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the inner and outer shells, would not be independent).
It is clear, therefore, that relativistic effects are ap-
preciable and an accurate comparison of experiment
with HF predictions can only be made when the latter
(HF and not H) takes relativity into account. It is well
known that use of the Dirac Hamiltonian involves ex-
cessive numerical work. It is very likely that the formal
similarity of the symmetric Hamiltonian to the non-

relativistic problem would help simplify the HF pro-
cedures without appreciably loss in accuracy.

ACKNOWLEDGMENT

It is a pleasure to thank Professor L C. Biedenharn
for critical comments and Professor D. S. Onley for
valuable discussions.

P H YSI CAL REVIEW VOLUME 146, NUM B ER 1 3 JUN E 1966

Logarithmic Terms in the Wave Functions of the Ground State of
Two-Electron Atoms

K, FRANKOWSKI* AND C. L. PEKERIS

Departmerst of Applied Mathematics, The Weiemanrt INstitete, Rehovoth, Israel
(Received 19 October 1965)

A variational calculation for the ground state of two-electron atoms is carried out with a function con-
taining the nonconventional terms In(r&+re), /In(r&+re))', and (rp+rs')v~'. The convergence of the energy
eigenvalues is very good, lending support to the existence of the logarithmic terms in the exact solution
of the vrave equation.

I. INTRODUCTION
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ever, with the inclusion of the repulsive term, it was
shown by Bartlett et ul. 5 that a solution of the form

li(ri, r2 r12) g +ttnorl r2 r12
Q

(2)

does rot exist. The repulsive term thus changes the
analytic character of the solution. In studying Eq. (1)
in Gronwall's' coordinates, where the variable

(r s+r s)its

(4)1( = P B,(rt, rs, rts)R'+&

is introduced, Barlett further proved' that a solution of
Z Z 1

+2I &+ + Ill=0, (1)
r, r, r„&

have been determined variationally' ' to a precision of
one part in 10 to 10",which is more than two orders of
magnitude better than the experimental accuracy.
However, the accuracy of the corresponding variational
wave functions is still uncertain. An expected ae|,fuge

accuracy of from 1/10' to 1/10' is not assured for
particular regions in space. The purpose of this investi-

gation is to adduce evidence on the analytic nature of
the solution f(rq, r r s)otsf Eq. (1).In the absence of the
repulsive term 1/r» in the potential, Eq. (1) has an
analytic solution represented by products of hydrogenic
wave functions in each of the variables f1 and r2. How-
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also does not exist. Bartlett then shows, ' on the basis of
the work of Pierce, that f can be developed formally
into an expansion

i/= P Cq(rr, rs,res)(in') .
k=0

Two decades after Gronwall's work, ' Pock," appar-
ently independently, rederived Gronwall's form of Eq.
(1) using Gronwall's coordinates. Like Bartlett, Fock
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679 (1935).' T. H. Gronwall, Phys. Rev. 51, 655 (1937).

7 J. H. Bartlett, Phys. Rev. 51, 661 (1937).
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also reaches the conclusion that a solution of the form
(4) does not exist, and that the equation can be satisfied
formally if we use an expansion of the type (5) contain-
ing powers of lnR. Pock outlines a procedure by which
the functions C& in (5) can be determined successively.
This procedure is very complicated, but it was felt that,
if the logarithmic terms appear in the true wave func-
tion, their inclusion in a variational function should
accelerate convergence. The eBect of a term r~r2 cos8
in(ri+rs), together with three other nonconventional
rational terms, in a 24-term variational wave function,
was tried by Hylleraas and Midtdal, ""with encourag-
ing results. However, when subsequently Hart and
Herzberg included the same group of nonconventional
terms in their 20-term variational wave function, no
appreciable lowering of the energy was found. "

In view of these inconclusive results, and in the
absence of a proof of the convergence of the expansion
(5), the question as to whether or not logarithmic terms
belong to the true wave function remained open.
Evidence tending to support the reality of the logarith-
mic terms has recently been adduced by Ermolaev
and Sochilin, '4 who carried out a variational calcu-
lation using 37 terms of the Fockm type, which in-
cluded the terms 1nR and (lnR)'. Their value of E(2)
= —2.9037238 a.u. for Z=2 compares with the value
Z(2)= —2.90372388 a.u. obtained' by the use of con-
ventional perimetric coordinates for a determinant" of
order 125.Their wave functions also yield values for the
relativistic corrections which converge rapidly.

P(s,u, t) = y(ks, ku, kt) . (9)

For y we take, for the symmetrical case,

y=e &'P(syt)uy(s'+ ts)'" lns),

P= P C(n, t,ns&i j )s"t"u (s'+t')'I'(1ns)'. (1l)

For the antisymmetrical case, odd powers of t are used.
The C's and the scaling parameter k are determined
from Hylleraas"' variational form: The variation

b(k'M —kI-—XN) =0, (&2)

ds du dtLu(s' —ts) (q '+ yP+ it „')
0 0

+2s(u' —t') ~ v-+2t(s' u') ~ i~ 3— (~3)

00 S 'g

ds du dt(2su P(s' —t')/2Z)) y'
0 0 0

ds du (s' t') q'dt )—

exact solution the following relations hold:

Ci ———Z+-,'k, Cs ———', .

Following Hylleraas, ' we scale the variables by intro-
ducing a function q defined by

II. VAMATIOmAL SOLUTIom INCLUDING
LOGARITHMIC TERMS

y= g/Zs (&6)

We have carried out a systematic study of the eGect
of the logarithmic terms on the convergence of the
energy eigenvalues in a variational calculation. The
purpose was to test the expected acceleration of con-
vergence in case the logarithmic terms actually belong
to the true solution. Using the Hylleraas notation

s=ri+rs, t=rs —ri, u=rls,

yields relations" between the coefficients C(ri, l,m,ij),
from which the elements of the determinant are
determined. The roots X of the determinant yield the
energy eigenvalues E, by (16).

The indices m, l, m, i, j were arranged in groups co

TABLE I. Ordering of the indices for the symmetrical case.

the Fock expansion is n 2l m i j o) n 2t m i j co

P= e & "I &'(1+Cis+Csu+Css(s +t')'~'+C4u(s +t') 'I

+Cssu+Css'+C7ts+Csu +C9(u /(s +ts) )
+CML-', (s'+t )—u'jlnL(s'+t')/2j+ ~ ) . (7)

From the differential equation (1), we know that in the

~ E. A. Hylleraas and J. Midtdal, Phys. Rev. 103, 829 (1956).
~ E. A. Hylleraas and J. Midtdal, Phys. Rev. 109, 1013 (1958).' G. Herzberg, Proc. Roy. Soc. (London) A248, 329 (1958).
'4 A. M. Ermolaev and G. B.Sochilin, Dokl. Akad. sauk. SSSR

155, 1050 (1964) (English transl. : Soviet Phys. —Doklady 9, 292
(1964)g.' It should be noted that the determinant of order 125 is sparse
and contains only about twice as many nonvanishing elements as
does the full determinant of order 37. Also, the elements in the
determinant of order 125 are integers, and their computation time
is negligible in comparison with the elimination time of the
determinant.

1
2
3

5
6
7
8
9

10
11
12
13
14
15

0 0 0 0 0 0
0 0 1 0 0
1 0 0 0 0 1
0 0 2 0 0 2
1 0 1 0 0 2
2 0 0 0 0 2
0 2 0 0 0 2
0 0 1 1 0 2
1 0 0 1 0 2—1 0 2 0 0 2—1 2 0 0 0 2
0 0 3 0 0 3
1 0 2 0 0 3
2 0 1 0 0 3
3 0 0 0 0 3

16
17
18
19
20
21
22
23
24
25
26
27
28
29

0 2 1 0 0 3
2 0 0 0 3

0 0 2 1 0 3
1 0 1 1 0 3
2 0 0 1 0 3
0 2 0 1 0 3—1 0 3 0 0 3—1 2 1 0 0 3—2 0 3 0 0 3—2 2 1 0 0 3
0 0 2 0 1 3
2 0 0 0 1 3
0 2 0 0 1 3
0 0 1 1 1 3

"E.A. Hylleraas, Z. Physik 54, 151 (1929)."C. L. Pekeris, Phys. Rev. 127, 510 (1962).
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TABLE II. Values of the energy parameter e' in atomic units (a.u.) for various orders a of the determinant. L'= —2s' Ry.

1
2
3

5
6
7

9
10

0.52775048
2.903724351
7.279913365

13.65556617
22.030971499
32.406246508
44.781445045
59.156595012
75.53171225
93.90680639

101

0.52775098
2.9037243763
7.2799134110

13.6555662359
22.0309715771
32.4062465982
44.7814451447
59.1565951183
75.5317123593
93.9068065101

170

0.5277510150
2.903724377011
7.279913412613

13.65556623834
22.030971580128
32.406246601762
44.781445148618
59.15659512259
75.53171236378
93.90680651485

246

0.52775101635
2.9037243770326
7.2799134126660

13.655566238418
22.030971580235
32.406246601889
44.781445148763
59.156595122749
75.531712363950
93.906806515025

Extrapolated

0.52775101638
2.9037243770333
7.2799134126678

13.655566238421
22.030971580239
32.406246601894
44.781445148768
59.156595122755
75.531712363957
93.906806515031

n+rd ~&1. (18)

which contain all elements satisfying the bound

n+l+rn+j &co.

The index i is either 0 or 1; e is a positive or negative
integer such that

We interpret the manifestly rapid convergence of the
eigenvalues shown in Table II as evidence supporting
the reality of the logarithmic terms in the exact solution
of the wave equation (1).

An indication of the accuracy of the wave functions
can be obtained from the degree to which they satisfy
conditions (8). This is shown in Table III. It will be

The power j of the logarithmic terms in (11) is re-
stricted by the condition

n+t+rn+i & 2j.
TABLE III. The degree to which the coefficients C1 and C2 in

Eq. (7) satisfy the relations C&——,'k= —Z, and C&=~, which

(19) follow from (1).

Negative powers of s enter only wheni= j=0.A sample
of the sequence of indices adopted is shown in Table I.

The expansion (11) differs from the Fock expansion
in that we use lns instead of Fock's 1nt'(s'+t')'~'j. Since,
however, ~t~ (s, the difference 1nf1+(ts/s')) is not
singular at the triple point. We also use negative powers
of s instead of Fock's negative powers of (ss+ts)'~' We.
found that when negative powers of (s'+t')"' are used,
the vector becomes unstable as we proceed to higher
orders. On the other hand, the negative powers of s are
essential, and without them the eigenvalues X are
inferior.

III. DISCUSSIOÃ OF RESULTS

Table II gives the energy eigenvalues e' in a.u. for
Z=1 to Z=10, and for determinants up to order 246.
The determinant 246 contains all the terms possible in

our scheme, with lns and (lns)'. The scaling factor k in

(7) was given the values 0.44 for Z=1, 0.91 for Z=2,
and 1.00 for Z&2. The computations were carried out
on the computer ooLEM in 38-decimal-accuracy (single-

precision of the ooLEM). The values's given in Table II
are better than anything published hitherto. Thus, for
n=101, Z=2, the value of cs=2.9037243763 is higher
than the value~ of e'=2.903724375 obtained from a
sparse determinant of order 1078, and Schwartz's value4

of e'=2.90372437616 obtained from a full determinant
of order 189, in which were included the nonconven-

tional terms stf

"For a determinant of order 29 we get e'=2.9037230, which is
close to the value &'=2.9037233 of A. Ermolaev and G. Sochilin
for n =30.

zX
C,——,'k

2
3
4

C2

—0.9360—1.9918—2.9998—4.0488

0,4001
0.5171
0.5128
0.5163

—1.0181—1.9997—3.0016—3.9979

0.5852
0.5161
0.5078
0.5078

101

—1.0011—1.9995—2.9996—3.9985

0.5459
0.5033
0.5003
0.4993

170

—1.0013—1.9992—2.9916—3.9932

0.5163
0.4992
0.4981
0.4976

—0.9987—1.9992—2.9892—3.9877

0.5010
0.4998
0.4992
0.4990

noticed that the improvement with increasing order e
of the determinant is not uniform.

The influence of the radical (s'+ t')'~' in the expansion

(11) is shown in Table IV, which gives the eigenvalues

TABz,K IV. Values of. the energy parameter e~ for Z=2, when the
term (s'+t')'r in the expansion (11) is dropped.

43
73

121
174

Extrpl.

2.9037239
2.903724345
2.9037243745
2.90372437687
2.903724377066

~ when this radical is omitted. It is seen, by comparison
with Table II, that without the radical the e' values are
poorer for comparable orders e of the determinant.

When we use the same representation (10), (11) to

get the second root for the 2'S states, the results are not
appreciably better than those obtained by method 8
from the conventional perimetric representation' ';
similarly for the antisymmetrical solution for the 2'5



LOGARI TH M I C TERMS I N WAVE F UN CTIONS

+jE(k—1, j-1), (A8)

from which E(k,j) can be computed if we know It (1,j).
In order to evaluate E(1,j) we first computedAPPENDIX: EVALUATION' OF THE

INTR GRALS

state. This would indicate that the logarithmic terms we have the recursion relation
are significant mainly for the 1'8 states, where both
electrons are close to the nucleus.

In evaluating (12) with the representation (10) and
(11),we have to compute integrals of the type

I=(e, mt, i,j)

(A9)

to 40 decimals, using the Euler-Maclaurin summation
formula. Since

00 8

s"e 'ds I'du t~(t'+s')'I'(lns)'d&. (A1)
0 0

we have
dr (x)/dx= P (x)%'(x), (A10)

Changing the order of integration, we have
j—1&r o& (*)=g ~r &~'-'-»(x)e&'& (x), (A11)

~ ~

e 's" (lns) ~ds & (P+s')'"d& u'du (A2).
0 t

Performing the integration over I, and putting t=sx
we obtain

&(j——1
P"'(2)=2

I . P" ' »(2)+ "&(2) (A12)
i

3+1 o

Equation (A12) gives a recursion relation for I'&s&(2),

if we know 4&'&(2). But
e esm+l+—4+m+2 (lns) jds

+"'(2)= (—)'(1-~ ) (A13)
1

~(1+ 2);I2(1 &+&)d (A3)
with Sr equal to Euler's constant.

The integrals L(e,i) defined in (A5) were also ob-
tained from recursion relations. Putting x'=s in (A5)

00 we get
E(kj)= e 's~(lns)&'ds (A4)

ol

1

L(mi)=(-') s —' '(1+s)''ds
0

(A14)

(A3) becomes

L(m,i) = x"(1+x')'"dx, (A5)
(i+2)L(e,i) = —4&(2'&'+(i+e+1)I (e, i+2), (A15)

(i+m+1)L (N, i) =4&&2'"—(n —1)L(I—2, i) . (A16)
I=$1/(l+1)jE(I+i+i+m+2, j)

X$L (m,i) L(m+l+—1, i)j. (A6)
YVe have

L(0,0)=-', , L(0,1)=-', [%2+in(1+42)j, (A17)

L (1,0) = 2, L (1,1)= 3 (242 —1), (A18)
Formula (A6) was actually used in the computation of
the integrals. E(k,j) and L(m, i) were tabulated sepa-
rately, and fetched from the fast memory.

Since
E(k,j)= (d&/dk&)I'(k+1),

from which all the L(m,i) with i~& 0 can be computed by
(A15) and (A16). For negative values of i the procedure

(A7) is similar.


