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We give a simple theoretical analysis of the dynamics of an arbitrary atom in a general harmonic solid.
The atom under discussion may be an impurity. Several general results are found which limit the possible
temperature dependences of the mean-square displacement and mean-square velocity in a way which is
described. These results are expected to be most useful in analyzing experiments involving Debye-Waller-
factor and Mossbauer-thermal-shift measurements. As an illustration the allowed range of mean-square
displacements at =0 and 7'=80°K corresponding to a measured value at T'=298°K is given. These re-
sults also provide strong consistency relations that experimental data or numerical calculations should
satisfy. One especially interesting result indicates a possible method for determining a simple sum over
atomic force constants from Debye-Waller-factor measurements. This sum, which in general is not obtain-
able from any other type of measurements, could be used as a convenient check on atomic-force-constant
models. The dependence of the mean-square displacement and mean-square velocity on the various masses
and force constants in the lattice is described. The relation between our results derived in the harmonic
approximation and experimentally measurable quantities is discussed. Finally, several experiments which
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appear to be interesting are mentioned.

1. INTRODUCTION

N this paper we intend to accomplish two related
objectives. First we want to establish as complete an
understanding as possible of the important aspects of
the dynamics of a particular atom in a general harmonic
solid. Second we want to provide as complete a basis as
possible for interpreting Debye-Waller-factor and Moss-
bauer-thermal-shift measurements and to suggest some
areas in which further measurements would be useful.
In this regard a discussion of some measurements which
seem to be interesting is given in Sec. 7. We will give
an analysis of some results from the literature in
part II.

In Sec. 2 the dynamics of a particle in a general
harmonic system is discussed. It is shown that in general
two weighted mean frequencies depend only on the mass
of the particular atom and are independent of the masses
of the other atoms. In addition, one of the weighted
mean frequencies depends on the force constants in a
very simple way. Convenient formulas for the mean-
square velocity and mean-square displacement of a
particular particle are obtained.

In Sec. 3 the temperature dependence of the mean-
square velocity and mean-square displacement when the
system is in thermal equilibrium is discussed. It is found
that in certain temperature ranges the results are
easily expressed in terms of weighted mean frequencies.
This together with the results of Sec. 2 suggests how a
simple sum of atomic force constants might be meas-
ured. Formulas are also obtained for low-temperature
deviation of the mean-square velocity and mean-square
displacement from their values at T'=0.
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In Sec. 4 the implications of a mathematical relation-
ship which the weighted mean frequencies must satisfy
is discussed. Careful use of this relationship allows inter-
polation and extrapolation from known results. Therela-
tionship also provides strong consistency conditions
which experimental data or numerical calculations must
satisfy. Also in this section is a discussion of the
dependence of the weighted mean frequencies on the
relevant masses and force constants.

In Sec. 5 some further results especially useful in the
case of pure crystals are mentioned. The relationship
between our weighted mean frequencies and the
moments of the frequency spectrum, which can be
determined from specific-heat data, is shown.

In Sec. 6 the problem of determining the weighted
mean frequencies from experimental data is discussed.
In particular, a procedure for analyzing Méossbauer f
measurements and for correcting for the effects of
anharmonicity is suggested.

2. GENERAL DYNAMICAL PROPERTIES
OF HARMONIC SYSTEMS

In this section we consider a general harmonic system
of point particles. We make no assumptions about size,
structure, or special boundary conditions.!* We only use
the well-known result that there exists a unitary trans-
formation B which transforms from the particle coordi-
nates to a set of normal coordinates y; in which the
equations of motion are separated.t®

We first write the equations of motion in the form

Mi+Kx=0, 1)

1a Tt has been pointed out to us by D. P. Johnson that Eq. (13)
cannot be derived for a free system of particles since Eq. (11)
cannot be inverted in that case. In application of the theory to
solids this is not a real restriction since measurements are always
made on samples clamped in some way.

1 See, for example, W. Hauser, Principles of Mechanics
(Addison-Wesley Publishing Company, Reading, Massachusetts,
1965), Chap. 11.
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where the elements of x are the Cartesian components
of the displacements of the various particles and M and
K are respectively mass and atomic force constant
matrices. Since M is diagonal it is easy to see that
Eq. (1) may be rewritten

G+ MK M-125=0), @)

where &= M.

Since K is a real symmetric matrix M—2K M—2must
also be real and symmetric. Therefore, if A is a matrix
with the squares of the normal-mode frequencies on the
diagonal and zeros elsewhere, a unitary matrix B exists
such that

B—lM—IIZKM—lmB:)\, (3)
y=B"Z, ©)

and
=By, ©)

where y; are the normal coordinates of the system.

In a normal mode all the particles move in phase along
straight lines with a simple harmonic motion. If one
normal mode y; has an amplitude ¢; and all the others
have zero amplitude then the corresponding amplitudes
Aj; along the mass weighted coordinates Z; are

Ajizbjiai )

where the b;; are the appropriate elements of B. At the
instant when all the particles are passing through
equilibrium the total energy in the system is kinetic.
Then we have

=1 — 1
Ei=3%2 bifalwl=3a07,
7

where in obtaining the second equality we have made
use of one of the two conditions

2 bt =2 0;7=1, (6)

J

which follow from the unitary nature of B. We also can
see that
<i”2> = %A jzzwzz = lbji2(1¢2wi2 .
Therefore,
(&;8)=0iEs ™
and
(T;2)=0;(Ei/w?). )

It is easy to see classically or from the properties of
Hermite polynomials that contributions to (Z7?) and
(i) from different normal modes modes are additive.
It is convenient now to change notation slightly. We
change from the mass-weighted coordinates back to
Cartesian coordinates and at the same time replace the
index j which stood for both a particle and a direction
by 7 and k. Thus, the mean-square velocity and mean-
square displacement of particle % in direction j are given
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in terms of the energies in the normal modes by
1
<’Uj1c2>=—— Z bjki2Ez' (9)
my i
and
1 E;
<xjk2>=—*— Z bj}”.2___ . (10)
my i w?

While it is easy to see that equations similar to (9)
and (10) should hold the preceding treatment which
identifies the constants &;z:® as squares of elements of the
unitary transformation matrix allows two important
theorems to be proved. The first follows from Eq. (3)
by rewriting it in the form

K= M"2B\B-1M2 (11)

and multiplying out the right-hand side. If we then
equate corresponding terms on the diagonal we have

Dirin="Mmp Z bj'kz2wz'2 ) (12)
i

where ¢;x;x gives the 7 component of the restoring force
on particle % if it is displaced in the j direction and all
the other particles held fixed. Since the above is
physically indistinguishable from holding particle %
fixed and displacing all the other particles in the minus j
direction ¢,x;;, can also be written as a sum over force
constants connecting the particle % to the other particles
of the system. The relationship given in Eq. (12) is
potentially very valuable since, as will be shown in
Sec. 3, the sum on the right might in suitable circum-
stances be determined experimentally. For any material
more complicated than a monatomic cubic crystal
Eq. (12) will then give information on the atomic force
constants not obtainable by other means. (For a cubic
monatomic crystal the same information can be
obtained from specific-heat measurements.)

Our second theorem follows by rewriting Eq. (11) in
the inverse form

K== M12B\- B

and again multiplying out the right-hand side and
setting equivalent terms on the diagonal equal. We get

1 1
2 bpit—=—g({pirir+}), (13)
% my

wﬁ

where g is an unspecified function of the force constants
alone.

3. STATISTICAL MECHANICS

If we now assume our harmonic system is in thermo-
dynamic equilibrium it is well known that the mean
energy E; in a mode of frequency w; is
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Using this result, Egs. (9) and (10) become

\ h 1 1 \
= [ e 00
and
tym e [ [
apy=— | —f—— . 15
7 my ¢ L2 ehwilkT—1 | w, ( )

Each term in (14) and (15) has the following properties:
The slope and curvature are zero at 7'=0. The slope
and curvature are both always =0. The slope ap-
proaches a constant value as 7' —co. Since they are
finite sums of such terms (v;?) and (x;2) must also have
these properties, therefore their temperature depend-
ences must be qualitatively similar to those shown by
curves 1 and 2 in Fig. 1.

Further insight into the behavior of Eqs. (14) and
(15) may be obtained by considering their limiting
forms. To simplify the terminology we define weighted
mean frequencies w;z(#) by the relationship

wi(m)=[22 bl ]". (16)
Then by making a Thirring expansion of the statistical
factors we get, respectively, for high temperatures

ol
Ao o
and

kT 1 17 %\?
o)
myl wjk"‘ (— 2) 12 kT

Ay,

where sums of the ;2 occurred without any multiplying
power of the w; they have been set equal to 1 by using
Eq. (6). It can be seen that (v;;2) goes to the equiparti-
tion value in the hlgh -temperature limit as expected.
The Thlrrlng expansmn converges for fwn,/kT < 2w,
where w, is the maximum frequency that contributes to
the sum. In fact, the first two terms of the series are in
error by less than 29, down to fw./kT=2.

One of the most interesting things to be seen from
these expansions is the possibility of determining w;(2)
from experimental results. As was shown in Sec. 2,
w;x(2) can in turn be directly related to a sum over force
constants. It is worthwhile to mention that several
variations of the Thirring expansion which may be more
suited to actually evaluating the wjz(#) from experi-
mental results have been considered.>—*

(vin)r= El:l

M

2 C. Domb and L. Salter, Phil. Mag. 43, 1083 (1952).

3 G. K. Horton and H. Schlﬁ Proc. Roy Soc. (London) A250,
248 (1959).

4R. A. Sack

, A. A. Maradudin, and G. H. Weiss, Phys. Rev.
124, 717 (1961)
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F16. 1. (a) Two possible curves of mean-square velocity versus
temperature. (b) Two possible curves of mean-square dlsplace-
ment versus temperature.

In the limit 7— 0, Eqs. (14) and (15) become
(vit)= (B/2mr)w; (1)
(wir?)= (1/2mi) (1 /wjr(—1)).

If we now assume our harmonic system is a crystal con-
taining a large number of atoms we can say some inter-
esting things regarding the initial deviations from Eqs.
(19) and (20) when the temperature is raised. These de-
viations are caused by the very long-wavelength
acoustic vibrations which are the first to be excited. In
these modes large groups of atoms move together so
that the motion of the atom % does not depend on its
mass, force constants, or local surroundings. The first
deviations from (19) and (20) depend only on the bulk
elastic constants of the ideal crystal. It is possible to
derive formulas for these deviations by methods com-
pletely analogous to those used to derive the familiar 77
law for the low-temperature specific heat. The results are

(19)
and
(20)

a1 T\*
(ia2)r—(vir2o =5 ﬁk%(;() Vi (21)
and
w1 h? s T\?
() r— <x:k2>0—-2‘ ﬁ;a;o(;() Yis (22)

where M is the total mass in the ideal unit cell. 6y is the
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< and
5 = ()7 — (o
— dT
0 "
a h k n—1
: 1= =D(>) (=)
my, /]
z 2<n<3, (24)
% " where T' indicates the gamma function and ¢ indicates
® [~—1imiting form (31(’3") k—g—"— the Riemann zeta function of their respective argu-

Fi16. 2. Two possible curves of the weighted mean frequency
wjr(n) versus n. See text for explanation.

value obtained by fitting the 7% law to low-temperature
specific-heat measurements in such a manner that the
total number of modes allowed is 3 times the number
of unit cells. The +v; are dimensionless constants which
depend on the anisotropy of the crystal. For a cubic
crystal they are all equal to one. In general vi472
~+v3=3. Calculations pertinent to determining the #;
for hexagonal crystals have been done by Zener.?

The expected range of validity of (21) and (22) is
about I'<60/50. It can be shown by comparing these
formulas with Egs. (19) and (20) that the change in
(v;2) and (x;2) in the range of validity of the formulas
is normally less than 0.19}. This means that liquid-He-
temperature results can normally be taken with con-
fidence as low-temperature limits. At least for mon-
atomic cubic crystals low-temperature expansions valid
for somewhat higher temperatures than (21) and (22)
may be derived by methods previously used in the
analysis of low-temperature specific-heat data.®

From Egs. (17), (18), (19), and (20), it is apparent
that the information contained in both moderately
high-temperature measurements and 7'=0 measure-
ments is conveniently described in terms of the weighted
mean frequencies w;r(z). In principle, additional
weighted mean frequencies may be derived from meas-
urements at intermediate temperatures. A method pro-
posed by Hwang” for the analysis of specific-heat data
leads to the equations

® (va)r— (vjr*)o
/ S R
0 Tn+2

h k n+1
=—r<n+1>c(n+1)(;) i (=)

my

0<n<3, (23)
8 C. Zener, Phys. Rev. 49, 122 (1936).
¢ T. H. K. Barron W. T. Berg, and J. A. Morrison, Proc. Roy.
Soc. (London) A242 478 (1957).
7]. L. Hwang, J. Chem. Phys 22, 154 (1954).

ments. One of these formulas has been derived inde-
pendently by Kagan.® (His result appears to contain an
error of a factor of 2.) It is seen that the only new
moments which can be derived from these formulas are
fractional ones. In addition, very accurate low-tem-
perature measurements and the use of Egs. (21) and
(22) would be necessary in order to evaluate the inte-
grals with sufficient accuracy to be useful.

4. RESULTS DETERMINED BY MATHEMATICAL
PROPERTIES OF ;i (n)

Since we have now seen that most of the information
contained in curves of (v;2) and (x;2) versus tempera-
ture can be conveniently expressed in terms of the
wir(n) it is interesting to inquire further into the
properties of these weighted mean frequencies. It can
be shown by use of the Schwarz inequality that any
function of # defined by a relation like Eq. (16) where
the w; are positive constants, and the b;:2 are positive
constants whose sum is one, must be a monotonically
increasing function.? In particular, our w;;(%) must in-
crease monotonically with . Further, it is apparent that
wjr(n) must approach w,, the maximum frequency con-

1 2
Ve kT xJk>T

arbitrary units {x J?k>

arbitrary units T

Fic. 3. If the point is the mean-square displacement at a
temperature 7" then for any harmonic solid the mean-square dis-
placement at higher or lower temperatures cannot lie outside the
shaded region.

8 Yu. Kagan, Zh. Eksperim. i Teor. Fiz. 47, 366 (1964) [English
transl.: Soviet Phys.—JETP 20, 243 (1965 ]

% A proof of an even stronger result can be obtained by slightly
generalizing the proof of a similar inequality in R. von Mises,
Mathematical Theory of Probability and Statistics (Academic Press
Inc., New York, 1964), Chap. 8, p. 396.
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FiG. 4. (a) If the mean-square displacement of Fe®7 in a harmonic solid has been measured at 7'=298 then the values at 7’=80 and 7'=0
must lie between the appropriately labeled lines. (b) Same except measured value at 7=80 and allowed range at 7=0 and T =298.

tributing to the motion when # — . For a crystal the
density of modes contributing to the motion can be
thought of as approaching zero continuously as w? when
w approaches zero. Then w;r(n)=0 for #<—3 and
rises as

3'7]‘ )l/n k00
n+3

1/
for n just greater than —3, where the constants have
all been defined previously. Two possible curves of
w;x(n) versus » are shown in Fig. 2.

Since the T'=0 intercepts of (v;z2) and (x;2) versus T
and the high-temperature slope of (x;®) depend on the
w;r(n) we can now establish two independent inequali-
ties among them. They are

(polvin? o= 1 (B2 /mi?)

(i) r= (xp2)d (dmk T/12).

wji(n) = (

(25)
(26)

and

The first, relating (v;2) and (x;2) at T=0, is as expected
just the Heisenberg uncertainty relation.

One use of the second inequality is to predict the
allowed limits for (x;2) versus T if {(x;2)r is known
at one temperature. This can be done simply as
follows. The high-temperature limiting slope must be
= (x;2)r/T. With Eq. (26) this sets an upper limit for
{x;#2)o. Then due to the established shape of {x;i2) versus
T the only allowed values for {x;:?) must be between the
two straight lines in Fig. 3. Using this method we have
computed (for Fe??) the allowed range in {x;?) at T=0
and T=80°K for different assumed values at T=298°K
and the allowed range at =0 and 298°K for different
assumed values at 7==80°K. The results are shown in
Figs. 4(a) and (b). If a maximum frequency for the

lattice is assumed then a lower limit for {x;?) at T=0
is also set.

The fact that w;z(#) is a monotonically increasing
function can be used in a different way. Taken together
with the general results of Sec. 2, and the results of
model calculations by various authors it makes it
possible to see how the various wjx(n), and hence the
physical quantities which they determine, depend on
the various masses and force constants involved.

Equations (12) and (13) show that w;z(—2) and w;z(2)
are proportional to m; V2 and are independent of the
masses of all the other atoms. In addition, w;z(2) is
proportional to (¢;xx)? and is independent of all the
other force constants of the lattice. Since wjz(—1) and
w;x(1) lie between w;;(—2) and w;x(2) it is seen that they
must be approximately proportional to m;~2 and ap-
proximately independent of the other masses. The
extent to which w;z(—1) and w;;(1) are limited by the
above approximate relationship depends on the ratio
wjr(2)/wix(—2). This is only known for a few simple
lattice models where it can be directly calculated and
for a few pure cubic crystals where it has been deter-
mined from specific-heat measurements.’ The values
range from 1.25 for the Leighton model of a fcc metal
to 1.77 for Ge.

Perturbation calculations by Lipkin' indicate that
for small mass changes the proportionality of w;;(—1)
and w;z(1) with m; 2 and their independence on
changes in the other masses is much better than
required by the above limits. Lipkin studied in detail
an isotopic impurity (no force-constant change) in a

10T, Salter, Advan. Phys. 14, 1 (1965).
uH. J. Lipkin, Ann. Phys. (N. Y.) 23, 28 (1963).
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Bravais lattice. His results can be put in the form

d hlek('— 1)
—_—=—p 27
d lnm b @7
d lnw ik (—' 1)
—————=—}+p, (28)
d Inmy,
d hlek(l) (29)
— =
dlnm »
d Inw k(l)
———= {4, (30)
d Inmy;,

where m stands for the mass of the host lattice atoms.
The quantities p; and p, are weighted sums over the
frequency spectrum and a plausible argument shows
that they should be small at least for the pure crystal.
As Lipkin mentions, it should be easily possible to
generalize his calculations. Hence, the same results are
expected to also apply to an arbitrary atom in a complex
crystal.

The symmetrical nature of Egs. (17) and (28), and
of (29) and (30) is not accidental. Imagine that the
masses of all the atoms in the crystal are slightly
changed by the same fraction of their original masses.
Then the &;:# must be unchanged and all the frequencies
must change as the reciprocal square root of the mass
change. This small change in all the masses may be
imagined to result from successive small changes in the
individual masses leading to the result

d Inwj;, (n)

=—1. (31)

& dInmy

By the same reasoning applied to force constant changes
we also get the result

d Inw;y, () 32)

- 1
=1,
PRk d g rirges

Kagan and Tosilevskii®? have studied the dynamics of
an isotopic impurity in a general crystal lattice in con-
siderable detail. They have also considered small force-
constant changes by perturbation methods. For ’=0
their results become simple in the light- and heavy-
impurity limits. Expressed in terms of w;;(—1) the
results are just the limiting possibilities allowed by the
fact that w;x(n) is a monotonically increasing, namely

wjk(-— 1) =wjk(—2) mi>m ,
and
wi(—1)=wj(2) m>ms.
12 Yu. Kagan and Ya. A. Tosilevskii, Zh. Eksperim. i Teor. Fiz.

46, 2165 (1964) [English transl.: Soviet Phys.—JETP 19, 1462
(1964)].
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A similar result for the heavy-impurity limit was also
obtained by DeWames et al.® These limiting forms are
physically reasonable since in either the light- or heavy-
impurity limit the main amplitude of the motion is
concentrated in a narrow band of frequencies.
Numerical calculations for isotopic impurities in
monatomic cubic lattices have been done by Dzyub and
Lubchenko™ and by Dawber and Elliott.’® Assuming a
Debye frequency spectrum they find that the above
limiting values are not approached very rapidly. In

fact, for 0.2=<mi/m=26.6,

w;ir(—1) deviates from being proportional to m;2 by
less than 59,. Dawber and Elliott show also that in the
same range w;;(1) deviates from proportionality with
mi 1% by less than 109.

Taken together the above results suggest that the
functional dependences of the important w;z(x#) are as
listed in Table I. The only important information
missing are the dependences of w;z(—2), and w;(—1)
on the various force constants. The only general
information available on this is Eq. (32) and the results
of Kagan and JTosilevskii.!? The latter, however, are not
in a form which leads to a simple general interpretation.
Two simple models using only one force constant ¢;;, for
the impurity and one force constant ¢ for the host and
one detailed realistic model have been studied. Visscher'®
found for a simple cubic lattice

d lnwjk(- 1)
—=0.5
d Ingjx
and
d lnwjk(—— 1)
—— =00
d In¢g

for 0.5=5¢;1/$=1.5 and 0.5=m;/m=1.5.
Maradudin and Flinn!'? found for a model fcc lattice
that

d lnwjk (— 2)
—F=0.298
d Ingj,
and
d lnwjk (“‘ 2)
——=0.202,
d In¢g

where the derivatives are evaluated at mi/m=1 and
bin/p=1.

The above result is in contradiction to their statement
that the mean-square displacement depends primarily
on the host-lattice stiffness.

13R. E. DeWames, T. Wolfram, and G. W. Lehman, Phys.
Rev. 138, A717 (1965).

41, P. Dzyub and A. F. Lubchenko, Dokl. Akad. Nauk SSSR
%47, 5)%4 (1962) [English transl.: Soviet Phys.—Doklady 7, 1027
1963)1].

15 P, G. Dawber and R. J. Elliott, Proc. Roy. Soc. (London)
A273, 222 (1963).

18 W. M. Visscher, Phys. Rev. 129, 28 (1963).
(117612&)' A. Maradudin and P. A. Flinn, Phys. Rev. 126, 2059

962).
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TaBLE I. Functional dependence of w;x(%)
on masses and force constants.

Other force

my Other masses bikik constants
win(—2) mi2  independent
wir(—1) =my 12 =~independent
w;jx(1) ~my /2 =~independent =¢;r;»/*? =~independent
w;jx(2) mi 2 independent @12 independent

Lehman and DeWames!® have developed a mathe-
matical procedure suitable for calculating the effect of
both mass and force-constant changes when an impurity
is substituted into a realistic model of a crystal. They
illustrated the method with a calculation of (x;2) and
(vi*) as a function of temperature for Fe’” in Al
Results for no force-constant change and for 7 different
changes in the nearest-neighbor force constants are
listed in their Table II. (The force constant changes
they list should be changed as follows: multiply Aa:
and Ay by 2 and AB: by 4.)'° The force constants used
for pure Al were derived from x-ray diffraction data
and hence are probably not correct; however, this does
not detract from the illustrative usefulness of the
calculations. We have found the values of the w;z(%)
which are implied by their results for various force-
constant changes. They are shown in Fig. 5, where the
labels indicate the force-constant changes. For an
exact explanation of their meaning the reader is referred
to the paper of Lehman and DeWames. The plots

w i (n)

_ba =80
/D ~Ay =8.0
_ha=4.0

“~Ay =4.0

3+ ~Aa=0.8
AB = 3.2

sec”
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n

F16. 5. Variation of wjr(z) with # for various force constant
changes in a model representing Fe57 in Al. See Ref. 18 for an
explanation of the force-constant changes.

18 GS W. Lehman and R. E. DeWames, Phys. Rev. 131, 1008
(1963).
19 G. W. Lehman (private communication).
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suggest the qualitative conclusion that w;x(—2) de-
creases more rapidly with large negative force-constant
changes than w;;(2) and increases more slowly with
large positive changes.

The fact that w;z(2), which determines (v;2) at
moderately high temperatures, depends only on ; and
¢;xix should be of interest to chemists. It means that a
shift produced by substituting a distant atom in a
compound is most probably due to a change in electron
density and can only be explained as due to a change in
(vi?) if long-range force constants coupling the two
atoms are important. Since w;z(1) will normally depend
primarily on m; and ¢é;x;x the same conclusion should
generally apply to low-temperature-shift measurements
as well.

5. RELATIONS BETWEEN THE MOTION OF
THE ATOM %k AND PROPERTIES
OF THE WHOLE CRYSTAL

The following results follow immediately from con-
siderations concerning the total energy of a crystal or
from the mathematical properties of the b;z2.

1 1
e ] C

1 1
2y I
e ]
and

Zk: wip™(n) =Z w;*=3Nw"(n), (35)

where total number of degrees of freedom is 3V and the
w(n) without subscripts are the ordinary mean fre-
quencies which can be determined from specific-heat
measurements on the crystal.!® These results should be
most useful for interpreting measurements on pure
crystals which are either anisotropic or contain several
different kinds of atoms. For example, in a monatomic
axially symmetric crystal measurement of w;;2(%) in one
direction could be combined with specific-heat results
to give the value in any other direction. Similarly, in a
diatomic crystal with cubic symmetry a measurement
of (i), (x;#2), or w;r(n) for one component can be
combined with specific-heat measurements to yield the
corresponding quantity for the other component.

Equation (34), which should be most useful in
analysis of measurements by x-ray, neutron, or electron
diffraction, was previously obtained in a different
manner by Blackman.20

6. RELATIONSHIP TO MEASURABLE
QUANTITIES

So far we have discussed the behavior of the quanti-
ties (v;2) and (x;:2) in an ideal harmonic solid. Now we

20 M. Blackman, Acta Cryst. 9, 734 (1956).
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must consider how our results are related to experi-
mentally measurable quantities. We will limit our dis-
cussion to measurements made by the Mdssbauer
effect. For discussions of the relationship between
(xi#*) and measurements made by electron, x-ray, or
neutron scattering the reader is referred to the literature
of those subjects.

It was realized in 1960 that there is a shift s in the
energy of the sharp Mossbauer vy rays that is given by

s=—(u2)/2¢, (36)

where (v:2)=(vu2)+ (v212)+ (v3:2). This shift was ex-
plained by Pound and Rebka® as a relativistic second-
order Doppler shift. It was suggested independently by
Josephson? that it should result from considerations of
the relativistic change in mass of the emitting nucleus.
The two viewpoints seem to be equivalent.

Since at best only (v:2) and not the individual (v;2)
can be measured Eq. (25) must be modified in
practice to

h? 1
(v*)z—— .
4 mp? i (xjk"’)

@37)

At present there is considerable evidence (to be dis-
cussed in part II) to indicate that there is another con-
tribution to the temperature shift caused by a change
in electron density at the nucleus with temperature.
Sufficient experimental and/or theoretical work has not
been done to make it clear how well the two contribu-
tions can be separated. Therefore, the question of how
much can be learned from (v:?) measurements must
remain open.

Fairly general considerations?® lead to the expecta-
tion that the Mossbauer f factor will be given by

f= ol exp(—ix-1) [¢ho)r?,

where « is the wave vector of the emitted v ray, r is the
position vector of the nucleus, v, is an initial-state wave
function of the solid and the subscript 7' indicates a
thermal average over possible initial states. For a pure
harmonic crystal it is also possible to show?® that Eq.
(38) is equivalent to

(38)

f=e @), (39)

Considerable confusion has existed concerning the
case of an impurity light enough that localized vibra-
tional modes are present. This seems to have been re-
solved 225 If, as is always the case in practice, there is
enough anharmonicity so that the local mode width is
considerably larger than the width of the Mossbauer
line Eq. (39) is still correct.

( 216102) V. Pound and G. A. Rebka, Phys. Rev. Letters 4, 274
1960).

22 B. D. Josephson, Phys. Rev. Letters 4, 341 (1960).

= H. J. Lipkin, Ann. Phys. (N. Y.) 9, 332 (1960).

2 H. J. Lipkin, Ann. Phys. (N. Y.) 26, 115 (1964).

26 M. A. Krivoglaz, Zh. Eksperim. i Teor. Fiz. 46, 637 (1964)
[English transl.: Soviet Phys.—JETP 19, 432 (1964)].
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The explicit effect of anharmonicity has been con-
sidered by Maradudin and Flinn?® and by Krivoglaz.2
The former authors considered in detail a simple model
of a fcc lattice. Although they could evaluate some terms
only approximately they came to the conclusion that
even though (x;2) was changed considerably by the
anharmonicity Eq. (39) was still correct to a very good
approximation. A derivation of this result for a more
general case would be most welcome. In particular, a
calculation for an atom in a position lacking inversion
symmetry might prove interesting. It also might be
worthwhile to investigate the possibility that in certain
circumstances a decaying nucleus in a magnetic mate-
rial might lose energy to the electron spin system. These
questions notwithstanding we shall for the present
assume that experimental f measurements can be
interpreted by Eq. (39).

Of course, Eq. (38) and, hence, also (39) are only true
if a thermal equilibrium distribution of initial states can
be assumed. This limits us to consideration of measure-
ments made on isotopes where the excited state of the
nucleus is populated by beta decay or electron capture.
For states populated by Coulomb excitation or heavy-
particle reactions so much energy is lost in the vicinity
of the radiating nucleus that its motion probably can not
be described by a thermal equilibrium distribution of
initial states.

One further point worth emphasizing since it is fre-
quently overlooked by experimentalists concerns the
case in which there are two or more Mdssbauer sites in
the crystal with different f values. Unless the effect
from these sites is clearly resolved and the relative
populations are known or unless fis so large that it may
be given by f=1—«Xx;2) for each site, no unique
interpretation of the f measurements in terms of mean-
square displacements is possible. This is simply because
the average f is not uniquely related to the average
mean-square displacement. This applies in particular to
measurements made on a polycrystalline sample of an
anisotropic material. These points have previously been
made by Kagan 1.8

Finally we must consider the explicit effect of an-
harmonicity on the {(x;2). The analyses previously
mentioned??® indicate that for temperatures 27" > 7w
up to fairly high temperatures this should merely add
a term proportional to 7% to the expression for (x;?)
versus temperature. At still higher temperatures, a
term proportional to 7% might become important. The
temperature dependence of the anharmonic contribution
in the lower temperature region has not been described.
In the absence of better information it seems reasonable
to use the quasiharmonic approximation. Hence, we
tentatively assume that at least for cubic materials the
w;jr(n) depend on temperature at moderate temperatures
only through the change in volume. To analyze meas-
urements the (x;®) values obtained at temperatures

26 A, A. Maradudin and P. A. Flinn, Phys. Rev. 129, 2529
(1963).
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greater than k7= %w./2 should be corrected by sub-
tracting the second term in Eq. 18. (Itshould be noted
that this term depends only on temperature and is
independent of the properties of the crystal.) Then the
difference should be divided by 7" and the result plotted
against AV/Vo. Then the intercept will give w;z(—2)
characteristic of the volume ¥V, at 7=0 and the slope
will give a weighted Griineisen parameter?” 7,;(—2).
The w;x(—2) characteristic of Vy is generally the most
suitable one to compare with other measurements and
with theoretical calculations. To go from calculated
wjr(—2) values to experimental predictions the inverse
procedure should be used with estimated v;i(—2)
values.

The value of wjz(—1) is determined by a measure-
ment at 7’=0 and hence needs no correction. If the
effect of the temperature-dependent isomer shift can be
eliminated the same is true of wx(1), where

wir(n)=wi(n)Fwar(n) +wsk(n).

In attempts to determine w;x(2) probably the best
procedure would be to correct all the experimental
data using the experimental v;.(—2) value.

Since wjr(—1), wi(1) and the w;i(—2) as determined
above all correspond to the same volume ¥V, they must
satisfy the relations imposed by the fact that w;z(%) is
monotonically increasing. Since experimental results
are frequently described by giving the 6 of a Debye
distribution that would lead to the same result it is
useful to give the relation between these  values and
the w,-k(n)

3 1/n k i
wji(n)= (——) Piv(r) . (40)
n+3 [/
In terms of these 8 values Egs. (25) and (26) become
0x(—1) = (V3/2)0;(—2) (41)
and
0x(1)Z (8/9)8:(—1). (42)

7. SUGGESTED EXPERIMENTS

Potentially the most rewarding line of experimental
research suggested by the present work is the deter-
mination of w;z(2) from f measurements. As seen in
Sec. 2 these then give the sum of atomic force constants
which provide the restoring force when the atom % is
displaced in the direction j all other atoms remaining
fixed. For a nonmagnetic monatomic cubic crystal the
same information can be obtained from the analysis of
specific-heat data.'® For any more complicated case this
is not so. The sum of force constants which may be
found are especially useful since they provide a reference
against which fundamental lattice dynamical models
can be checked without detailed calculations. They also
could be used as input data in phenomenological lattice
dynamical calculations.

% T. H. K. Barron, J. A. Leadbetter, and J. A. Morrison, Proc.
Roy. Soc. (London) A279, 62 (1964).
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In order to determine the w;x(2) it is certain that f
measurements which determine (x;2) quite accurately
over at least the temperature interval fiwn,/4<kT <#wm
are needed. It is not exactly certain what accuracy is
necessary or how troublesome the anharmonicity correc-
tion will be.

Measurements sufficient to determine w;,(—2) and/or
wjx(—1) for crystals more complicated than monatomic
cubic ones again provide a check for lattice dynamical
models independent of that provided by specific-heat
measurements. The same may be said for shift measure-
ments which determine wx(1), in the case of polyatomic
crystals or impurities. However, in all these cases ex-
tensive calculations must be done before the comparison
can be made. It should be emphasized that f measure-
ments on polycrystalline samples of anisotropic ma-
terials are much less useful than ones made on single
crystals. In materials like Fe the magnetic contribution
prevents the determination of moments from specific-
heat data and hence Mdssbauer measurements can
provide useful information.

Perhaps v;x(—2) values will provide useful informa-
tion about anharmonicity but more theoretical and/or
experimental work will be needed to decide this
question.

It seems that work to see if the shift due to (»:2) and
the temperature-dependent isomer shift can be sepa-
rated would be useful. In this regard a theoretical pre-
diction of the form of the isomer shift versus tempera-
ture would help. More accurate and extensive measure-
ments are probably also needed. An interesting experi-
ment would be to measure the temperature shift for
two different nuclear transitions in the same element.
The difference would be due only to isomer shift ; hence,
the form of the difference versus temperature would
show how the isomer shift varies with temperature.

The theoretical uncertainty about how (x;?) de-
pends on various force constants in the lattice suggests
that a series of f measurements on isoniorphous crystals
might be interesting.

In simple diatomic crystals with the NaCl structure
measurement of w;(2) for one component can be used
together with specific-heat data to determine w(2)
for the other component. The difference between them
then would for example give the difference between a
sum over Na-Na force constants and a sum over Cl-Cl
force constants. This difference should arise only from
second-neighbor overlap forces and the difference in
polarizability of the ions and hence should provide
some information about the importance of these
quantities.

Mossbauer measurements on impurities in lattices
for which the host atomic force constants are known
together with an analysis of the type done by Lehman
and DeWames'® could in principle yield quantitative
information on force-constant changes. If the systems
studied are properly chosen, it seems likely that this
could yield useful information concerning the quantities
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which are involved in attempts to calculate atomic force
constants from first principles.?® It seems likely that a
systematic study of impurity systems will reveal inter-
esting correlations even in the absence of such detailed
analysis.

2 H. C. White, Phys. Rev. 112, 1092 (1958).
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Infrared-reflectivity measurements were made from 200 cm™ to 800 cm™ at temperatures ranging from
7.5 to 1060°K for LiF and from 8 to 1950°K for MgO. The reflection spectra were analyzed by means of a
two-resonance damped-oscillator model, and the calculated optical properties are presented. Dielectric
dispersion theory is reviewed and it is shown that all the major theories discussed give identical results for
the susceptibility when evaluated at the reststrahlen frequency but differ from one another at other fre-
quencies. The damping constant v for LiF and MgO in the high-temperature limit (kv <kT) agrees
reasonably well with the formula suggested by Maradudin and Wallis, but discrepancies seem to appear in
the low-temperature limit (i, >#T). The general behavior of the extinction coefficient in the wings of the
absorption region is consistent with the notion of continuous absorption produced by multiphonon processes.
The shift of the long-wavelength optical-mode frequencies of LiF, MgO, and RbI with temperature is dis-
cussed in terms of the volume and other anharmonic effects. The anharmonic part of the frequency shift is
found to agree qualitatively with the theory of Maradudin and Fein.

I. INTRODUCTION

N this paper the infrared reflection spectra of single-
crystal LiF and MgO are presented as functions of
temperature ranging from 7.5°K to near their respective
melting points. The experimental work was motivated
by the fact that very few self-consistent measurements
of the infrared reflectivity have been made for such wide
temperature ranges. By using a two-resonance damped-
oscillator model, numerical values for the high and low-
frequency dielectric constants, long-wavelength optic-
mode frequencies and damping constants are obtained
as functions of temperature. The results are discussed
in relation to the existing theoretical models used to
represent the dielectric constant. The relationship

* Parts of this paper were presented at the Eighth European
Congress on Molecular Spectroscopy, held in Copenhagen,
Denmark, August 15-20, 1965, and the American Physical Society
Meeting held in Honolulu, Hawaii, September 2, 1965. Some of the
preliminary data were published in Appl. Phys. Letters, Vol. 5,
No. 2 (1964).

1 The experimental work and some of the analytical work was
done by J. R. Jasperse while at Arthur D. Little, Inc., Cambridge,
Massachusetts under contract with U. S. Air Force Cambridge
Research Laboratories, Office of Aerospace Research.

{ The analytical work done by S. S. Mitra was also supported
by U. S. Air Force Cambridge Research Laboratories, Office of
Aerospace Research.

between the experimentally determined dielectric
constant in the infrared for an ionic crystal and that
predicted by theory has been extensively discussed in
the literature. A brief review of the theoretical models
for representing the dielectric constant of ionic crystals
is presented here. The width and shift of the one-phonon
frequencies with temperature are discussed in the light
of existing lattice dynamical theories of ionic crystals
incorporating anharmonic forces.

II. EXPERIMENTAL PROCEDURE

Infrared-reflectivity measurement at low and high
temperatures were made using a Perkin-Elmer Model
12 monochromator equipped with a cesium bromide and
a cesium iodide prism. A special fore-optical system was
designed and built such that both a low- and high-
temperature cell could be attached to the spectrometer.
The entire system was enclosed in a thick-walled
plexiglass housing and could be continuously flushed
with a dry inert gas. For measurements at liquid-
nitrogen temperatures and above, dry nitrogen was
used to flush the spectrometer. At liquid-helium tem-
peratures high-purity helium gas was used. The re-
flectivities were determined by a measurement of the



