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Electrical Resistance Due. to Nonmagnetic Localized State in Dilute Alloys
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The electrical resistance due to a nonmagnetic localized state is examined in order to determine the
possibility. :of observing a resistance minimum even when there is no local moment on an impurity. While
Anderson s s-d mixing model is adopted to describe the impurity state in the metal, we go beyond the simple
Hartree-Fock approximation. The lifetime of the conduction electrons at the Fermi surface is calculated by
means of the double-time Green s functi'on method, and the resulting electrical resistance is shown to have
a maximum at a certain temperature. When this temperature is in a favorable region we. may observe the
resistance maximum as well as the minimum. The occurrerice of a local moment is also discussed from our
calculation of the lifetime of conduction electrons and it is associated with an instability of the system, A new
criterion for the occurrence of a local moment is obtained which appears to be in accord with experiments.

'I

I. INTRODUCTION

ECENTI Y Kondo' showed that the electrical re-
sistance due to a paramagnetic impurity with a

local moment in dilute alloys has a term proportional to
logT at low temperatures, and with this fact he was
able to explain the old problem of a resistance minimum.
Since then a number of papers have been devoted 'to

this problem. ' ' On the other hand, a serious question
has been raised regarding the strict correlation of a re-
sistance minimum with the presence of local moments on
impurities in dilute alloys~' by the observation of re-
sistance minima even when no local moment exists on
the impurities. For example, Ti alloys containing 0.2
at.

%%uzot FeorC rsho wresistanc eminim a, eve n though
no local moment is detected by means of magnetic-
susceptibility of magnetoresistance measurements. '

In this paper we present a possible mechanism for re-
sistance minima in dilute alloys in which the localized
i~purity states are nonmagnetic. We adopt Anderson's
model to describe a localized state of the impurity in a
metal. ' If we apply a simple Hartree-, Fock approxima-
tion as Anderson did, the dynamical features of the
system which Inight be contained in the strong Coulomb
repulsion between localized electrons at the impurity is
mostly lost, and nothing similar to Kondo's effect
appears. What is essentially responsible for the appear-
ance of the singularity in the scattering cross section is
that the scatterer in the case of the s-d exchange inter-
action has an internal degree of freedom. ' ' Therefore it
is to be expected that if,the internal structure and mo-
tion of the nonmagnetic localized state, is considered
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properly one may obtain the same type of singularity
in the scattering cross section. It is required to go be-
yond the simplest approximation for Anderson's Hamil-
tonian, as for the s-d exchange interaction. The im-

proved treatment of the Coulomb repulsion at the im-

purity to be followed here is very similar to that used

by Hubbard in the problem of electron correlation in
narrow energy bands, " and is based on the double-
time Green's-function method" recently used suc-
cessfully by Nagaoka in the case of the s-d exchange
interaction. 4

In Sec. II we calculate the one-particle Green's func-
tion for conduction electrons and obtain the lifetime
from the imaginary part of its pole. Electrical resistance
is c'alculated in Sec. III from the lifetime, and related
discussions are given in Sec. IV. According to our result
the nonmagnetic localized state becomes unstable below

a certain critical temperature T, and an anomaly in the
conduction-electron lifetime, or scattering cross sec-
tion, is associated with this instability. The origin of
the instability may be understood as follows: The higher
order effects considered here effectively change the
parameter of the system so as to make a local moment
appear at temperatures below the critical temperature.
The scattering cross section, or inverse lifetime, of the
conduction electron vanishes at T, and attains a maxi-
mum at a temperature T which is found to be above
T,. When T lies in a favorable temperature range
one may observe the resistance maximum as well as the
minimum. Knowing the magnitude of T, we may esti-
mate whether the localized state is magnetic or non-
magnetic in the temperature region of interest. From
this kind of consideration a new criterion for the oc-
currence of a local moment is obtained, which is in

good agreement with experiment.

II. CALCULATION OF THE GREEN'S
FUNCTION

We adopt the inodel introduced by Anderson for the
localized impurity state in a metal. ' This model may

' J. Hubbard, Proc. Roy. Soc. A276, 238 (1963).
"D. N. . Zubarev, Usp. Fiz. Nauic 71, 71 (196O) /English

transl. : Soviet 'Phys. —Usp. 3 320 (1960)g.
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3C—iRp+Km ax+Kg p

3(p=Z eras~ as~+ea&nt+n4),

(2 1)

(2.2)

be well understood from the following Hamiltonian: (~—e.—U) &(ntbt I
a»*))„

= -V Z«a t*btbt
I
"t*))-+VZ((bt*a-tbt

I
"t*))-

+V P((bt*bta t I
a»*)).. (2.10)

X; = V P(as.*b,+b.*as.), (2.3)

BC.= Uetng . (2.4)

The erst term in the Hamiltonian, Xo, is the unper-
turbed energy of the system, where a&,* is the creation
operator of a conduction electron in the state with wave
number vector k, energy es, and spin o(o =1' or 1), and
e,=b *b is the number operator of the localized state
electron on the impurity with energy e& and spin a.
The energies e~ and e~ are measured from the Fermi
surface. Here we assume that only one impurity is pres-
ent in the metal supposing the case of very low im

purity concentration in which the effect due to the
interaction between impurities can be neglected. The
second term in the Hamiltonian, K . , describes the
mixing of the conduction electron state and the localized
electron state; the matrix element V is assumed to be a
real constant for simplicity. The third term, K„repre-
sents the Coulomb repulsion between localized electrons.

As is seen from our Hamiltonian we simplified the
structure of the impurity state by neglecting its orbital
degeneracy. In any quantitative discussion for the
transition metal impurities in which we are mainly
interested, this may be considered to be a crude
approximation.

Next we introduce the retarded double-time Green's
function"

((A I 8)),=—i(LA(t)„B)+) for t)0,
=0 for t(0,

where ( ~ ) denotes the statistical average, and we put
6=1. Its Fourier component is de6ned as

In previous treatments by Anderson and others, ' "
only the Grst two of the above equations were con-
sidered by introducing the following approximation to
the second term on the right-hand side of Eq. (2.9):

((ntbt I a»*))„=(nt)((bt I
a»*)) . (2.11)

In this approximation the Coulomb repulsion between
localized electrons, K„ is replaced by an effective
Hartree-Pock potential. In the present treatment, we
do not introduce this approximation but use instead
Eq. (2.10). Further, for each new Green's function ap-
pearing on the right-band side of Eq. (2.10), we set up
the equations of motion:

(a) 2eg+—e„)((a g*btbt
I
a»*))

=-V«b*b b I"*))-+VX&& -* - b I"*))-

+VX«a t*ha.tla»*&).

+&&(a t*btbt la t*)&., (212)

(~—e-)(&bt*a-»t I
a»*))-

=—V Z&(a.t*a tbt la»*»

+V(&bt*btbt
I
a»*)&

+V Z((bt*a.«.t la»*)). , (2.»)

(~ e)((bt*ha t—I a»*)&.

=(nt)8„,, VP((a„t*b—ta t I
a»*)).

((A I
B))„= ((A I 8», exp(ippt 0+t)dt,—(2.6)

ancl. 'from its analytical property,

( — )&( I
*&)-=3 +V&(b I

*))- (2.8)

1 1
(&A )=—— Im((A I 8)) + p+drp. (2.'7)

expPcp+ 1

As is usual to calculate the one-particle Green's func-
tion of conduction electrons under the Hamiltonian
(2.2), we are required to solve a chain of equations of
motion for Green's functions:

+V-Z((b, *a„ta-t
I
a»*&)-

+V((bt*»bt la»'))„. (2.14)

pn the right-hand sides of the three equations above
there again appear new Green's functions. In this

paper, however, we terminate the hierarchy of Green's

functions at this point by introducing certain ap-
proximations. "For example, in Eq. (2.12) we assume

((a.~".tbt I a»*)).=&a.t*a.t)(&bt I a»*)).3..., (2.15)

for m=e, (2.16)
=0 otherwise,

and we neglect the third term on the right-hand side.

(&—«)«bt I a»*))-
= V Q((a~t Ia» ))+U((ntbt la»*))„, (2.9) n D. J. Kim and V. Nagaoira, Progr. Theoret. Phys. (Kyoto)

30, 743 (1963).
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Then Eq. (2.12) reduces to

(or 2Ed+&m U)((a~z*»bz
~
a~z*&&.

= —V((bz*»bz
I
a»*))

+V(a z*a z)«bz~a»'))- (212')

The neglected Green's function may be approximated
like Eq. (2.15) as

((a z*bza„z
~
a»*)&„(a z—*br&&&a„z

~
arz*))„, (2.17)

which can in principle contribute terms of the same
order as those retained such as Eq. (2.15). Here, how-

ever, we are interested in the anomalous part which will

result through the function E(or), Eq. (2.21). In this

respect the Green's function approximated as Kq.
(2.17) contributes only a small correction at least for
the nonmagnetic case, as will be shown in the Appendix.

Making the same kind of approximation in Eqs.
(2.13) and (2.14) we obtain

(or e—)((bz*a„zbz
~
a»*)&„

= —V(a-z*a-z&(&bz I
a»*&)-

+V«bz*bzbz
I
a»*)&-

= &nz&b, r,+ V((bz*bzbz
~

arz*)&„. (2.14')

Now the system of coupled equations (2.8), (2.9),
(2.10), (2.12'), (2.13'), and (2.14') may be solved to give

where

1+[U/D(or) )&nz)
((a» I

a»*&)-=1/( —~)+
(or —ea) ' or —ed —V2F (or)+ U V'( [E((o)—E(2dd+ U —or) 7/D(or) }

D(or) —=or Ed U—2V F(co)+V'F(2ed+ U or) ~

F(or) =—P((o—er+z0+) '= Q P/(or er) —zz—r Q b(or —ep) —=I(or) —zzrp(or),

(2.18)

(2.19)

(2.20)

E(or) —=Q f(er)/(or er+i0—+)=Q P[f(er)/(or ek)]—zzr Q—b(or er) f(er)—=R(or) —irr p(or) f—(or) . (2.21)

In the above (ar„ar„) was replaced by a Fermi distribution function f(e&), and p(or) is the unperturbed density of
states of the conduction electrons.

At low temperatures the function R(or) is calculated as

R(or)——p(0) ln
~
or/W ~,

where we assumed the density of states p(or) has the following simple form:

p(or) =p(0) for —JV(or( W,
=0 otherwise.

(2.22)

(2.23)

As is seen from Eq. (2.22), R(or) diverges when or approaches zero, namely the Fermi level, and this function in the
expression of the lifetime gives rise to the logT term in the resistivity. '

Our solution, Eq. (2.18), may be rewritten as
D(or)+ U&nz &

[&(a laz*))-j '=~—~ —V' —=or —er,
—Z(or), (2.24)

[&o—ed —V'F(or) jD(or)+ UV'[E(or) —E(2ed+ U—or)j
where Z(or) is regarded as the self-energy of the conduction electron. The lifetime z.(or) is obtained as

r(or) '= —(2/h) ImZ(or+i0+),
with k appearing explicitly.

Here we remark the following important relation:

~(~)= V'&&bzlbz*&&-

(2.25)

(2.26)
or more explicitly,

(&bz Ibz*»-=
1+U(nz)/D(or)

6d V F(or)+UV j[E(or) E(2td+U —or)1/—D(or)}
(2.26')

The solution (2.18) is quite different from that of
Anderson. ' "One feature of our solution is that it coin-
cides with the exact solution in the limi't of V —+0, or
:U —+0, in which limit the problem can be solved
exactly. Anderson's Hartree-Fock'approximation result

does not coincide with the exact one in the limit V —+ 0,
though in the case of U —+ 0 it does. In this respect our
result is very similar to that of Hubbard' for the
problem of ferromagnetism of narrow bands. As is seen
from Eq. (2.26') the density-of-states curve of a local-
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III. ELECTRICAL RESISTAN CE

The electrical conductivity r is calculated from

0 =-2'e22F2 p(k2)2((o)( 8f/8—(o)ck), (3.1)

where eF is the Fermi velocity. Noticing at low tem-
peratures that —Bf/Bar behaves like a delta function
8(~), we replace every co in the expression for Imp(&o)
by zero, except for the function R(ra) which must be
treated carefully near co=0. Thus we obtain

—ImZ((a+ io+)

LReD(0)+(22') UjB(0)—ImD(0) A ((v)~p2 (3.2)
A ((o)2+B(0)2

(3.3)

(3.4)

where

ReD(0) = —P«+ U+ 2 V'l(0) —V'I(2«+ U) Q,

ImD(0) =2r V2t 2p(0)+p(2«+ U)j,

ized state of one spin direction is no longer described by
a simple I orentzian curve as in Anderson's solution,
but by a more complicated curve composed of two
overlapping peaks near «and «+ U. The shape of this
curve is a sensitive function of the temperature in the
low-temperature region.

eg&0,

U+ «&0.
(3.8)

Assumption (3.8) is also not necessary, but it may repre-
sent a most interesting situation. To make the expres-
sion for Z(s&) simple, we assume further that all func-
tions I(co) appearing in Eq. (3.2) vanish. If we adopt
such a band as that given in Eq. (2.23), then I(~)=p(0)
Xln ( W+or/8' —~

~
is by no means zero for coAO. For a

quantitative discussion this kind of approximation
should be avoided.

Under the above restrictions and approximations the
lifetime is reduced to

2( )=——
L +V'I(0)jReD(0) —V'p(0) ImD(0)

+V2ULR(kt) —R(2«+ U—(o)j, (3.5)

B(0)=2r V'p(0) ReD(0) —L2 +V'I(0)] ImD(0)
~V2UL~(0)f(o)+p(2«+ U)f(2«+ U)j. (3.6)

Now we impose the condition that the localized state
has no local moment (then we call the localized state
nonmagnetic):

(222) = (ng) = -2'22

for n = 1 . (3.7)

The condition n = 1 is not necessary, but is made for
simplicity. In this connection the following assumption
may be reasonable:

1 2 32r V4p(0) X
=—2Vp

7 ((o) h V'

1—(U V2/X) LR(~)—R(2«+ U—co)j
(1—(UV'/V) $R(co) —R(2«+ U—(o)7)'+B(0)'/V'

(3.9)

where we have introduced the number of impurity
Ep, and

X=2(«+ U+2«—U)+32r V4p(0)2 for 2«+U&0,
=-'(«2+-'U2+2'egU)+32r'V'p(0)2 for 2«1 U(0,

(310)

«2 «U+32r2V4p(0)2 (3.11)

B(Q)= 2rV'p(0)t4«+ 22—Uj fOr 2«+U-&0,
= —2r V2p(0) $4«+25 Uj for 2«+ U(0. (3.12)

Both X and Y are positive since we have assumed the
conditions in Eq. (3.8). The function R(~) diverges to
positive infinity as the temperature and co approach
zero. Therefore, if

2«+ UWQ, (3.13)

there is a critical temperature 2, defined by

1—(UV /X)R(O), =,,=O, (3.14)

where R(2«+U) was neglected compared to R(0).
Below this temperature the lifetime of the conduction

electron at the Fermi surface becomes negative which
means the system is unstable. At present we are not
oQ'ering a fully self-consistent discussion, but we may
limit our discussion to the situation where the localized
impurity state is not magnetized, by assuming, for
instance, a sufficiently large value for the parameter V.
Our result is equivalent to saying that the perturbational
approach to this state becomes invalid below a certain
temperature. Therefore the temperature T, may be
regarded as the transition point from the nonmagnetic
to the magnetic state of impurity. In this respect the
assumption (3.13) is important. If 2«+ U=o, the
instability does not occur, and there is no transition to a
state with a localized moment. In this case the non-
magnetic state is stable.

A possible physical explanation to associate the in-
stability with the occurrence of a localized moment is
as follows: when the temperature approaches T„as
will be discussed below, the density of states of the
localized state at the Fermi surface begins to increase
)see Eqs. (2;26) and (3.1S)), which favors the spin
splitting of the state as is well known.

Restricting our calculation of electrical resistance to
the temperature region above 2'„we insert Eq. (3.9)
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into Eq. (3.1) and obtain

R= 1/o-

ture T»~.'

T ~=T, exp(/ln(T /T, ))s+Gs}r~s. (3.22)

3 2 37r Vgp(0) X
—Xp

F'p(0) k Y

1-(UV/X)g(T)
X—

l:1—(UV'/Y) g(T))'+&(0)s/Y'
for T& T„

where

g(T) = R(—o))( 8f/—Bo))do)

——p(0) 1n(knT/W) . (3.16) IV. DISCUSSION

1. Occurrence of Localized MomentA simple way of obtaining Eq. (3.16) is to use Eq.
(2.22) for R(o)) and then to replace the function 8f/B—o)

by a pulse function, —Bf/Bo)=1/2k&T, for —k&T(o)
&kpT, and =0, otherwise. This kind of integral was
discussed more elaborately elsewhere. '4' The entire
integral leading to Eq. (3.15) is carried out by assum-
ing that we can expand the integrand in powers of
R(o)), which is possible in the region T)T„and by
noticing that

In Figs. 1 and 2 we give a few examples of the cal-
culation of X/UV'p(0) and Y/UV'p(0) as functions of
p(0)/1V for several sets of parameters U, V, and ed,
where S is the total number of lattice points in the
system. From these we easily figure out the magnitude
of T, and T using Eqs. (3.14') and (3.19'), or

lnT, = ln(W/ks) —X/UV'p(0) (4.1)

lnT =ln(W/kn) —Y/UV'p(0) . (4.2)Bf
77( ) (

—d =g(T), re positive integer, (3,77)
BGO As a realistic example we consider the case of Fe as

an impurity in Ti, Zr, and Hf which was recently in-
vestigated by Cape and Hake. ' Let us fix parameters
as U= 10 eV, V+iV= 2.5 eV, and es= —3 eV, which are
the most usual values. ' Then noticing that p(0)/dV for
Ti, Zr, and Hf are, from specific heat measurements, re-
spectively 0.71, 0.59, and 0.46 in units of states per
spin direction per eV per atom (see Table III of Ref. 8),

which also is easily verified by the same procedure used
in deriving Eq. (3.16). Also the relation

R(0) =g(T) (3.18)

is proved by reducing the definition of R(0), Eq. (2.21),
to Eq. (3.16) by partial integration. This type of ap-
proximate calculation is justified in the temperature
region kgT&&8', which is valid in our situation.

In the expression for the resistivity, Eq. (3.15), we
can define another characteristic temperature T:

l5

At a higher temperature, T; ()T,„), a minimum
also will be observed since that part of the resistance
due to lattice vibrations increases monotonically with
temperature.

For those maxima or minima to be observed in
reality, however, it is required that T,„or T;„be

(3.15) suQiciently low, otherwise these small eA'ects may not be
distinguishable from the much larger terms in the re-
sistance due to lattice vibrations. T or T;„which
are too low will also be difficult to observe.

I (UV'/Y)g(T ) =0—, (3.19)

or, using Eq. (3.16),

T~= (W/kn) exp) —Y'/UV'p(0)). (3.19')

Similarly, the explicit expression for T, is

T,= (W/kn) expL —X/UV p(0)). (3.14')

In terms of T, and T the resistivity is expressed as

O
x %

p 10.
D

0
&- „Q.

where

3 1 2 37r Vs ln(T/T, )—Sp (3.20)
2e'v ' p(0) k U [1n(T/T„))'+G' l

0.5
P(0)rN

l.O

G'=7r'( —'+4eq/U)' for 2eq+ U) 0, (3.21)
=7r'(-', +4ea/U)' for 2eg+U(0.

The resistance attains a maximum at the tempera-

FIG. 1. The calculation of I/U Vg)7 (0) and V/ U V'dt (0) for
U=10 eV and ed= —3 eV, by changing Vglttr. 37(01/l)f is given
in the unit of states of one spin direction per eV per atom. This
6gure shows slight changes in VgtV Produce large changes in Te
and T

t see Eqs. (4.1) and (4.2)g.
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moment from the estimate of the magnitude of T, is
apparently quite different from those of previous
authors, "'""but it gives nearly the same explanation
for the experimental data. We may understand the
reason for this in the following way: When p(0)/N is not
too small, say p(0)/N) 0.1, X, Eq. (3.10), can be ap-
proximated by the second term on the right-hand side of
the equation since the first term is small by comparison.
Then Eq. (3.14') or (4.1) is approximated as

1n(knT, /W) ——(3rrs Vs/U)p(0), (4.3)

0 0.5 I.O
P(0) /N

Fio. 2. The calculation of X/UV'p(0) and V/UV'p(0) for
V=8 eV and 5 eV. This figure, together with Fig. 1, shows how
T, and T change with U.

TABLE I. T, of Fe in Ti, Zr, and Hf. U= 10 eV,
V/fV =2.5 eV, ea= —3 eV.

i (0)/&
X/U V'p (0)

Tc

Ti(3d24'~)

0.71~
13.5
4.24 eV
0.067'K

Zr (4d'5s')

0.59'
11.1
5.20 eV
0.89'K

Hf (5Z'6a)

0.46~
8,7
6.53 eV

13'K

In units of states per spin direction per ev per atom. Taken from
Ref. 8.

we read from the corresponding curve of Fig. 1 the
magnitude of X/UVsp(0), respectively, as 13.5, 11.1,
and 8.7. The magnitude of 8" is determined from
4IVp(0)=12, which is required from the assumption
Eq. (2.23) for the density-of-states curve and the
assumption that the conduction-electron band of each
matrix is composed of 12 states per atom since its elec-
tronic structure is of the form nds(m+1)ss, with
m=3, 4, and 5, respectively, for Ti, Zr, and Hf. In-
serting these values into Eq. (4.1) we obtain the result
for T, listed in Table I.

In the above estimate of T, we assumed, for sim-

plicity, that the values of the three parameters U, V,
and e~ are common for the matrices Ti, Zr, and Hf.
But comparing the similarity of the electronic struc-
tures of these matrices and that of the Fe impurity,
the matrix element V of the covalent mixing is ex-
pected to be larger in Ti and smaller in Hf. If we correct
for these considerations in the result of Table I, the
agreement of our theory with experiment is improved
further. T, in Hf, for example, is raised by more than
an order of magnitude assuming UPON=2 eV, instead
of 2.5 eV. Thus we understand why a local moment due
to an impurity Fe may be observed in Hf but not in Ti.
Experimental data on Zr are not available.

Our method of predicting the occurrence of a local

and therefore T, is high when (3n'Vs/U)p(0) is small.
This is the same conclusion as Anderson obtained in his
Hartree-Fock treatment. ' Large U, small V, and smaller

p(0) favors the occurrence of localized moment.
When p(0) is very small, say p(0)/N«0. 1, however,

the approximation used to obtain Eq. (4.3) is no longer
valid, and instead we have

kaT, —s,(eg'+-', U'+-', edU)
ln — ——— for 2eq+ U) 0,

W UV'p(0)

s (e~'+-'U'+ge~U)
for 2eg+ U(0. (4.4)

UU'p(0)

Thus we find that very small values of p(0) are not
favorable for the occurrence of a local moment, and
that T, is now sensitive to the parameter e~ whereas it
is not sensitive when the approximation leading to Kq.
(4.3) is valid.

Here we have the possibility of observing the transi-
tion of an impurity state from the nonmagnetic to the
magnetic state. The case of Fe in Ir seems to show this
transition at low temperatures since at higher tempera-
ture this alloy seems to have no local moment, but be-
haves at low temperature as if it has a local moment. "

Another important feature of our result, which is
distinctly different from the Hartree-Pock result, is that
the limit U~~ does not imply the occurrence of a
localized moment. In this limit for our treatment the
available states of the localized electron with energies
around e~+ U can no longer participate in the dynamics
of the system, and effectively one of the most important
aspects of the role of U is lost, as can be seen from Eq.
(2.26').

2. Resistance Anomaly

In the region where the approximation (4.3) is valid,
namely when p(0)/N)0. 1, we see that T,=T„ from

"I. Friedel, Nuovo Cinrento, Suppl. VII, 287 (1958);A. Blandin
and J. Friedel, J. Phys. Radium 20, 100 (1958)."P.A. Wol8, Phys. Rev. 124, 1030 (1961)."A. M. Clogston, B. T. Matthias, M. Peter, H. J. Williams,
K. Corenzwit, and R. C. Sherwood, Phys. Rev. 125, 541 (1962)."H. J. Williams, R. C. Sherwood, A. M. Clogston, T. H.
Geballe, and B.T. Matthias, Bull. Am. Phys. Soc. 10, 591 (1965);
T. H. Geballe e3 ul. , J.Appl. Phys. 37, 1181 (1966);T. H. Geballe,
B.T. Matthias, A. M. Clogston, H. J. Williams, R. C. Sherwood,
and I. P. Maita (unpublished).
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Eqs. (3.10), (3.11), (3.14'), and (3.19'). In this case
T is given by Eq. (3.22) as

T, —T, exp ) G
~

for p(0)/X) 0.1. (4.5)

In the case of the Ti-Fe alloy we estimate that T
=0.17'K from Eq. (4.5) if we fix the parameters as in
Table I, G being 0.94. For clarity and emphasis we
present, as an example, the calculation of electrical re-
sistance for the Ti-Fe alloys by first adopting the param-
eters in Table I, and then modifying the parameters so
as to fit the experimental result. If we assume the rela-
tions p(0) =3no/4eF, and m*= (3m-'no)'t't'i'/2ep, where
m* is the effective mass of the conduction electrons and
no is the number of conduction electrons, we obtain
from Eq. (3.20)

ln(T/T, )R= 2.32 pQ cm,
Dn(T/T„)]'+G'

(4.6)

R(4.2'K) =0.29 p,Q cm,

~R/R(4. 2'K)=—5%.
(4.9)

Since G' is a very sensitive function of the parameter e&,

as can be seen from Eq. (3.21), such modification as
(a) is easily produced.

Now, however, by fittijig the calculated value of
hR/R(4. 2'K) with experiment, the absolute magni-
tude of the calculated resistance, e.g., at 4.2'K, is
smaller than that of experiment by nearly a factor of 4.
Better agreement can be obtained by replacing the
factor 2.32 in Eq. (4.6) by one about four times larger.
This can be done by (b) assuming smaller U and/or

where we assumed 00=4V Ãp/A =0.002. Further, in-
serting T,—T =0.067'K and G'=0.89, we calculate
the resistivity at 4.2'K and 16.7'K where the minimum
is observed':

R(4.2'K) =0.53 pQ cm,
hR=—R(4.2'K) —R(16.7'K) =0.12 pQ cm, (4.7)

AR/R(4. 2'K)—
23%%uo .

The corresponding experimental data are'

R,i(4.2'K) =R,t(4.2'K, 0.2%%uo Fe-Ti)
—R,„~t(4.2'K, pure Ti) = 1.20 pQ cm, (4.8)

4R ~~=0.054 pQ cm,
ARexpt/R(4. 2 K)=5% .

Apart from the detailed examination of experimental
data erst we notice that the calculated value for
hR/R(4. 2'K) is too large, namely that the temperature
dependence for the resistance is too steep. This dis-

crepancy, however, can be removed by a slight change
in the values of parameters of the. system. There are
various possibilities of choosing the parameters to fit
the experiment. If, for instance, we assume (a) G'=16,
and keep the values of the other parameters U and V
as before, we obtain

larger V, and/or (c) assuming a smaller number of con-
duction electrons. Since the value of T, is very sensitive
to the procedure (b), if we are to leave T, unchanged to
keep the result in Eq (.4.9) regarding AR/R valid, we
are forced to adopt procedure (c). In obtaining the fac-
tor 2.32 in Eq. (4.6), we assumed that the number of
conduction electrons is 4 per atom recalling that the Ti
atom has 4 electrons outside the closed shells. If we
assume, instead, that the conduction band of Ti is
better approximated as Eq. (2.23) with the number of
conduction. electrons about 1.4 per atom, the absolute
magnitude of the calculated resistance is increased to fit
the experiment.

3. Concluding Remarks

All of our discussions have been carried out under
some very simplifying assumptions. We have neglected
the orbital degeneracy of the impurity state, notwith-
standing that our main interest is in transition-element
impurities. The concentration of impurities was as-
sumed to be very low in order to neglect the interaction
between impurities. The conduction electrons were
treated as free with very small consideration paid to
their band structures. To make our discussions more
quantitative these deficiencies should be improved.
Nevertheless, we have seen that even our simple dis-
cussion is able to give fairly satisfying explanations to
various experimental results.

The discussions in this paper were essentially con-
fined to the temperature region above T,. In a future
publication we extend our study to the region T(T, to
improve the understanding of the nature of the
instability.

Finally we may make an important remark. Though
our interest has been concentrated on the case of the
nonmagnetic localized state, our result can be inter-
preted in a quite different way. Namely, we can start
our discussion from an impurity state with a local mo-
ment by assuming, for instance, a sufficiently small
value for V. This modifies only assumption (3.7),
which would not produce any serious change in the
qualitative feature of the result obtained in this paper.
Then the occurrence of the instability may be associ-
ated with the resonance coupling of the localized mo-
ment with the conduction electron spin, which was dis-
cussed by Nagaoka in the s-d exchange model. Further
investigation about this point would be interesting.

Note added iN proof. Nagaoka (private communica-
tion) raised the following question: "If Eq. (2.26') is
expanded in both V and U the temperature-dependent
anomalous terms appear in the expansion in order UV'.
On the other hand, however, if one calculates ((bq ~

bt*))„
by a perturbation from the start no anomalous term
appears to order UV'."The above discrepancy is clearly
due to our having neglected terms such as Eq. (2.17)
in our result. We can formally include those terms in Kq.
(2.17) into our solution for ((bt ~

bt*))„or ((an't ~ an't*))„
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and if we expand this more complete solution up to the
order UV' as Nagaoka suggests, the results does not
contradict the result obtained by perturbation up to
order UV'. What we show in the Appendix of this paper
is that, to higher orders, the eAect of those terms such
as Eq. (2.17) can be neglected for qualitative discussion
in the temperature region suKciently above T,. The
author thanks Dr. Y. Nagaoka for his valuable discus-
sions on the manuscript of this paper.

In addition, as was stressed many times in this paper,
the validity of our results is confined to the temperature
region T&T.. In this respect what is fully meaningful
in our result is the part of initial increase of the re-
sistivity, or the increase in the density of states of the
localized electron at Fermi surface, with decreasing
temperature. Therefore the temperature T, or Tm only
means that as the temperature approaches T, (=Tm)
the temperature dependent effect can become large
enough to destroy the stability of the system.

( —-)(& - Ib *))-=v((b Ib *&),

we obtain

(by*a g&= Vf(e„) Re(&bg
I
by*)&„,„

(A4)

In Sec. II we neglected the second term on the right-
hand side of Eq. (A3) compared to the erst term. We
justify this approximation by estimating the magni-
tude of the neglected term. As is well known, " the ap-
proximation used to obtain Eq. (A3) is valid when the
quantity &b&*a &), as well as (a &*a &&, is given con-
sistently with the obtained Green's functions. At pres-
ent, however, we are unable to make a completely self-
consistent calculation; therefore we have made the
reasonable approximation of replacing (a &*a && by a
Fermi distribution function of the unperturbed state. A
similar approximation is also required to calculate
&by*a„g&.

From Eq. (2.'7) and
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APPENDIX

In this Appendix we discuss in greater detail the
approximations we adopted in calculating the Green's
functions in Sec. II. We will concentrate on the velocity
of reducing Eqs. (2.12), (2.13), and (2.14), respectively,
to Eqs. (2.12'), (2.13'), and (2.14').

(1) The reduction of Eq. (2.14) to Eq. (2.14') may be
justified without any problem. The second and third
terms on the right-hand side of Eq. (2.14) may be ap-
proximated as

Vg«a &*b,a —t I
a t*&)„+VP(&b&*a &a t I

a '&)

+—~m

The value ((bg I by~)&„ to be used in the right-hand side
of Eq. (A5) can be reasonably approximated by adopt-
ing Eq. (2.26') and putting T= ~ or by putting
E(~)=0. From Eqs. (A5) and (2.8) the second term
on the right-hand side of Eq. (A3) is rewritten as

V&b~*a ~)2&&a-t I
a»*&&-

=v f(-) R «b lb *».=,.L1~(--,+'0.)j
+V'f(E ) Re((bg I

by*))„,„F(G))((bt
I
a»*)&, (A6)

where we retained only those terms which contain the
Fermi distribution function f(e ) Lnamely we neglected
the second term on the right-hand side of Eq. (AS))
since we know that the terms retained contribute the
anomalous parts through the function E(~). If Eq. (A3)
is inserted into the right-hand side of Eq. (2.10),
the term due to Eq. (A6) contributes

=—V 2&a.~*b~&&&a-t
I
a»*&&-

y V P&by*a„g)((a.t I
a»*))„(A1)

and vanishes because of the Hermiticity requirement

V'Z Z&(a-t I a»*))-

=V' Re((bg I by*)).=OE(co)
~—a~+~0+

(a„g*bg&= &by*a„g) (A2)
+V' Re(&b~ lb~*)).=o~(~)&(~)&&bt I a»*))., '

(A7)

Thus we obtain Eq. (2.14').
(2) Equation (2.13) is approximated as

( —-)(&b~*a-~bt
I
a»*))-—=—~&a-~*a-~)&(»

I
a t*&&-

+V&b~*a-~)2&&a-t I a»*)&-

+ V«bg*bgbt
I
a»~&&„. (A3)

where we have assumed Re((bq I bq*)&„(at high tem-
peratures) is a smooth function of ca.

.. )If we estimate the magnitude of Re((bqlbq*))„=0
from Eq. (2.26') with'E(co)=0, as mentioned above,
for ordinary values~ of V, U, p(0), and ez it turns out
that Re(&bq I

by*))„=0~a/U, lnl((1. Therefore, the con-
tribution due to the second term on the right-hand
side of Eq. (A6), which is the second term on the
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right-hand side of Eq. (A7), may be safely neglected
compared to that due to the first term on the right-
hand side of Eq. (A3). Finally, if we include the
eGect of the 6rst term on the right-hand side of Eq.
(A6), then (I&) in Eq. (3.2) must be replaced by
(rz&)+ V' Re((bt bte))„sR(&e), and accordingly the fac-
tor 1—(UV'/X)g(T) in Eq. (3.15) is changed to

UVs- B(0)
1+ Re((bt I

bt*))-=o a(2') .
X 3z V'p(0)

It is easy to see, however, that the correction

$8(0)/3z. V'p(0) j(n/U),

with lul((1, is small compared to 1 and may be
neglected.

There remains one more point to be discussed
concerning Eq. (A3). In the first term on the right-
hand side of Eq. (A3) we introduced the following

approximation:

However, if we calculate p„(a g*a l) from Eqs. (2.7)
and (2.8), there appear other terms besides f(e ) which
are similar to those due to the second term on the
right-hand side of Eq. (A3). These contributions, how-
ever, may be ignored for the same kinds of reasons
given above for qualitative discussions.

(3) As to the nature of the approximation included in
Eq. (2.12') we can use arguments quite similar to
those given above in order to obtain Eq. (2.13').

Thus we have shown that Eqs. (2.12'), (2.13'), and
(2.14') are good approximations for Eq. (2.12), (2.13),
and (2.14) and do not destroy the essential feature of
the system at temperatures above T,. Our calculation
of the Green's function is organized so as to give a self-
consistent solution at high temperatures (T&&2',) and to
retain the lowest order anomalous temperature de-
pendence correctly.

P H YS I CAL REV I EW VOLUME 146, NUMBER 2 10 JUN E 1966
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specific-heat measurements in the 1.2 to 4.2 K range have been carried out on four H-Pd specimens
having H /Pd atomic ratios of 0.57, 0.70, 0.81, and 0.88. Corresponding values of p (the electronic-speci«-
heat coeScient) are 2.52, 1.38, 1.40, and 1.61 mJ/degs per g atom of palladium; values of Oo (the Debye
temperature) are 282, 273, 276, and 267'I, respectively. A "dynamic" method of measurement was neces-
sarily employed because of the occurrence of an exothermic process in these alloys. The interpretation of the
data was complicated by the interstitial character of these alloys, but the present results for the electronic
specific heat appear to oBer unusually direct support for the usual simple band picture of Pd and H-Pd
alloys. Special care must be exercised in the interpretation of the Debye temperatures in this case.

INTRODUCTION

LTHOUGH there have been many investigations
of the H-Pd system, a satisfactory understand-

ing of its electronic structure has not been achieved.
An important problem concerns the disposition of the
electrons from the absorbed hydrogen. Although
neutron-diffraction measurements' on P-phase alloys
at room temperature have shown that the protons from
the absorbed hydrogen occupy octahedral interstitial
positions of the slightly expanded fcc palladium lattice,
the disposition of the electrons can not be determined

' J. E. Worsham, Jr., M. K. Wilkinson, and C. G. Shull, J.
Phys. Chem. Solids 3, 303 (1957).' For H/Pd atomic ratios greater than about 0.6, the H-Pd
alloys consist of a single (P) phase. For lower concentrations, the
alloys consist of two phases, u and p; the hydrogen content of the
a phase is small, perhaps even zero face J. Cohen and F. de
8ergevin, Compt. Rend. 246, 3055 (1958)j.

by similar measurements and must, in fact, be in-
ferred from other data.

The most pertinent data are those for the magnetic
susceptibility' and specific heat4 of Ag-Pd alloys and
for the magnetic susceptibility5 of H-Pd alloys. The
results of these (and of other somewhat less direct)
measurements are usually interpreted on a simple
rigid-band model as indicating (i) that pure palladium
has roughly 0.6 holes per atom in the d band and (ii)

' B. Svensson, Ann. Physik 14, 699 (1932); J. Wucher, thesis,
Strasbourg, 1950 (unpublished); F. E. Hoare, J. C. Matthews,
and J. C. Walling, Proc. Roy. Soc. (London) 216, 502 (1953).

4F. E. Hoare and B. Yates, Proc. Roy. Soc. (London) 240,
42 (1957); H. Montgomery (unpublished), quoted by F.E.Hoare
in Electronic Structure and Alloy Chemistry of Transitiorl Elements,
edited by P. A. Beck (Interscience Publishers, inc. , New York,
1963).

sB. Svensson, Ann. Physik 18, 299 (1933);H. F. Biggs, P»L
Nag. 32, 131 (1916).


