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which are involved in attempts to calculate atomic force
constants from irst principles. "It seems likely that a
systematic study of impurity systems will reveal inter-
esting correlations even in the absence of such detailed
analysis.

"H. C. White, Phys. Rev. 112, 1092 (1958).
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Infrared-re6ectivity measurements were made from 200 cm ' to 800 cm ' at temperatures ranging from
7.5 to 1060'K. for LiF and from 8 to 1950'K for MgO. The reflection spectra were analyzed by means of a
two-resonance damped-oscillator model, and the calculated optical properties are presented. Dielectric
dispersion theory is reviewed and it is shown that all the major theories discussed give identical results for
the susceptibility when evaluated at the reststrahlen frequency but diBer from one another at other fre-
quencies. The damping constant y for LiF and MgO in the high-temperature limit (hrq&kT) agrees
reasonably well with the formula suggested by Maradudin and %allis, but discrepancies seem to appear in
the low-temperature limit (hr~) kT). The general behavior of the extinction coefficient in the wings of the
absorption region is consistent with the notion of continuous absorption produced by multiphonon processes.
The shift of the long-wavelength optical-mode frequencies of LiF, MgO, and RbI with temperature is dis-
cussed in terms of the volume and other anharmonic e6ects. The anharmonic part of the frequency shift is
found to agree qualitatively with the theory of Maradudin and Fein.

I. INTRODUCTION
' 'N this paper the infrared reQection spectra of single-
- - crystal LiF and MgO are presented as functions of
temperature ranging from 7.5'K to near their respective
melting points. The experimental work was motivated
by the fact that very few self-consistent measurements
of the infrared reflectivity have been made for such wide
temperature ranges. By using a two-resonance damped-
oscillator model, numerical values for the high and low-

frequency dielectric constants, long-wavelength optic-
Inode frequencies and damping constants are obtained
as functions of temperature. The results are discussed
in relation to the existing theoretical models used to
represent the dielectric constant. The relationship

+ Parts of this paper were presented at the Eighth European
Congress on Molecular Spectroscopy, held in Copenhagen,
Denmark, August 15-20, 1965, and the American Physical Society
Meeting held in Honolulu, Hawaii, September 2, 1965. Some of the
preliminary data were published in Appl. Phys. Letters, Vol. 5,
No. 2 (1964).

f The experimental work and some of the analytical work was
done by J.R. Jasperse while at Arthur D. Little, Inc. , Cambridge,
Massachusetts under contract with U. S. Air Force Cambridge
Research Laboratories, glace of Aerospace Research.

f The analytical work done by S. S. Mitra was also supported
by U. S. Air Force Cambridge Research Laboratories, Once of
Aerospace Research.

between the experimentally determined dielectric
constant in the infrared for an ionic crystal and that
predicted by theory has been extensively discussed in
the literature. A brief review of the theoretical models
for representing the dielectric constant of ionic crystals
is presented here. The width and shift of the one-phonon
frequencies with temperature are discussed in the light
of existing lattice dynamical theories of ionic crystals
incorporating anharmonic -forces.

II. EXPERIMENTAL PROCEDURE

Infrared-reQectivity measurement at low and high
temperatures were made using a Perkin-Elmer Model
12 monochromator equipped with a cesium bromide and
a cesium iodide prism. A special fore-optical system was
designed and built such that both a low- and high-
temperature cell could be attached to the spectrometer.
The entire system was enclosed in a thick-walled
plexiglass housing and could be continuously Gushed
with a dry inert gas. For measurements at liquid-
nitrogen temperatures and above, dry nitrogen was
used to Gush the spectrometer. At liquid-helium tem-
peratures high-purity helium gas was used. The re-
Qectivities were determined by a measurement of the
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radiation reQected from the sample at a given frequency
compared to that reQected by an aluminized mirror at
the same frequency. The reQectivity of the aluminized
mirror from 200 to 800 cm ' was taken to be 98.5%.
The average angle of the incident light beam was 11
deg from the normal to the crystal surface. Chopping
of the infrared Qux was accomplished by several crystal
choppers ahead of the sample area in the optical path,
so that the background infrared radiation from the
heated sample would appear at the detector as a con-
stant Qux. Black polyethylene transmission filters were
also used to reduce the amount of near infrared, radi-
ation. Calcium Quoride and sodium chloride trans-
mission filters were inserted and withdrawn from the
optical path during each measurement in order to
measure the scattered radiation.

The high-temperature cell was mounted beneath the
horizontal plane of the fore-optics and monochromator.
The single crystals of LiF and MgO were held in a

platinum disc-shaped holder and mounted at the center
of a radio-frequency induction coil. The samples were
heated by a 1.5-k% Sylvania power supply coupled to
the platinum holder. Sample temperatures of 1950'K
for MgO were easily achieved using this technique.

Sample surface temperatures were measured with an
optical pyrometer above incandescence and with a
Chrornel-Alumel thermocouple imbedded in the sample
holder for the lower temperatures. The calibration
procedures will not be discussed here, but we feel that
the temperatures reported in this paper are accurate to
within &2% of the absolute value. Thermal gradients
across the diameter of the sample at the higher tem-
peratures were studied and found to be within experi-
mental error, The high- and low-temperature cells were
constructed to allow fine adjustments of the crystal-
surface orientation during measurements.

The low-temperature cell consisted of a specially
designed double-wall dewar capable of operating at
liquid-helium temperatures without infrared windows.
Sample temperatures measured by two gold —2.1 at.%
cobalt versus copper thermocouples should be accurate
within ~2—3'K.

High-purity, single crystals of LiF and MgO were
cut and hand polished until they were optically Qat to
about —', -wave at the sodium d line. The samples were
then annealed in a vacuum furnace for two days at a
temperature of about 4 of the melting temperature of
the crystal. ReQectivity data were checked several
times for different samples of the same material, for
several cycles of heating and cooling, and reproduced
under all these conditions to within &1 to &2%. The
calculated resolution of the spectrometer was found to
vary from about 2 cm at 800 cm ' to about 4 cm ' at
220 cm '.

III. DATA PRESENTATION

A. Methods of Calculation

The application of classical-oscillator theory to the
analysis of the lattice-vibrational spectra of solids has

4srp;v (y, v)
"e=2 rkt=g

(vt' —")'+ (Vtv)'
(2)

where e„ is the high frequency dielectric constant, 4xp,
the strength, y; the damping constant and v; the fre-
quency of the jth resonance. The reQectivity R of un-
polarized radiation at normal angle of incidence is
related to the refractive index e and extinction co-
eKcient k by

E= ((st 1)'+—k')/((rt+1)'+ k')

The classical-oscillator-analysis computer program that
we used includes angle of incidence effects and was
described in another publication. '

The analysis procedure is as follows: From the experi-
mental reQectivity curve to be 6tted, one selects a
number of points which are to be approximated within
a prescribed tolerance. In our case we chose approxi-
mately 20 points with DR&~0.02. Input requirements
include a series of values for each parameter, number of
oscillators, experimental angle of incidence, and fre-
quency ranges and intervals of interest. For the first
combination of input parameters, the program calcu-
lates the reQectivity at the frequency of the erst test
point. If the computed value is within the specified
deviation the program will proceed to calculate the
reQectivity at the second test point, and so on. If the
reQectivity value at any test point does not meet the
requirements, the program continues to the next com-
bination of parameters, until it completes the calcu-
lations over all sets of input parameters. For further
details concerning the computer program, see Ref. 5.

Our initial efforts to calculate the optical constants
by the Kramers-Kronig (K-K) method encountered
diKculties similar to the ones experienced by Schatz

' S. S. Mitra and P.J. Gielisse, Progressin Infrared Spectroscopy
(Plenum Press, Inc. , New York, 1964), Vol. 2, pp. 47-125.

~F. Stern, Solid State I'hysics, edited by F. Seitz and D.
Turnbull (Academic Press Inc., New York, 1963), Vol. 15, p. 351.' W. G. Spitzer and D. A. Kleinman, Phys. Rev. 121, 1324
(1961).

4 E. Burstein, Phonon and I'honon Interactions, edited by T. A.
Bak (W. A. Benjamin, Inc., New York, 1964), p. 276.' A. Kahan (to be published).

been extensively reviewed and discussed. ' 4 It is possible
that the classical pole-6t procedure may not represent
the exact dielectric constant as a function of frequency
and temperature even for alkali-halide crystals. How-
ever, the pole-fit procedure is useful for obtaining some
information about the optical properties of alkali
halides. These questions are discussed in Sec. IV. The
relevant equations for the real and imaginary parts of
the complex dielectric constants according to a classical
oscillator analysis are

4srp; vP (v,' v'—)
e —rt2 k2 e +Q

( '—")'+b')'
and
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e( ul. ,' Bowlden, ~ Gottlieb, and Sanderson. ' However,
with further modifications, we were able to generate
extinction curves by the K-K method which agreed
reasonably well with the results of the pole-fit, except
on the low frequency side of the main resonance. We
found that a shift of 0.02 in the far-infrared value of the
refiectivity could induce negative absorption coefli-

cjents, shift the position of the maximum by 3—4 wave

1 00

numbers, and change the maximum value of k by j.0
to 15'Po. The results presented in this paper are based
on classical oscillator theory and not on K-K relations.

B. Results and Discussion of the ReQectivity
for LiF and MgO

The reQection spectra from 200 to 800 cm ' of the
polished, annealed, single crystals of Lir and MgO are
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FIG. 1. infrared reRectivity of LiF as a function of wave number and temperature. The various symbols are experimental points
and the solid lines are the theoretical curves calculated from the dispersion parameters of Table I.

6 P. N. Schatz, S. Maeda, and K. Kozima, J. Chem. Phys. 38, 2658 (1963).' H. J.Bowlden and J. K. Wilmhurst, J. Opt. Soc. Am. 53, 1073 (1963).
s M. Gottlieb, J. Opt. Soc. Am. 50, 343 (1960).

9 R. B.Sanderson, J. Phys. Chem. Solids 26, 803 (1965).
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iF. 2 = 1.90~0.02 (temperature-' pe-inde endent).arameters and re a e1 ted quantities for LiF. e = .TABLE I. Infrared-dispersion par

Temp.
'K

7.5
85

295
420
605
840

1060

cm i

320~1
315
306
301
293
282

271&2

&2

cm

520~3
512
503
497
486
462

430~5

V1/»

O.O 100~0.006
0.0225
0.0600
0.1000
0.1700
0.2750

0.3850~0.015

V2/»

0.185~0.010
0.180
0.180
0.180
0.170
0.210

0.245~0.020

4~pi

6.10~0.05
6.30
6.80
7.20
7.65
8.25

8.70~0.16

4vrp9

0.085~0.005
0.090
O.iio
0.125
0.130
0.140

0.160~0.02

8.09
8.29
8.81
9.23
9.68

10.29
10.76

v1 (cm ')
e'=0 LST

672 660
670 658
672 659
675 663
674 661
664 656
646 645

Temp.
'K

P2
cm 'V1

cm ' Y2/V2

0.140
0.145
0.160
0.170
0.195
0.225
0.260

4n.pi'Y I/V1

0.0045
0.0100
0.0190
0.0325
0.0570
0.0850
0.1200

e'=0 LST

724 719
725 719
725 718
724 712
720
711
703 685

krp2

0.025
0.030
0.045
0.075
0.120
0.175
0.225

6p

653
650
640
630
610
590
566

6.30
6.40
6.60
6.75
7.10
7.45
7.95

9.34
9.44
9.64
9.84

10.23
10.64
11.19

408
406
401
394
382
368
355

8
85

295
545
950

1410
1950

O. 2„=3.01 (temperature-indcp e endent).— is ers and related quantities for Mgo. &„=TABS.E II. Infrared- isp-dis ersion parameters an re a e
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infrared transmission measurements on LiF by Klier'
and by Seger and Genzel" indicate a difference band
centered around 110 p. Our reflectivity measurements
do not extend into the far-infrared, but presumably the
strength of this difference band is such as to have some
eRect on the reAectivity values. Therefore, the values
of the low-frequency dielectric constant 6p will be
underestimated if calculated from the parameters
shown in Table I, unless a third oscillator at 110 p,

is added.
For LiF the frequency of the main resonance v& at

room and at liquid-nitrogen temperatures is fairly well
established from transmission" measurements and is in
agreement with our results. For MgO, Piriou"" meas-
ured the infrared reAectivity at temperatures of 293,
1080, and 2225'K, and by a K-K analysis calculated
the optical constants and some of the dispersion
parameters. His v~ values agree with ours within
experimental and computational error. y~ also coincides
at higher temperatures but differs slightly at room
temperature. This can be attributed to a small difference
in the maximum reQectivity at room temperature.

Berreman" developed a method of calculating the
longitudinal optical (LO) mode ot the lattice near the
center of the Brillouin zone from transmission measure-
ments on thin films at non-normal angles of incidence.

' M. K.lier, Z. Physik 150, 49 (1958)."G. Seger and L. Genzel, Z. Physik 169, 66 (1962)."E.E. Bell and R. L. Brown, Ohio State University Report,
AFRCRC-TN-60-260 (unpublished)."B.Piriou, Compt. Rend. 259, 1052 (1964).

'4 B.Piriou, Compt. Rend. 260, 841 (1965).
'5 D. W. Berreman, Proceedings of International Conference on

Lattice Dynamics, Copenhagen, 1063 (Pergamon Press, Inc. ,
1965), p. 397; Phys. Rev. 130, 2193 (1963).

Here, the frequency of the LO mode is defined as the
position where the real part of the corn.plex dielectric
constant vanishes and may also be approximately
calculated from the Lyddane-Sachs-Teller formula. For
LiF at room temperature, Berreman observes this
frequency to be 670&2 cm '. Our computations show
this frequency to be 672 cm '. In addition, both the
shape and absolute values of the absorption factor
e"/s"+ s"' between 600—750 crn ' are in excellent
agreement with Berreman's experimental results. It is
surprising that our correlation is better than the one
shown by Berreman based on the frequency-dependent
damping factor of Bilz, Genzel, and Happ. "Berreman
also obtained good agreement for CaF2 using a constant
$0

C. The Calculated Optical Constants for
LiF and MgO

Figures 6(a) and (b) and Figs. 7(a) and (b) show,
respectively, the calculated refractive indices and
extinction coeflicients of LiF and MgO as a function of
temperature and wavenumber. For both materials we
plot the two extreme temperatures, and for clarity omit
some of the in-between curves. As the temperature
increases, the optical constant curves broaden, the
maxima decrease and shift to lower frequencies. As
can be seen in the enlarged scale portion of Fig. 6, the
second oscillator produces a peak in the e value, but
no perceptible effect is evidenced for k from the pole fit.

Figures 8(a) and (b) and Figs. 9(a) and (b) show the
real and imaginary parts of the dielectric constant as a
function of wave number. Again, their temperature

"H. Bilz, L. Genzel, and H. Happ, Z. Physik 160, 535 (1960).
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behavior is similar to the optical constants, but the
effects of the second resonance are more noticeable in
e". Figures 10(a) and (b) show the related absorption
coefficients (n=4vrvk) from 100 to 8OO cm '. These
curves amplify the absorption characteristics of the
material in regions of small k.

All methods, whether classical oscillator theory,
K-K analysis, or reQectivity measurements at two
angles of incidence, when applied in calculating the
refractive indices and extinction coefficients of a ma-
terial, involve the basic Fresnel equations connecting
the reQectivity with e and k. The calculated value for
the index of refraction of LiF at T=85'K, corre-
sponding to E=0.96, is e,„=13.58 and for 8=0.97
we get n-, =15.7O, a difference of 13.5%. Hence, when
the reAectivity value is near unity, the accuracy of the
optical constants is ~10-15%. The precision of the
calculations improve with decreasing reQectivity. For
LiF at T=IO6O'K, a AR of 0.01, equivalent to a 1.6%
deviation, introduces a 1.4% error in the calculated
maximum value of the refractive index. Therefore,
when comparing results of different investigators
obtained by diRerent experiments and methods of
calculation, one must evaluate the accuracies involved
in the calculated optical constants.

The di6erent results for reQectivity and optical
constants obtained by Heilmann, "Bell and Brown, "

» G. Heilmann, Z. Physik 152, 368 (1958).

and Gottlieb, for LiF at low temperatures prompted
Frohlich"" to repeat these experiments and evaluate
the results of the previous investigators. He suggests
various possibilities for the disagreements, and lists
the shortcomings in the experimental procedures of the
other investigators. Our reRectivities and optical con-
stants are in agreement, within experimental and
computational accuracies, with the values obtained by
Frohlich. On the low- and high-frequency side of the
maximum there is close correlation, whereas at the
center of the resonance the differences in the e and k
values are well within computational accuracies.

Klier" measured the transmission of LiF and calcu-
lated k for both the low- and high-frequency sides of
the main resonance, and also found an additional band
centered around 110 p. At room temperature and at
575'K our calculated absorption curves are in general
agreement with his work, when the effects of the third
resonance are subtracted out. But, at liquid-nitrogen
temperatures the absolute value of our extinction co-
eKcient is an order of magnitude higher. However, one
must be very cautious when comparing to the results of
Klier. The formulas applied by Klier to calculate k are
highly simplified ones, and the condition for their
applicability should be very carefully evaluated. ' In

"D.Frohlich Z. Physik 169 114 (1962).
D. Frohlich, Z. Physik 177, 126 (1964).' A. Kahan and H. G. Lipson, Air Force Cambridge Research

Laboratory Report, AFCRL-63-325 (unpublished).
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a later work, Seger and Genzel" repeated the room-
temperature measurements on an interference-type
spectrometer, and re-determined k. They also show the
best combined experimental curve for k from the near-
infrared to 1000 p. Aside from the third resonance
which can be subtracted out, our calculated values are
in reasonably good agreement with their combined
curve.

Iv. COMMENTS ON DIELECTRIC
DISPERSION THEORY

According to classical dispersion theory it is assumed
that the dielectric constant of an ionic crystal may be
represented by Eqs. (1) and (2). The sum here is in-
tended to include all poles necessary to represent the
dielectric constant. We wish to emphasize that classical
dispersion theory is, in reality, a conjecture and may or
may not represent the real dielectric constant. It is
useful, in part, because it has a simple form, and, with
the aid of a computer, the optical constants n and k
may easily be calculated. The Kramers-Kronig equa-
tions, however, express an exact relationship between
the real and imaginary parts of the dielectric constant
and does not assume a model for calculating e. This
may be derived as a direct consequence of the principles
of causality and the fact that the dielectric constant

must be an analytically continued, function in the
complex frequency domain. "We also wish to note that
the K-K relations impose a much more general and
less restrictive condition on e than those embodied in
the pole fit. In practice, however, it appears that the
pole-6t procedure actually represents the experimental
reQectivity to a reasonable degree of accuracy even for
crystals which require a large number of poles. ' It also
turns out that the Kramers-Kronig relation is some-
times not useful in determining the full-frequency
dependence of one part of e from the other part, because
of the errors involved in calculating the phase from the
magnitude of the reQectivity.

In quantum-mechanical dispersion theory the phi-
losophy is quite different from that of the classical
pole-fit procedure. Here, one calculates the detailed
form of the dielectric constant from a particular
Hamiltonian representing the crystal and the incident
electromagnetic 6eld. I"rom the Hamiltonian one com-
putes the equations of motion for the ions composing
the crystal and hence the induced polarization caused
by the electromagnetic Geld. One may then calculate
the electric susceptibility tensor X„„by some approxi-
mation technique and write the dielectric constant in

"M. SharnoG, Am. J. Phys. 32, 1 (1964).
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FIG. 10. Absorption coeKcient of LiF and MgP as function of wave number and temperature.

the form

c„,=8„„+47rX„„.

There have been several attempts to calculate the
optical constants of a d.ielectric crystal along these
lines. ' They do not all lead. to identical results,
however. The major theories we will discuss are those
of Born-Huang "Maradudin-Wallis "and Mitskevich '4

In the Born-Huang treatment a Hamiltonian is
assumed which contains quadratic and cubic terms in
the crystalline potential and an interaction term
through which the electric field couples to the dipole
moment of the vibrating lattice. This Hamiltonian was
designed to represent, in the 6rst order, an ionic crystal
like one of the alkali halides. Their expression for the
dielectric susceptibility involves a frequency and tem-
perature-dependent damping constant y(v, T) such that
when the susceptibility is evaluated at v=v& and
second-order contributions are dropped, one finds

"M. Born and K. Huang, Dymarlica/ Theory of Crystal Latttces
(Oxford University Press, New York, 1954)."A. A. Maradudin and R. F. Wallis, Phys. Rev. 125, 4 (1962).

sc V. V. Mitskevich, Fiz. Tverd. Tela 4, 3035 (1962) LEnglish
transl. : Soviet Phys. —Solid State 4, p. 2224 (1963)g.

'5 J.Neuberger and R. D. Batcher, J.Chem. Phys, 34, 5 (1961).

Here, the susceptibility tensor reduces to a scalar for
cubic crystals and is dominated by its imaginary part.

represents some effective or averaged damping
constant. Born and Huang also find that in the high-
temperature limit (kT)hv&) the imaginary part of X

decreases inversely as the cube of the temperature in
the center of the dispersion region.

The model for ionic crystals proposed by Mitskevich
employs a Hamiltonian which contains several Born-
Mayer type potentials with parameters to be deter-
mined by comparison to experiment. In this calculation
of the dielectric constant Mitskevich includes contri-
butions from higher order electric moments as well as
3rd and 4th order anharmonic terms. He obtains the
following form for the dielectric constant in a cubic,
ionic crystal:

(es e )f)0
s (to, T)= s +

n ' &c'+sy(td, T)os—
Here 0„ is the "dispersion frequency, "

y(to, T) is the
damping constant and Qo is a constant. The form of
e(to, T) is close to the classical Drude dispersion formula
except that the damping constant is now a function of
both frequency and temperature. Mitskevich has com-
puted the cubic and fourth-order contributions of the
crystalline potential to y in the high-temperature limit,
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and obtained

(7)

where co~ is the transverse optical mode at the center of
the Brillouin zone. The Pp(cv) and p4(~) are functions
of frequency which depend on sums over the density of
phonon states in wave-vector space. Strictly speaking,
the theory of Mitskevich is not completely quantum
mechanical since it does not make use of the full
operator formalism in treating the phonons and the
electromagnetic held. It is interesting to note that
Neuberger" performed a similar calculation including
only the cubic terms in the potential and found results
similar to Eqs. (6) and (7) where the frequency de-
pendence of p was also computed from the density of
phonon states.

Perhaps the most rigorous quantum-mechanical
treatment of the problem is the theory proposed for
ionic crystals by Maradudin and Wallis. They make
full use of the operator formalism of quantum-field
theory and the density matrix approach in treating
quantum statistical aspects of the problem. They
develop the operator equations of motion of a suitably
transformed set of normal coordinates, and the asso-
ciated equations for the damping constant. Approxi-
mate solutions to these operator equations are obtained
and the general formalism of Kubo" is used to calculate
the electric-susceptibility tensor. They obtain the fol-
lowing general result for the dielectric susceptibility:

M„;M„; 1
X„„=(2Vp)

—' Q
co (0j) ~+pp(0j )+Au (Oj )+iy (Oj )

(9)
~—~(0j)—~~(0j)—iv(0j)

where the p is given by

h
I
V(0j; k' j', k"j")

I

v(0j) =-
4 p pp-p co(0j) I(u(k'j') IM(k"j")

and

through the cubic terms in the Hamiltonian which
produces damping of main resonance. We also note that
a complete calculation of the frequency dependence of
y would mean knowledge of the density of phonon
states in wave vector space for the particular crystal
concerned.

There are two comments we want, to:make about
dielectric dispersion theory. The first point is that a
simple extension of the classical Drude formula to a
superposition of several poles (v s) each having a
frequency-independent damping constant is not rigor-
ously equivalent to any of the results obtained by the
above theories. According to the pole-fit procedure the
susceptibility of an ionic crystal may be represented by

If we believe in quantum mechanical dispersion theory,
for instance, the one proposed by Maradudin and
Wallis, then we might regard Eq. (11) as a distribution
of poles with a constant amount of damping in an effort
to approximate the unknown (or at least uncertain)
frequency behavior of the p appearing in the quantum-
mechanical treatments. In light of all this it is indeed
surprising that Eq. (11) Gts the experimental data as
well as it does.

The second point we wish to make is that if we
evaluate all of the above theories at v= v~ we obtain
essentially the same result. Evaluating the Maradudin-
Wallis results at the center of the dispersion region
(v= v&) we obtain for a cubic, ionic type crystal:

1 i
xl.=.-~ '(2')

2v, (T)+iy
(12)

Using the approximation that v~&&y(v, T) we see that
the imaginary part of X is the same as that given by
(5) obtained from the Born and Huang theory to
within a phase factor. We also note that the imaginary
part dominates the susceptibility in this region and is
several orders of magnitude greater than the real part
of X. at v= v&. The other quantum theories, even though
they di6er in form from one another, give the same
form for the imaginary part of X to within a phase
factor when evaluated at v=v~. If we examine the
classical pole-fit formula (Eq. 11) at v= vq we see that
the main pole dominates the sum and we have for X

41rx
I
„=@~=p~+z(42cpl/pl)r

Here, j refers to the jth optical branch, k is a wave
vector, the V's are the cubic parts of the Hamiltonian
when it is re-expressed in terms of the normal coordi-
nates, and the Ace's are the frequency shifts. The form
of y shows that the phonons are coupled together

Substituting some known quantities into this expression
we And that the classical dispersion formula evaluated
at v = v& yields a susceptibility which is again dominated
by its imaginary part and given by Eq. (5). It may be
mentioned here that recently Cowley' obtained results

R. Kubp, J. Phys. So. Japan 12, 570 (1957). "R.A. Cowley, Advan. Phys. 12, 421 (1963).
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similar to Maradudin and Wallis by considering the
shift and the damping small compared to oi(0j).

All the representations of X. including the classical
pole-fit procedure give essentially the same results when
evaluated at v= v~. It is therefore valid to use the simple
pole-fit procedure of classical dispersion theory when
evaluated at the center of the dispersion region in
order to draw some conclusions about the quantum
mechanical quantities at v= v&. If a quantitative esti-
mate is made, we find that the imaginary parts of Eqs.
(6), (9), and (11) are actually equivalent at i = vi to
within less than 1%.We want to emphasize again that
the results of Born and Huang, Mitskevich, Maradudin
and Wallis and the classical pole-fit all differ from one
another in the wings of the absorption. Therefore, it
may not be valid to draw definite conclusions about the
behavior of X derived from a pole-fit analysis (and
hence the optical constants n. and k) in these regions
of the spectrum.

&1 v=vI

constant ( hei ' 1
~

exp —1 +—,(13)
Pi E kT 2

where the constant represents an average value from
the summation. We know from the data presented in
Sec. III that v~ depends on the temperature and for
LiF has an average coeKcient given by

where
vi(T)~320(1 —aT) cm i,

a~1.45&(10 4 cm ' per 'K.

We see that from room temperature up to 1060'K the
reststrahlen frequency in LiF decreases linearly by
about 13%.It is difficult to know whether or not there
is any temperature dependence buried in the constant
factor shown in Eq. (13). However, other calculations
of y in the high-temperature limit (kT)hei) suggest
that y/vi is proportional to T//vi' which is consistent
with Eq. (13).A graph of the damping constant for the
main band in LiF and MgO as a function of temperature
is shown in Fig. 5. For LiF, kT is about 3 times he~ at
1060'K, and for MgO, kT is about 4 times he~ at
1950'K. The effective temperature dependence of
yi/vi for LiF is about Tsi' and for MgO about T. Now
we notice that Eq. (13), suggested by the Maradudin-
Wallis theory (also Mitskevich and Neuberger in the
high temperature limit) appears to contain a pi(T) '
multiplicative term which would tend to make the
temperature dependence of yi/vi more than the first
power of T when kT&hvar. A similar result would hold
for MgO only to a lesser extent because the coefficient

V. DEPENDENCE OF DAMPING FACTOR
ON TEMPERATURE

If we exa,mine Eq. (10) given by Maradudin and
Wallis for the damping constant it suggests that when
evaluated at v= v~ we expect y to have the form
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Fro. 11.Theoretical-curve 6t of Kq. (13) to the experimentally-
determined damping constant.

dvi/dT for MgO is about —', of that for LiF. Figure 11
shows the same data as Fig. 5 except that the dotted
line in Fig. 11 represents a curve fit of the experimental
data to Eq. (13). Data reported by Heilrnann' and
Gottlieb for LiF and by Piriou"'4 for Mgo are also
included in this graph. Equation (13) 6ts the data
reasonably well at high temperatures but deviates at
the lower temperatures. It is true that the experimental
error associated with yi/vi increases rapidly at low
temperatures but the theoretical expression (curve
fitted at the higher temperatures) appears to lie well
outside of the estimated error. The Born-Huang theory
predicts that at the center of the resonance, yi/vi varies
in proportion to the cube of the temperature in the
high temperature limit. This dependence seems to be
much stronger than is indicated by experiment. The
high-temperature limit of the Maradudin-Wallis results
and the treatments by Neuberger" and Blackmann"
in which each mode of vibration in the crystal is
assigned an energy kT, produce similar results, and
agree reasonably well with Eq. (13).We note that Hass
found that the damping constant of NaCl in the high
temperature limit was proportional to a power of T
slightly less than two." It is plausible that his results
could also be explained by Eq. (13) and a temperature
dependence in v~ even stronger than the one we observe
for LiF.

The behavior of y (vi, T) at low temperatures
(kT((hei) as suggested by Eq. (13) is dominated by
the constant —,'inside the brackets. The —,

' is there as a
result of the fact that quantum oscillators are believed
to have zero-point energy in their ground state. If the
—,'were not present then the damping constant would
go to zero exponentially with decreasing temperature.
In Fig. 11, we see that if Eq. (13) is curve-fitted at high

temperatures (because of the fact that experimental
errors in y are less there) then the theoretical curve
deviates from the experimental values at low tem-

"M.Blackmann, Trans. Roy. Soc. (London) A236, 103 (1936)."M. Hass, Phys. Rev. 117, 6 (1960).
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peratures. This is confirmed not only by the data
presented in part III of this paper but also by the data
on LiF reported by others and included in Fig. 11.It is
perhaps unjustified to make any firm conclusion about
the discrepancy between experiment and Eq. (13) at
low temperatures even though the vertical bars on
Fig. 11 represent our best estimates of experimental
error. The experimental values for y at these low tem-
peratures are quite sensitive to the 98.5/o reflectivity
assumed for the aluminized reference mirror, to which
all measurements are compared. We can say, however,
that the experimentally determined damping constant
evaluated at v~ has a definite bend at lower temperatures
which suggests that y does not vanish as the tempera-
ture becomes arbitrarily small.

I.O—

UJ

CJ
U
4
LLi

O
.IO—

O
I-
z
X
LU

.OI—

k EVALUATED AT V = V~(T)

CALCULATED Li F

X HEILMANN LI F

VI. ABSORPTION IN THE WINGS OF
THE DISPERSION REGION

We have seen in Sec. IV that the classical pole-fit
procedure, in general, gives a different formula for the
dielectric constant than a quantum mechanical treat-
ment of the problem. The results are essentially the
same at the center of the dispersion region but differ
substantially in form in the wings of the absorption
region. Even though we are uncertain whether or not the
pole-fit procedure is valid in the wings of the absorption
region, some comments about absorption here are ap-
propriate. According to a quantum-mechanical treat-
ment, continuous absorption is produced by a coupling
of the phonons arising from the presence of cubic or
higher order terms in the crystalline potential or higher
order terms in the expansion of the electric moment. If
the cubic terms only are considered, then we may visual-
ize two phonon processes which produce an absorption
continuum with a peak near the reststrahlen frequency.
Absorption may occur in the following two ways if
cubic terms are present in the potential: A photon is
absorbed and two phonons are created (a summation
process), or a photon. is absorbed, annihilating an
existing phon on and creating another phonon (a
difference process).

Figure 12 shows a log-log graph of the extinction
coefficient as a function of temperature evaluated in
the wings of the absorption region. The two solid lines
represent the values of k calculated from the pole-fit
procedure and the experimental data shown in the
graph were reported in the literature as direct measure-
ments of the extinction coeKcient. The upper curve is
the extinction coefficient evaluated at v= v~(T) and is
on the high frequency side of v&. The data reported by
Heilmann" are shown on the graph and agree with the
results of pole-fit procedure in this region of the
spectrum. We do note, however, that large errors in
the reRectivity in this region of the spectrum produce
only very small changes in the calculated values of k.
We see that the temperature dependence of the ab-
sorption here is very slight, decreasing slightly with

I I I I I I 1 11 I 1 1 11 I 1 I I I

.IO IOO 1000 2000
TEMPERATURE K

FIG. j.2. Absorption in the wings as a function of
temperature for LiI'.

decreasing temperature. We also note that the tem-
perature coefiicient of v2(T) for both LiF and MgO is
about twice that of vi(T). This evidence would tend to
support the conjecture that absorption on the high
frequency side of v& comes about because of summation
processes. The lower curve in Fig. 12 shows the calcu-
lated values of k (solid line) evaluated at a fixed fre-
quency (123 cm '). Data reported by Klier' are also
plotted on this graph with the band at 110p subtracted
out. This must be done in order to compare to our
pole-fit results since our measurements did not extend
to the far infrared. However, as discussed in Sec. III
one must be careful in comparing to the results obtained
by Klier. We only do so here to examine the major
trend shown in the data. We see that both the pole-fit
results and the direct measurements of k evaluated at
123 cm ' show a very strong temperature dependence,
decreasing rapidly as the temperature is decreased.
This result would support the theory that difference
processes produce the absorption on the low-frequency
side of vj. In addition, the pole-fit results suggest a
leveling off in the values of k at very low temperatures
which, in turn, implies a finite amount of absorption
in the wings of the absorption region as the temperature
becomes arbitrarily small.

There has been considerable discussion in the litera-
ture concerning the origin of the side bands observed in
the reQection spectra of the alkali halides. There are
two mechanisms proposed in the literature to explain
the occurrence of these side bands. The two possible
explanations are the anharmonic mechanism of phonon
coupling discussed by several of the previously refer-
enced authors" " and the charge-deformation mecha-
nism proposed by Lax and Burstein. "In the anharmonic

~ M. Lax and K. Burstein, Phys. Rev. 97, 1 {1955).
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theory, subsidiary maxima could. arise from a two-
phonon process at critical points L|7go(k)=0j in the
phonon dispersion relations where the density of
phonon states is large. This effect would then enter
through frequency dependence of the quantum damping
constant in such a way as to produce a local maximum
in the values of k. It is generally agreed that the Lax-
Burstein theory is the most likely model to explain
infrared absorption in homopolar crystals where the
dipole moment is absent. However, whether the side
band observed in the alkali halides comes about because
of the higher order terms in the expansion of the electric
moment or the anharmonic terms in the expansion of the
crystalline potential is an open question. If we examine
the Lax-Burstein model in detail, we find that they
predict the existence of a subsidiary peak in the ab-
sorption spectrum for an alkali-halide type crystal in
the vicinity of v=&2v&. The Lax-Burstein theory also
suggests that the extinction coeflicient evaluated at v2

should be proportional to at least the square of the
temperature in the high temperature limit. The data
shown by Heilmann in Fig. 12, which represents a
direct measurement of k, and the classical pole-6t
analysis give roughly the same values for k and show
only a very slight temperature dependence in this region
of the spectrum.

In many alk.ali halides the occurrence of the sidebands

approximately at the position of the k 0 longitudinal
optical mode may tempt one to conclude that perhaps
it occurs by means of the process described by
Berreman" due to finite convergence of the incident
beam encountered. in most experimental situations.
However, in the cases of LiF and MgO, v2 is distinctly
different from v~ calculated either from the Lyddane-
Sachs-Teller relation or from the Drude method, ' as
may be seen in Tables I and II.

VII. SHIFT OF FREQUENCY WITH
TEMPERATURE

A. General Remarks

It is generally believed that the change in peak
position and the width of the infrared active lattice
modes are caused by anharmonic forces in the crystal
lattice. The width and temperature shift of the infrared
active lattice modes are the same as the phonon width
and shift which may also be observed in other types of
experiments, e.g. , neutron scattering, vibronic fine
structure or Raman scattering. Maradudin" and
Maradudin and Fein" have treated the problem of
scattering of neutrons by an anharmonic crystal. They
obtained the one-phonon scattering cross section for
the coherent scattering of thermal neutrons by retaining
the cubic and quartic anharmonic terms in crystal's
Hamiltonian. These treatments, although derived for
neutron scattering, may also be applied to other experi-

3' A. A. Maradudin, Phys. Status Solidi, 2, 1493 (1963)."A. A. Maradudin and A. E.Fein, Phys. Rev. 128, 2589 (1962).

ments involving phonon life times, as has been indicated
by Loudon" for the Raman scattering. The expressions
for the frequency shift and the width of one phonon
lines given by Maradudin and Fein are too complicated
to be evaluated explicitly, except for very idealized
Bravais lattices. However, froxn the expressions they
have given it is clear that the magnitudes of the shift
should increase with temperature, the dependence being
linear for T) 0', where 0' is the Debye temperature of
the crystal. The change of the one-phonon frequency
with temperature is not entirely due to the anharmonic
coupling of the phonon in question with other phonons,
but also due to the thermal expansion of the crystal.
As a matter of fact, in many instances, the two sects,
namely the anharmonic coupling and the thermal ex-
pansion, may have opposite temperature dependencies,
one increasing while the other decreasing. Cowley'7 has
calculated the shift for KBr and NaI by using phe-
nomenological anharmonic potentials consistent with
the experimentally known dispersion curves for these
two crystals. In what follows, we shall present expres-
sions for the volume dependence of the long wavelength
transverse and longitudinal optical (TO and LO) modes
of an ionic crystal, and in view of the fact that no
experimental dispersion curve exists for LiF, MgO, and
RbI, we shall only qualitatively discuss the various
factors that contribute to the shifts of the k~0 TO
modes of these crystals.

B. Volume Dependence of One-Phonon Frequency

If a normal mode of frequency v; is purely a function
of volume V, one may write

inv;(T) =lnv;(0) —3y, ndT,
0

(16)

where v;(T) and v, (0) are the frequencies of the ith
mode at temperatures T and O'K, respectively. If p;
for the mode was known the shift of the mode frequency
v; with T due to thermal expansion of the crystal may
be obtained from Eq. (16).

An estimate of y; is possible from the Born and
Huang theory of the long wavelength optical modes in
ionic crystals. The expression for the k~O TO mode is

"R.Loudon, Advan. Phys. 13, 423 (1964).

where y; is the Gruneisen parameter for the ith mode
/note here that y; is not related to the damping constant
deaned by Eq. (1)j given by

y;= —d lnv /d ln V

and 30, is the volume thermal expansion coefficient.
Rewriting Eq. (14) in terms of the mode-frequency v;
as a function of temperature one has at constant
pressure
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given by"
f («/3) (e'/t I'.)+
~ 1-(4-/3) L(-++=)/I'. 3

(17)

be shown" to be

f= ', (a-2—)ne'/r p' (19)

For the Griineisen parameters one therefore obtains

in which f is the nearest-neighbor force constant, tp the
reduced mass per ion pair and V = 2ro' the Bravais unit
cell volume, where ro is the nearest-neighbor distance,
and n+ and n are the ionic polarizabilities. By using
the Lyddane-Sachs- Teller relation" a similar expression
for co& the long-wavelength LO mode may also be
obtained.

The force constant f ma, y be evaluated by using the
Born-Mayer potential

ne2/r+~be p(rjrp)—

and

(f/a) [(a 2o ——2)/(a —2)$—prep/3rp

(20)
f—2~e'/3rp'

(f/a)L(a' 2a—2)/—(a 2)3—+2~e'/3r pe

(21)
f+4me'/3r p'.

In the above expressions it has been assumed that the
ions are rigid, i,e., n+=n =0. However, for the more
realistic case of polarizable ions one may use the
Clausius-Mossoti relation37

where o. is the Madelung constant, M the coordination
number and b and o are potential constants. f may then to obtain

;7r(n++—n /V. ) = (e„—1)/(e„+2) (22)

and

(f/a) ((o'—2o —2)/(o —2)1—
e prL (e„+2)/3 j(e /rpe)

f—l~L(e-+2)/3j(~/rp')

(f/a) L (a' —2o —2) /(o —2'))+e prie„+ 2)/3) (e'/r p')

f+ rrE(e +2)/3~(e/«)

(23)

(24)

Expressions for p& and y& may also be obtained by
using a potential function involving an inverse power
type of repulsive energy of the form

I= ne'/r+ Mb/r"—

p& and p& are given by

(25)

and

(f/o. ) (m+ 2)—-', s (e'/rp')

——+ e' ro'

(f/ ) (rt+2)+-,'pr(e'/re')

f+epr(e'/rp')-

(26)

(27)

(f/a) (I+2) e~L(e-—+2)/3 j(~/rp')
(28)

f—e~l:(e +2)/3j(~/rp')

(fja) (I+2)+eprL(e„+2)/31(e'/rp')

f+-:-L(.+2)/Z( /")
(29)

In expressions (26)—(29) f is given by

f= (e—1)nee/3r pe. (30)

In Table III, yp and y& are. evaluated from Eqs. (20,
21, 23, 24, 26, 27—29) for LiF, RbI, and MgO. It may

'4 M. Born and K. Huang, Dynamical Theory of Crystal Lattices
(Oxford University Press, London', 1954) p. 106.
"R.H. Lyddane, R. G. Sachs, and E. Teller, Phys. Rev. 59,

673 (1941).

for the rigid ion approximation. For polarizable ions
one obtains

be seen from Table III that in all the cases y& is approxi-
Inately three times y~ indicating a stronger temperature
dependence ot the k~0 TO mode as compared to the
LO mode, which is also borne out by our experimental
results presented in Tables I and II.

».b.= vp(0) —v, (T), (31)

where vp(0) and v&(T) are the observed one-phonon
resonance frequencies at O'K and T'K, respectively.
vp(0) is obtained from the extrapolation of low-tempera-
ture data. The third law of thermodynamics demands
that the thermal expansion vanish as T —+0, conse-
quently v& should approach a constant value as T —+ 0,
by virtue of Eq. (14). This is more so because at very
low temperatures the anharmonic effects also tend to
diminish. Although the LO mode exhibit this tendency
in both MgO and LiF, the TO modes for these do not

"S.S. Mitra and S. K. Joshi, Physica 26, 284 (1960)."Reference 35, Chap. II.
G. Q. Jones, D. H. Martin, P. A. Mawer, and C. H. Perry,

Proc. Roy. Soc. (London) A261, 10 (1961).

C. Comparison with Exyeriment

In this section we discuss the shift of the long wave-
length TO mode of LiF and MgO with temperature as
revealed from our reaction studies. Also included in
the discussion is the effect of temperature on the k 0
TO mode of RbI, experimental data for which have
been reported by Jones et ul. ee from transmission
measurements.

%e dehne the observed shift in the frequency as
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TABLE III. Gruneisen parameter for the long-wavelength optical modes of LiF, RbI, and MgQ.

Crystal
Born-Mayer

pt Pl

Rigid ion

Eq. (25)
Polarizable ion

Born-Mayer
pt Pl pt

Eq (25)

LiF
RbI
MgQ'

8.25
10.4
14

6.0
11.0
13

2.44 0.88
2.61 1.14
3.03 1.64

3.46
3.12
3.30

0.84
1.47
1.77

3.76
3.02
3.90

0.83
1.05
1.42

4.51
3.52
430

0.80
1.21
1.52

Data from Ref. 34 (p. 26).
b Data from F. Seitz, The Modern Theory of Sobds (McGraw-Hill Book Company, Inc. , New York, 1940), p. 80.
e cr. and g for MgO are obtained from Eqs. (17), (19), and (30) using the extrapolated O'K igt and e~ from our measurements.

Lkvg= vq(0) —vg. (32)

vg the k~0 TO mode in the Gruneisen approximation
is given by Lsee Eq. (16)j

f
vg ——v((0) exp~ —3y, ada ~.

0 i
(i6a)

TABLE IV. Gruneisen and anharmonic contributions to the
frequency shift of the k 0 TQ mode in LiF.'

100
200
300
500
700
900

1100

(cm ')

319
312
301
276
249
219
188

hog
(cm ')

1
8

19
44
71

101
132

&pbs

(cm ')

315
310
306
298
289
279
269

~&obs
(cm ')

5
10
14
22
31
41
51,

AVAN

(cm ')

2—5—22
40—60—81

seem to approach a stationary value even at very low
temperatures. This we believe is due to the way the TO
mode for these crystals is derived, viz. from the multi-
resonance damped oscillator fit of reststrahlen bands,
the limitations of which were discussed in Sec. III. For
RbI direct-transmission measurements, " on the other
hand, show the expected tendency.

To separate out the contribution of thermal expansion
to observed hv we define

The anharmonic part of hv is then obtained as

~vAN =~vobs ~vG ~ (33)

In Tables IV and V are presented Avg and hvAN for
LiF and MgO obtained in the fashion outlined in the
foregoing. In the high-temperature limit (T) O~) it
may be seen that for both LiF and MgO the anharmonic
contribution is in the opposite direction relative to the
volume effect, as predicted by the Maradudin and Fein
theory. The quartic term in the anharmonic potential
makes a much larger contribution to the shift than the
cubic term. Whereas, the Griineisen contribution and
the small cubic anharmonic contribution are in one
direction (decreasing frequency with increasing tem-
perature) the quartic anharmonic contribution is in the
opposite direction. The irst two contributions to the
shift are in the direction of the observed shift, which is
smaller than the value predicted by these two con-
tributions alone. Compensation occurs through the
third contribution. The combined anharmonic con-
tribution (—DAN) is plotted against temperature in

Figs. 13 and 14 for LiF and MgO, respectively. As
predicted by the Maradudin and Fein theory, in the
high-temperature limit, hv» indeed varies linearly
with temperature.

TABLE V. GrGneisen and anharmonic contributions to the
frequency shift of the h 0 TQ mode in MgQ. & b

100
200
300
600
900

1400
1900

(cm-')

408
406
402
385
367
335
304

hing
(cm ')

0
2
6

23
41
73

104

&pbs

(cm-')

405
402
400
392
383
368
356

Bvoba
(cm ')

3
6

16
25
40
52

3
4
2—7—16—33—52

a Thermal-expansion data used in the calculation of vg are from A.
Goldsmith, H. J. Hirschhorn, and T. E. Waterman, Wright Air Develop-
ment Center WADC Technical Report No. $8-476, 1960, Vol. III,
(unpublished).

b yt used is the average of that from columns 8 and 10 of Table III.

& Thermal-expansion data used in the calculation of s 6 are from Arrterican
Institlte of Physics Handbook (McGraw-Hill Book Company, Inc. , New
York, 1957), 2nd ed. , p. 4-73.

b yt used is the average of that from columns 8 and 10 of Table III.

80—

70-

60—

50—
E
O 40—
K

~ 50-
I

20-

IO—

Oi

-5 I I I I I I I

0 IOO 200 300 400 500 600 700 800 900 IOOO IIOO
T'K

Fio. 13.Anharmonic contribution to the shift of @~0TQ
mode of LiF as a function of temperature.
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FrG. 14. Anharmonic contribution to the shift of k 0 TO
mode of MgO as a function of temperature.

the linear portions extrapolated to about T 0 is a
further testimony to the qualitative agreement with
the Maradudin and Fein theory. The strong behavior
of LiF may be traced back to its unusual variation of
thermal expansion coefFicient with temperature.

In the case of RbI the infrared data exist only over a
small temperature range (up to 300'K). Using the
thermal-expansion data of Schuele and Smith, " v6 for
this crystal has been calculated. Within the experi-
mental error (0.5 cm '), they agree with the observed
frequency, as shown in Fig. 16, indicating that the
volume dependence of the frequency almost entirely

82

81

For KBr and NaI the anharmonic contribution to the
shift has been calculated by Cowley using a phenomeno-
logical potential. In Figure 15, his calculated data for
KBr and NaI are compared with our data derived from
the observed shifts in LiF and MgO in suitable reduced
coordinates. The general similarity of the curves with

80
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b~bs (cm-t)

FIG. 16. Trans-
verse - optic - mode
frequency of RbI.
Comparison of ob-
served value with
that calculated from
Eq. (16a) at various
temperatures (O'K
to 300 K).

0

0
X
z

CI
I

KBr

accounts for the observed shift over the range of

temperature considered, and that the anharmonic
contributions are negligibly small.
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