSTMENT OF THE
MODEL POTENTIAL

In adapting the Heine-Abarenkov potential' to ex-
periment with the factors F(K) of Eq. (5), we have
considered six experimentally determined constants to
be reliably and accurately established; namely, the in-
direct gap, Eg= 1.15 eV,"the conduction-band masses,
mI '= 1.09 m ' and mg '= 5.25 m ' ' and the
valence-band mass constants, I.= —6.76 (k'/2m),
M= —4.51 (k'/2m), E= —9.35 k'/2m. " (mii and nor

are parallel and perpendicular to the [100j direction,
respectively. ) Instead of using I.,M,1V directly we prefer
to work with the constants J,G,H&,H2 defined by
Dresselhaus et al.'s F arises from "k P interaction" of
the F25 valence band with states of F2 symmetry, 6
comes from I g2 symmetry, Hg from I'g;, symmetry, and
H2 from I'2:; symmetry. H2 is expected to be very small.
Instead of assuming H2=0, we define the quantities
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2m/hPG'
2m/O'H'
2m/OPP
mp/m~~
mp/mr
Eg in eV

Experimental

—0.64—4.51—5.48
1.09
5.25
1.15

Computed

—1.00
448—5.68
1.09
5.06
1.01

TABLE IV. Sand-structure constants used to determine the
pseudopotential, t/"g(k, k') for silicon. The experimental constants
are determined from the valence-band and conduction-band
cyclotron-resonance constants and the indirect energy gap Eg.

TABLE V. Qrthogonality of experimental and theoretical
parameters in Table III. The rows in Table III are treated as
"experimental" vectors W, ~, where the subscript j refers to an
experimental quantity. The columns are considered "theoretical"
vectors 5'P, where the subscript refers to the potential coe%cient
for a given plane wave. The erst two parts give the "lengths" and
normalized "dot products" W;n Wpn/(~Wn~)Wpn~) for the
"experimental" row vectors, while the last two parts give the same
information for the theoretical column vectors.

"E~xperi mental" vector lengths

G' O' F' mp/mtt mp/mr

Using Dresselhaus et u/. ,"we then have

0.28 6,3 9.4 0.24 4.3

Vector orthonormatity; W;n WP/~W;n~ [Wpn~

5.4

F'= (L+2S 2M)/—3,
B'=3f 7

G'= (L %+M)//3—.

To adjust the band structure to fit these six experi-
mental quantities we have chosen to vary the coeffi-
cients F(E) of the five principal plane waves of lowest
kinetic energy. As a sixth parameter we vary the co-
efficients F(E) for all principal plane waves greater than
the Qve lowest, using a single constant independent of
E for all E'& (2~/u)'19.

We computed a 6X6 matrix, shown in Table III,
which gives the derivatives of the experimental quan-
tities which we wish to fit with respect to the six theo-
retical parameters. We assume that changes in the ex-
perimental quantities are linear in the theoretical
parameters and use Table III to correct the F(E) from
the initial values F (E') =1,EA (2m/u) (2,2,2); F(E)=0,
E=(2~/a)(2, 2,2) to give the right values of the ex-
perimental numbers. Since the assumption of linearity
is not exact, we had to iterate the above procedure
several times. We also recomputed the matrix of
Table III for the final values of F(E). The final values
of F are given in Table II together with the final po-
tential coefficients Vp(k, k') which give the best fit to
experiment. The computed values of the experimental
quantities are given in Table IV.

In the course of the calculations it became clear that
the 6 parameters were not as independent as would be
desired. In order to study this point we constructed the
orthonormality matrices of Table V. In the 6rst two
parts of Table V we treat the rows of the 6&&6 matrix
in Table III as vectors and compute the "lengths" of
these vectors as well as the "dot products" of the nor-
malized vectors, W„„,"W„„'/(~W„„;[~W„„"().
Clearly, a "dot product" equal to zero means the
parameters are completely independent whereas a
"dot product" of one means complete dependence. The
row "lengths" indicate the sensitivity of the experi-
mental parameter labeling the row to the variation of
the potential. It is clear that the experimental parame-
ters G' and mp/m„are 20 to 30 times less sensitive to
the potential than the other parameters. We note a)so
from Table V that the quantities mp/hei, EG, and &'

G'
II'
p/

mp/m"
mp mg

gg

G' O' P' mp/m" mp/mr

0.65 0.69 0.36 —0.20
1 0.66 0.00 —0.85

1 0.54 —0.51
1 020

1

0.37
0.92
0.59—0.13—0.98
1

Theoreti cal pseudopotential vectors

(1,1,1) (2,2,0) (3,1,1) (2,2,2) '(4,0,0) EP) 19

6.8 3.8 7.5 7.4 1.9 1.1

Vector orthonormat'ty Wrr Wsr/() Wtr
) ) W sr)

(111)
(2,2,0)
(3,1',1)
(2 2 2)
(4,0,0)
E'& 19

(1,1,1) (2,2,0) (3,1,1) (2,2,2)

1 0.027 0.53 —0.62
1 0.81 —0.64

1 —0.96
1

(4,0,0) E'& 19

0.68
0.66
0.97—0.99
1

—0.29—0.80—0.92
0.91—0.86
1

are closely correlated, the correlation between mo/m'
and Eg being especially strong. As a consequence -of
these relationships, we may say, loosely speaking, that
we have between 2 and 3 truly independent parameters.

In the last two parts of Table V we treat the columns
of Table III as vectors and compute their lengths and
normalized "dot products. "The "lengths" in this case
demonstrate the relative effectiveness of the different
potential coefficients in changing the band structure.
The magnitude of the (222) coefficient may be some-
what misleading. According to our choice of definitions,

'

the change of an "allowed" coeflicient from 1 to 1.1 say,
is put on an equal footing with a change of the "for-
bidden" coefficient from 0 to 0.1. The latter change is
probably less likely than the former, so that the V»2
sensitivity in Table V is probably too large. LNote that
in diamond the x-ray scattering from the 222 component
of charge density is about 10'Po of that from allowed
componentsss whereas our values of F(E) are around
30% different from the theoretical values. )

The dependence of parameters found in the first two
parts of Table V must necessarily also appear in the

23 I.. K.leinman and J. C. Phillips, Phys. Rev. 125, 819 (1962).
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FIG. 1. Energy bands of silicon as computed by the Heine-
Abarenkov method modified to fit experiment. The c+,v+ labels
identify the bands involved in the "optical energy" contours of
Fig. 3.
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last two parts. We see that, in fact, the four highest
plane waves in the table produce nearly equivalent
sects.

As shown in Table IV we have not achieved a perfect
match to the 6 experimental quantities with our 6 theo-
retical parameters. This is due to the lack, of independ-
ence noted above and the fact that we restricted the
range of F(E) to "reasonable" values; 0.5&F(X)&2,
EW(2x/u)(2, 2,2) and ~F((2x/u)(2, 2,2))

~

&0.2. Con-
comitant with this lack of perfect matching is a con-
siderable ambiguity in the values of F(E) which give
an adequate 6t with experiment. The values listed in
Table II are by no means unique, they are merely a pos-
sible set of parameters. We believe the band structure
is much more nearly uniqu'e than the pseudopotential.

The largest discrepancy between experimental and
computed parameters is the 0.36 (5'/2m) error in the
parameter O'. The general good agreement of all ex-
perimental parameters in spite of their lack of inde-

V. RESULTS OF CALCULATION

The results of the present calculation of the band
structure of silicon are presented in Fig. 1. Comparison
is made in Table VI between the present calculation

TABLE VI. Comparison of principal energy gaps between
present calculation and that of Brust. '

Gap
Energy in eV

Brust& This work

~25~ —I'2~

~2S —~iS
L3 —Ll
L3 —Lg
X4—Xj

3.8
3.4
3.1
5.4
4.0

3.3
3.2
2.9
5.3
4.1

a Reference 14.

pendence gives confidence in the general validity of the
approach.
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Tznrz VII. Distribution in k space of the contributions to es(co). k= (2s/u) (e~/4, ns/4, a~/4)

Cubic
Mesh
Point

%] K2 Q3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6 5.2 5.3 5.4 5.5

r 0 0
0

Z 1
A. 1 1

2 0
2 1
2

Z 2 2
2 2

L 2 2
3 0
3 1
3 1
3 2
3 2

E 3 3
X 4 0

4 1
4 2

Q 1.7
0 „3.7
0 3.1
1 26
0 0.89
0 0.00
1 2.3
0 0.00
1 2.2
2 1.9
0 0.00
0 0.00
1 0.00
0 0.00

0.00
0 0.00
0 000
0 0.00
0 0.00

0.89 0.93 0.42
2.5 1.9 2.2
4.4 4.1 3.9
3.3 2.3 1.7
2.9 5.7 2.8
0.00 0.33 1.2
1.7 3.5 3.0
0.00 0.00 0.00
3.0 2.9 3.0
1.1 1.4 0.89
0.00 0.66 1.3
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
Q.QQ 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00

0.27 0.14
2.4 1.5
4.1 3.8
0.97 1.1
2.3 1.3
1.7 3.5
2.5 3.4
0.00 0.08
2.7 3.8
0.73 0.16
3.0 3.5
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.10
0.00 0.00
0.00 0.00

0.07 0.06 0.07
1.0 0.80 0.42
4.7 3.2 2.5
0.57 0.67 0.45
0.93 0.22 0.11
3.9 3.6 4.0
3.1 4.5 5.5
0.38 1.0 2.9
5.1 4.1 6.7
0.23 0.11 0.12
4.0 2.7 0.97
0.57 1.9 3.2
0.00 0.21 5.8
0.00 0.00 0.00
0.00 0.20 0.51
0.00 0.52 6.0
1.3 2.1 2.3
0.00 0.15 1.3
0.00 0.00 0.00

0.01 0.04
0.64 0.59
2.7 2.3
0.78 1.1
0.05 0.01
3.0 2.4
8.6 3.9
6.0 3.8
6.0 3.6
0.03 0.04
0.55 0.27
2.8 2.4
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1.7 1.3
2.7 3.0
5.5 3.0
0.70 1.2
1.4 1.1
0.00 0.00

0.05
0.33
1.8
0.82
0.00
2.1
2.6
2.1
2.1
0.00
0.58
2.7
4.1
1.1
3.1
2.1
0.64
1.2
0.00

0.03
0.65
1.8
0.99
0.00
2.2
1.5
1.3
2.0
0.01
0.56
2.0
3.9
0.62
2.1
1.6
0.42
1.2
0.00

0.00 0.00
0.42 0.46
0.65 0.41
1.1 1.2
0.00 0.04
1.4 1.4
2.1 1.9
0.32 0.32
0.60 2.8
0.02 1.1
0.72 0.89
1.7 1.4
0.34 0.30
0.63 1.1
1.6 2.0
Q.22 0.18
0.05 0.05
0.90 1.0
0.00 0.00

0.00 0.00
0.39 0.48
0.44 0.36
1.0 0.76
0.48 0.57
1.3 1.1
2.4 1.9
0.42 0.50
4.1 1.7
1.4 0.9$
0.72 0.32
1.4 1.6
0.21 0.19
0.67 0.69
1.6 1.5
0.10 Q.ii
0.02 0.02
0.76 0.96
0.00 0.00

Totg, '1
eq 18 20 24 21 21 22 26 26 44 55 37 27 23 12.8 16.7 17.5 13.7

and the pseudopotential calculation of Brust, '4 based
on the BCP parameters. ' The differences are generally
of the order of 0.1 to 0.2 eV, which is probably the limit
of over-all accuracy of either calculation. For the
F» —F2 gap, the discrepancy is larger, 0.5 eV, or about
15%.We indicate a mild preference for our value here,
since it is more closely related to an experimental
number than is the BCP' band structure.

BCP' used only three parameters to obtain their band
structure, whereas we have used six. We are not sur-

prised, u posteriori, at the close agreement between
us since we have found that our parameters were not
really independent. The close agreement is more sur-
prising because BCP determined their potential on the
basis of the energy gaps F, X, and L inferred from
optical data, whereas we have used the indirect gap and
cyclotron masses. Offhand, this result appears to suggest
that the structure in e2, the imaginary part of the di-
electric constant, is indeed due to critical points located
at these high symmetry points. We have found that
this is not strictly true, as we shall detail later. What
appears to be more nearly true is that the energy gaps
at F, X, and I. are very close in energy to the energies
of the prominent structure in e2 with which they have
been identified. From the point of view of determining
band structure this weaker statement is, of course, all
that is necessary.

We have computed the energy bands of silicon on a
simple cubic mesh with spacing Dk =hk„= Ak,
= (2s/a) (1/8). The model potential interactions
between plane waves of kinetic energy less than 35 eV
were treated exactly, whereas the interactions with
states ha~ing kinetic energy between 35 and 90 eV
were treated by Lowdin perturbation theory as men-
tioned earlier. States were grouped together into quasi-

tn=l m, n=l

where 6k=k —k „„-.The e, are the energies computed
at the mesh points. The P',; and E;; „were also com-
puted in order to extrapolate the energy to k values
other than mesh points. This is, of course, done by
computing M;, for the appropriate value of Ak and
diagonalizing the multiplet matrix, M;;.

60—
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40—
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0 I
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t f t 1
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Fxo. 2. The imaginary part of the dielectric constant, e2(k~), as
computed by a Monte Carlo method with the band structure of
the present paper.

degenerate multiplets if the energy separation of a
given level with the level nearest in energy was less than
1 eV. With this choice, the maximum number of ele-
ments in any multiplet was 5. Energy matrix elements
for any value of k between members of a given multiplet
may be calculated correct to order (LS)s by eliminating
"Ak p" interactions"" connecting multiplet states
with states outside the multiplet to this order. The
energy matrix element, M;;, between multiplet members
i and j may then be written

3 3

cV,,=e,5;,+Q P;; Dk + Q R;;„„hk Dk„, (9)



BAND STRUCTU RE OF Si

We remarked before that the simple "k p" calcula-
tion" which ignores the k dependence of the model
Hamiltonian (except for the diagonal kinetic energy)
gave errors of the order of 20% in computing masses.
Unfortunately, the exact calculation is not diagonal in
the plane-wave basis states as is the "simple k p" con-
tribution. This fact results in a great increase in com-
puting time. We made the compromise of treating the
k dependence of the Hamiltonian, but only computing
that part of the contribution which was diagonal in k.
This procedure reduced the mass errors from 20% to

10% for the worst case tested.

VI. CALCULATION OF es(ep)

We have used our band structure to compute the
imaginary part of the dielectric constant, e2, using the
formula'4

es (cc) = (e'/3smp'cc') Qij BZ
dki p@(k) ('b(E;(k)

4.2
4.4—E;(k)—ha) . (10)

The summation is over empty conduction-band states
i and 611ed valence-band states j.p,; is the momentum
matrix element between states i and j.

The integration over the Brillouin zone (B.Z.) was
performed by a Monte Carlo method. "The upper two
valence bands and the lowest four conduction bands
were summed over. The matrix element p was computed
rather than being taken constant.

The results of the calculation are shown in Fig. 2.
Pronounced structure at 4.3 and 5.35 eV corresponds
well in energy with the experimentally determined
structure in e2.'4 The strong peak seen in the experi-
mental data near 3.4 eV is very weak in our
computation.

Recent calculations by Brust" show the 3.5-eV peak
more prominently, though it is not as strong as the
experimental peak. He has attributed this peak to
transitions along 6 in agreement with the experimental
results of Gerhardt. "The weaker structure that we And

also appears to come from the direction A.

We have attempted to answer the important question
of what parts of the zone make the major contributions
to the critical point structure seen in em. Our approach
is to divide the entire zone up into cubic boxes of length
(0.25) (2rr/a) centered on the simple cubic mesh

(l,m, rs) (2s/4a), where 1,m, n are integers from zero to 4.
In this way there are 19 inequivalent boxes within the
"cubic sector, " 2s/a&k &k„&k,&0; k +k„+k.
(ss(2pr/a). There are, of course, 48 equivalent cubic
sectors in the Brillouin zone. We count only that frac-
tion of a "box" which lies within the cubic sector. The

~H. R. Philipp and H. Ehrenreich, Phys. Rev. 129, 1550
(1963).» U. Gerhardt, Phys. Letters 9, 117 (1964);Phys. Rev. Letters
15, 401 (1965).

4.6'
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5.6
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3.6 3.8 4.4 5.2 6.0 6.2

E—
(b)

FIG. 3. Optical energy contours in the (110) plane for the band
structure of Brust, Cohen, and Phillips. The contours are given
by the equation Aco=E, (k) —E,(k). The values of Ace in eV are
indicated near the contour. Solid circles denote the cubic mesh
points (f,m, e)s /2o. Stars identify "optical" critical points.
(a)—c=c&+, p=p . (b)—c=c~, p=p . In (a) the energy contours
have been extended beyond the line EI.E' bounding the 6rst
zone.

contribution of each box to em is listed in Table VII. The
sum of all 19 boxes gives the total e~ as plotted in Fig. 2.
The computations represent average- over a 0.1-eV
energy interval. The rms statistical Quctuation is esti-
mated to be about 5%.

It is immediately evident from the table that the
structure in e2 is by no means describable by contribu-
tions from F, X, and I. in spite of the large size of the
"boxes" we have chosen. The boxes are, in fact, so large
that the electron energy may vary by several electron
volts or more within a single box. The boxes are
centered on cubic mesh points; hence their centers lie
on the important symmetry points F,X,I.,S'; on the
symmetry lines, A, 6, and Z; and in the (110)and (100)
symmetry planes. Because of the large mesh size, 13mesh
points lie in the (110) or (011) plane, 13 lie in the (001)
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I'zG. 4. Electron density of states in atomic units versus energy
as calculated with the band structure of this paper. The dashed
line is the free-electron density of states with an energy zero at—12.25 eV, the bottom of the valence band.

plane, and there is one "general point" (3,2,1)~/2a
which, however, lies on the (1,1,1)(~/a) zone face.

The 4.3-eV peak, in keeping with its large size, has
major contributions from a large number of mesh boxes.
The 5 largest are (3,1,1)ir/2a, (2,1,1)ir/2a, (2,2,0)s./2a,
(2,2,1)s/2a, and (3,3,0)~/2a arranged in order of de-
creasing importance. These 5 boxes contribute 67% of
the value of ~~ at 4,3 eV. The only common feature they

have is that they lie in the (110) or (011) plane. The
mesh box centered on X has a peak contribution at 4.2
eV which amounts to only 5% of the total value of E2

at this energy.
The contributions to the peak at 5.4 eV are a little

less easy to determine because the "background" is
much more important here. For instance, (3,1,0)ir/2a
and (3,2,1)x./2a make a large contribution, but because
of their energy independence, they should be con-
sidered "background. "Statistical Auctuations from the
Monte Carlo method make the true energy dependence
somewhat uncertain but (2,2, 1)7r/2a and (2,2,2)s/2e
appear to be the major contributors. The "I"box is
more important here than was the "X"box at 4.3 eV,
but it is still less than 25% of the total peak height
above background, whereas (2,2,1)s./2a contributes
about 70%.

Our calculations are less useful in studying the 3.5-eV
peak. Since our computed peak is so much weaker than
the experimental peak we are not sure that the distri-
bution in k space which we find is at all representative
of the true distribution, We find the maximum contri-
bution at 3.6 eV to be from (2,0,0)7r/2a in agreement
with Gerhardt's experimental determination" that the
3.5-eV critical point has 6 symmetry. Brust's" calcula-
tions also suggest a strong contribution to e2 from this
region.

We have also studied the k distribution of e2 by the
energy contour method. These calculations were made
prior to the present study and used the three-parameter
band structure of Brust, Cohen, and Phillips. ' As we
have already noted, the diGerences with the present
band calculations are very slight.

The important mesh points responsible for critical
point structure in E2 have been found to lie in the (110)
plane. In Fig. 3 we have plotted "optical-energy con-
tours" in the (110)plane; i.e., we plot tire =E,(k) —E,(k)
for k in the (110) plane with fixed photon energies, A&a.

Since reQection in the (110) plane is a symmetry
operation for k in the (110)plane, the energy bands can
be characterized by + or —"reQection parity. "The use
of "reAection parity" avoids discontinuities introduced
by the energy-ordering definition of bands and simpli-
fies the computation of energy contours. The contours
plotted are for the odd-parity valence band, v, (there
is only one) to the lowest and next lowest even-parity
conduction bands, designated ci+ and c2+, respectively.
These bands are identified in Fig. 1.

In Fig. 3(a) we have extended the energy contours
beyond the line E'LK which bounds the first zone in
order to shove that the "Qat" region of the optical
energy bands is really one continuous piece rather than
two separate sections. The mesh points are indicated
in the figure as solid circles. Critical points are tenta-
tively identified by stars. Because of the extreme fat-
ness of the surface the identification of critical points is
not accurate, hence we cannot be sure of their location
or even their number.
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TABLE VIII. Sensitivity to potential variation of the gap
between bands 4 and 5 at di6erent points in k space.

k in units of
(2m-/a)

~B=B6(k)—E4(k)
in eV

d(AB)/dI' (X) in eV
X= (2~/a) X = (2m/a) K = (2'/a)

(1,1,1) (2,2,0) (3,1,1)

(0.6,0.6,0)
(0.65,0.27,0.27)

(1,0,0)
(0.625,0,0)
(0.375,0,0)

(o,o,'o)
(0.5,0.5,0.5)

4.24
4.31
4.08
3.56
3.31
3.15
2.83

2.86
2.42
2.94
2.55
2.33
2.52
1.53

0.38
0.41
0.48
0.45
0.22—0.38
1.10

1.88
1.67
1.54
1.67
1.70
2.00
2.46

The 5 mesh points which contribute most to the
4.3-eV peak are seen to lie in the very Qat, triangularly
shaped region in the upper part of the figure. The "X"
point is on the extreme edge of this triangular region.

The fatness along the 6 direction at 3.5 eV is seen
in Fig. 3(a) as Brust" has already noted.

In Fig. 3(b) the 5.4-eV peak in es is associated with

a squarish region about the "I."point. It appears that
further critical points near "L"are required to mak. e a
large enough Oat region to show up as a promminent

peak in e2.

Inasmuch as strong peaks seem to require large Oat

regions in k space, it is interesting to inquire whether
these regions are "stable" against small variations of
the potential. In Table VIII we show the derivatives of
the optical energy separations with respect to F(E) for
the three lowest K values computed for a number of
different k points in the (110) plane.

The first three rows refer to points in the "Oat"
region of Fig. 3(a). The coeKcients vary by no more
than 20% over this region, hence we expect to be able
to shift the 4.3-eV peak as a whole by changing the
potential without drastically reducing its strength or
broadening it. These coeKcients also show that the
"X" point energy diGerence moves along with the
4.3-eV peak even though it contributes only weakly to
its strength.

The coefficients along the entire 6 line are also fairly
constant except for the (2m/a)(2, 2,0) coefficient which
is relatively small. If the 3.5-eV peak comes from the 6
direction, it will also be relatively stable against po-
tential variations.

For comparison, we note that the coeKcients at the I.
point are quite diBerent from the other entries in the

- table.

VII. ELECTRONIC DENSITY OF STATES

In Fig. 4 we give the results of a computation of the
electronic density of states in atomic units using our
band structure. We computed the density of states from
the formula

2V
p(E) = P dk5(E, (k) —E) . (11)

(2~)' ' s.z.

We performed these calculations by a Monte Carlo
method in the same way as we calculated e2. The lowest
8 energy bands were summed over.

For comparison the free-electron density of states is
shown os a dashed line. The bottom of the valence band
at —j.2.25 eV is taken as the energy zero in the free-
electron calculation.

Our results are in good agreement with calculations
by Brust."He summed only over bands 4, 5, and 6 so
that our results are valid over a larger energy range,
namely from —12 to +6 eV. (We follow Brust's con-
vention of labeling the bands in order of increasing
energy. )

The 4.0-eV peak appears to be quite important in
photoemission studies. ""The other structure has not
yet been identified experimentally. The sharp peak at
—7 eV and the strong dip at —8 eV are outstanding
features.

"F.G. Allen and G. W. Gobeli (to be published).


