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It is shown that the phonon-drag component p, of the electrical resistivity and the phonon-drag component
S, of the thermoelectric power of a metal are related through the equation p, =S,'T/gs, where T and gs
are the absolute temperature and the lattice thermal conductivity, respectively. The relation is used to
calculate the inAuence of phonon drag on the electrical resistivity of gold and platinum from the experi-
mentally determined quantities S, and aL, . It is found that in gold and platinum phonon-drag effects reduce
the electrical resistivity by less than 0.5 and 1.6%, respectively, above 20 K. The relation can serve to cal-
culate the deviations from the Matthiessen rule in the lattice-defect electrical resistivity which are caused
by changes in p, due to the phonon scattering by the imperfections. Such deviations from the Matthiessen
rule are estimated for lattice vacancies in gold and platinum and are found to be negligible.

INTRODUCTION
' 'X the Bloch theory of the electrical conductivity of

- metals it is assumed that the phonon system is in
thermal equilibrium. If the phonon distribution departs
sufficiently from equilibrium because of the presence of
an electric field, agreement between the Bloch theory
and the observed electrical conductivities could not be
expected. Experimentally the Bloch theory appears to
be confirmed in many metals down to temperatures of a
few degrees Kelvin. At very low temperatures, say
below 5'K, where phonon-drag effects on the electrical
resistivity might become appreciable, deviations from
the Bloch theory may be difficult to observe because
of the electron scattering by lattice imperfections.

Whereas phonon-drag eRects on the electrical re-
sistivity are apparently negligible, deviations from
thermal equilibrium in the phonon system have a very
pronounced eRect on the thermoelectric power. ' The
reason why phonon-drag eRects are much more pro-
nounced in the thermoelectric power than in the
electrical resistivity lies in the fact that the phonon-drag
thermopower is a first-order effect caused by the inter-
action between the phonon-current present in a tem-
perature gradient and the electrons. The inhuence of
phonon drag on the electrical resistivity is a second-
order eRect. The electron current, built up by an electric
field, causes a current in the phonon system, which then
acts back on the electrons.

It is the purpose of this paper to show that a relation
exists between the effects of phonon drag on the electri-
cal resistivity and on the thermoelectric power. This
relation is derived from the results of Ziman's varia-
tional treatment' of the eRects of nonequilibrium in the
phonon system on the transport properties. The relation
between the eRects of phonon drag on the electrical
resistivity and on the thermoelectric power is also

*Based on work performed under the auspices of the U. S.
Atomic Energy Commission.

' D. K. C. MacDonald, Thermoelectriczty (John Wiley R Sons,
Inc. , New York, 1962).' J.M. Ziman, Electrons and Phonons (Clarendon Press, oxford,
England, 1960); J. M. Ziman, Phil. Mag. 4, 371 (1959); J. G.
Collins and J. M. Ziman, Proc. Roy. Soc. (I.ondon) A264, 60
(1961).

derived using simple physical arguments. The relation is
used for calculating the phonon-drag component of the
electrical resistivity of gold and platinum from the
experimentally determined phonon-drag component of
the thermoelectric power. Finally, the deviations from
the Matthiessen rule in the electrical resistivity of
point defects, which may occur through the scattering
of phonons by the lattice defects, are estimated.

RELATION BETWEEN THE EFFECTS OF
PHONON DRAG ON THE ELECTRICAL
RESISTIVITY AND ON THE THERMO-

ELECTRIC POWER

We reproduce here the expressions for the various
transport properties obtained by Ziman with a varia-
tional method taking into account deviations from
thermal equilibrium in both the electron and the
phonon system. The variational principle used by
Ziman requires the maximization of the rate of entropy
production. For the electrical resistivity caused by the
electron-phonon interaction Ziman obtained

where
p= pl pg)

p, = pr. (I'rr, '/I'u&z, r,). (2)

Here pz, is the electrical resistivity for the case that the
phonon system is in complete thermal equilibrium. pI,
is given by

(3)pr. = I'rr/~t',

where J~ is the generalized electron current. According
to Eq. (1) the departure from equilibrium in the phonon
system reduces the electrical resistivity by the "phonon-
drag" component p, .

The lattice thermal conductivity is given by

Kr, = (1/T) (Ur, '/Er, r,), (4)

where T is the absolute temperature and Ul, is the
lattice thermal Aux. Apparently the lattice thermal
conductivity is not aRected by deviations from equilib-
rium in the electron system. The nonequilibrium in the
phonon system causes an additional contribution to the
thermoelectric power. According to Ziman, the phonon-
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Pii ——(ksT)—'

XPi, ,'(yi, —yi„.) dqdk'dk, (6a)

Pir, = (kaT) ' (yi., yi„)P—i, ,~'yr, dqdk'dk, (6b)

drag component of the thermoelectric power is

Sg (+L/T~i) (P1L/PLL) ~ (5)

The scattering integrals I'», I'», and E'L,z, are defined by

system causes the thermoelectric voltage

(12)

between both ends of the crystal. In order to talk
about absolute values of the Peltier and Seebeck
coe%cient of the crystal, we imagine that the crystal is
connected on each side with a conductor whose Peltier
and Seebeck coefficient is zero. In Eq. (12) AT is the
temperature difference between both ends of the
crystal corresponding to the heat current Uz, . The
temperature difference AT is given by

d T= (Ur, /Kr, ) (l/F), (13)

Prz, =(kaT) ' fjhrPp, q Pi, dqdk dk. (6c)

Here I'&, ,~' is the probability for an electron transition
from state k to k' by absorption of a phonon q. ka is
Boltzmann's constant. The functions Pi„Pi,„and Pi, are
trial functions used in the variational method. They are
given by

and

with

fa= fa' —C'a(d fa'/d&a),

c'k 014&ki+624&kg y

n, =n,' 4r, (dn, '/d—Eq),

C'I QLAL'

(ja)

(jb)

(8a)

(8b)

A, =k u y„=(&„—&i.)k u; yr, =q u. (9)

Here u is a unit vector in the direction of the applied
Acids. fi, and m, are the actual values of the electron and
phonon distribution, respectively; f&' and e,' are the
equilibrium values. E~ and E, are the electron and
phonon energy, respectively. EF is the Fermi energy.
The coeScients p&, q&, and gI, are determined by the
maximization of the rate of entropy production.

Inserting Eqs. (3) to (5) into Eq. (2) we obtain the
relation

where l and Ii are the length and the cross-sectional area
of the crystal, respectively. The presence of the thermo-
electric voltage AU is equivalent to an increase in the
electrical resistivity by

—p.= (~I'/~) (F/~) (14)

In Eq. (14) the sign of p, is consistent with Eq. (1).
Inserting Eqs. (11) to (13) into Eq. (14) we find

pa=SOIIg/Ki .
With the Kelvin relation

rr, =S,T, (16)

we finally obtain Eq. (10).
We note that p, is always positive, independent of

the sign of S,. On the other hand, the phonon-drag
thermopower can be positive or negative, depending
on the shape of the Fermi surface and on whether normal
or umklapp scattering is dominant in the electron-
phonon interaction. ' The reason why phonon-drag
effects always reduce the electrical resistivity lies again
in the fact that the basic interaction mechanism enters
the e8ect twice.

pN
=Sg T/Kg ~ (10)

It is seen that the effects of phonon drag on the electrical
resistivity and on the thermoelectric power are related
through a simple equation. The appearance of the
square of the phonon-drag thermopower in Eq. (10)
reflects the fact that the phonon-drag effect on the
electrical resistivity is a second-order phenomenon.

Whereas the derivation of Eq. (10) given above is
based on Ziman's variational treatment of the transport
problem, a direct physical derivation of Eq. (10) can be
obtained in the following way. We consider a crystal
through which the electrical current J is flowing. The
current J will set up a heat current UI. in the phonon
system which is given by

Ug ——IIgJ,
where II, is the phonon-drag component of the Peltier
heat. On the other hand, a heat current in the phonon

We may use Eq. (10) for calculating the phonon-drag
component of the electrical resistivity (which is difficult
to determine experimentally because of its sinallness)
from the quantities S, and K& (which can be obtained
from experiment relatively easily). In Table I we show

r('X) 20

Sg {p,V/'K)' 0.93
KL (W/cm 'K) 0.30
pg (10 12 0 cm) 58
(pg/pl & to'

40 60

0.82 0.53
0.20 0.13

133 128
1.1 0.45

80 100 120

0.33 0.20 0.12
0.10 0.08 0.07

85 50 25
0.18 0.079 0.031

& See Ref. 4. b See Ref. 5.

' M. Bailyn, Phys. Rev. 120, 381 {1960).

TABLE I. Phonon-drag component pg of the electrical resistivity
of gold calculated with Eq. (10) from the experimentally deter-
mined quantities S, and KL, for diferent temperatures.
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TABLE II.Phonon-drag component p, of the electrical resistivity
of platinum calculated with Eq. (10) from the quantities Sg and
s'il, for di6erent temperatures.

T( K)

Sg (pv/'K)
sr, (W/cm 'K)b

p, (10 ' 0 cm)

(&g/u) X10'

See Ref. 7.

20 40 60 80 100 150 200

3.14 5.86 6.97 6.78 6.18 3.79 2.07
0.28 0.35 0.43 0.40 0.40 0.37 0.35
0.71 3.9 6.8 9.2 9.6 5.8 2.4

16 9.6 6.1 4.7 3.4 1.2 0.34

b Calculated from Eq. (17).

the phonon-drag component p, of the electrical re-
sistivity of gold calculated with Eq. (10) from the
experimentally determined quantities S, ' and
for various temperatures. In the calculation of the ratio
p, /p given in Table I, p was obtained from electrical
resistance measurements' with an annealed gold speci-
men at 4.2, 77.3, and 296'K by interpolation using the
data of Burgers, Cath, and Onnes. '

In Table II we show the phonon-drag component

p, for platinum calculated with Eq. (10) from xr, and
the experimentally determined quantity S,."The lattice
thermal conductivity of platinum given in Table II
was calculated using the equation

pg =pg+Apg i

S,*=S,—SS„
(18a)

(18b)

KL =KL AKL ~ (18c)

Here Ap„AS„and hKL are the changes in the transport
coefficients due to the presence of the lattice defects.
With

DEVIATIONS FROM THE MATTHIESSEN
RULE

The change in the phonon-drag component of the
electrical resistivity due to the phonon scattering by
lattice defects acts as an additional contribution to the
electrical resistivity of lattice imperfections in metals.
Since this change in p, is temperature-dependent, it will
result in a deviation from the Matthiessen rule in the
electrical resistivity of lattice defects. In the following
we estimate the contribution to the electrical resistivity
of lattice vacancies in gold and pla, tinum, which is
caused by the change in p, due to the phonon scattering
by the point defects. Indicating the transport properties
of a specimen containing lattice defects by an asterisk,
we have the equations

KL 3CLV/t s (17)
S ssT/& (19)

Here CL is the lattice component of the specific heat, ~

the sound velocity, and X the phonon mean free path.
In the calculation of KL the lattice speci6c heat of
platinum was taken from Clusius et al. ' The phonon
mean free path was obtained from recent measurements'
of the size e6ect on the phonon-drag thermopower of
platinum. For the sound velocity in platinum. the value
u= 2.7)& 10' cm/sec was used. ' In the calculation of the
ratio p, /p given in Table II p was taken from electrical
resistance measurements" with an annealed platinum
specimen carried out between 4.2 and 300'K. The
platinum specimen used in these measurements had the
resistivity ratio p (296'K)/p (4.2'K) =4800.

As seen from Tables I and II, above 20'K the electri-
cal resistivity of gold and platinum is reduced by less

than 0.5 and 1.6%, respectively, due to phonon-drag
sects. The phonon-drag component of the electrical
resistivity in gold and platinum has a maximum around
40 and 100'K, respectively. The ratio p, /p decreases
with increasing temperature above 20'K.

4 R. P. Huebeuer, Phys. Rev. 155, A1281 (1964).
' G. K. White, S.B.Woods, and M. T. Elford, Phil. Mag. 4, 688

(1959).
' In/creational Critical Tables, edited by E. W. Washburn

(McGraw-Hill Book Company, Inc., New York, 1929), Vol. 6,
p. 125.

r R. P. Huebeuer, Phys. Rev. 140, A1854 (1965).
8 K. Clusius, C. G. Losa, and P. Franzosini, Z. Naturforsch. 12a,

34 (1957).
9 Ref. 6, p. 465.
"R.P. Huebeuer aud R. G. Stewart (to be published).

and for the case that Axr/sI((1 and AS,/S, ((1 we
obtain

AS,/Sg ——Axl, /sr, ,

6p, = —(TS,AS,/sr, ) .

(21)

(22)

Since the product S,AS, is always positive, ' Eq. (22)
shows that the presence of lattice defects causes a
reduction in the phonon-drag component of the electri-
cal resistivity, which is equivalent to a positive con-
tribution to the electrical resistivity of the lattice
imperfections.

In Table III we show the change Ap, due to
quenched-in lattice vacancies in gold calculated from
Eq. (22) using experimental values of AS, . The AS,

TABLE III. Change Apg in the phonon-drag component of the
electrical resistivity of gold due to quenched-in lattice vacancies
(Ap =14.8X19 0 cm) calculated with Eq. (22).

T( K)

~S (&V/ K)-
(10»n cm)

0.206
—12.8

40

0.079
—12.9

60

0.022
—5.3

a See Ref. 4.

"F.J.Blatt, M. Garber, and B.W. Scott, Phys. Rev. 136, A729
(1964).

»g= 2(T/sr)SgA—Ss+ (7'Sg'/«') A~L (2o)

With the rough approximation"
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TABLE IV. Change d p, in the phonon-drag component of the electrical resistivity of platinum
due to quenched-in lattice vacancies (Ap =48 6X10 ' 0 cm) calculated with Eq. (22).

T( K.)

AS& (tsV/'K)
ttp, (10 "0cm)

20

0.308
—69.1

40

0.118
—79.0

0.110
—107

80

0.105
—142

100

0.089
—137

150

0.047
—72.3

200

0.021
—25.2

a Ref. 12.

values given in Table III have been obtained' for a
specimen with an electrical resistivity increment due to
quenching of Ap=14.8)&10 ' 0 cm. Table IV shows
similar results for quenched-in vacancies in platinum.
The 65g values of Table IV were taken from recent
thermoelectric measurements" with quenched platinum.
They were obtained with a specimen whose electrical
resistivity increment due to quenching was Ap=48. 6
&& 10—' 0 cm. In the calculation of 6pe from Eq. (22) the
quantities 5, and I(.i, were taken from Tables I and II.

"R.P. Huebener, preceding paper, Phys. Rev. 146, 490 (1966).

It is seen from Tables III and IV that the contribu-
tion to the electrical resistivity of lattice vacancies in

gold and platinum due to changes in p, is less than
0.1 and 0.3%, respectively, of the measured vacancy
resistivity. The experimentally observed deviations
from the Matthiessen rule in the electrical resistivity of
lattice defects are usually about 10 to 25'%%uo.

' " It ap-
pears therefore, that in the electrical resistivity of
lattice vacancies in gold and platinum the deviations
from the Matthiessen rule caused by changes in p, are
negligible. It can be expected that these conclusions are
generally valid for lattice defects in metals.
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Measurements have been made between 77 and 362'K of the effect of uniaxial compression (up to 2X10'
dyn/cm ) on the resistivity and Hall coeKcient of oriented single-crystal samples of n- and p-type A1Sb

of nondegenerate carrier concentrations. Measurements were also made at 195 and 298'K employing
hydrostatic pressures up to 4.5X10' dyn/cm'. The piezoresistance results on n-type material indicate that
the conduction band of A1Sb is multivalleyed with valleys along (100) axes in k space. The temperature
dependence of the piezoresistance coeKcient ~» over most of the temperature range is explained by means of
the deformation-potential theory for electron transfer with no intervalley (IV) scattering. The shear-
deformation-potential constant, "„is found to be given by "„'(1+nT), where „=4.9+0.4 eV and
n= (1.0+0.4) X 10 ' 'K '. Between 195 and 112'K, v n is almost independent of temperature for unknown

reasons, but this behavior does not seem to be due to IV scattering. For p-type material, only +44 is found
to be large and, over much of the temperature range measured, to depend on temperature as predicted by
deformation-potential theory. These results, when combined with magnetoresistance results of others,
indicate that AlSb has a degenerate valence-band edge similar to germanium and other III-V semicon-
ductors. Results of the piezo-Hall-e6'ect measurements on both e- and p-type material are in qualitative
accord with the type of extrema obtained from the piezoresistance measurements.

I. INTRODUCTION

OME features of the conduction and valence-band
structure of AlSb have been determined by various

investigators. Thus, from the negative, silicon-like pres-
sure coefficient associated with the optical absorption
edge, Edwards and Drickamer' inferred that the con-

* YVork supported by The U. S.Army Research OKce, Durham,
North Carolina.

f Based in part on a thesis submitted by K. M. Ghanekar to the
Department of Physics, Purdue University, in partial fulfillment
of the requirements for the degree of Doctor of Philosophy.

' A. L. Edwards and H. G. Drickamer, Phys. Rev. 122, 1149
(1961).

duction band of AlSb should be analogous to silicon,

namely (100) valleys in lr space. From the dependence
of the energy gap on the composition of (Gas „Al,)Sb
alloys found by Burdiyan, ' Ehrenreich3 concluded that
the next-to-lowest minimum in A1Sb is a,t (000), lying
0.3 eV a,bove the lowest (100) minima, . Infra, red-absorp-
tion experiments in Te- and Se-doped samples by
Turner and Reese4 indicated a more accurate value of
0.29 eV. Turner a,nd Reese' a,iso deduced a, value of 0.3mo

' I.I.Burdiyan, Fiz. Tverd. Tela I, 1360 (1959) (English transl. :
Soviet Phys. —Solid State I, 1246 (1960)g.

3 H. Ehrenreich, J. Appl. Phys. 32, 2155 (1961).
4 W. J. Turner and W. E. Reese, Phys. Rev. 117, 1003 (1960).


