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The asymptotic density of a free noninteracting electron gas is discussed in the presence of a general
potential I/ (X), where X is a vector in one, two, and three dimensions corresponding, respectively, to the
potential of a surface barrier, an edge dislocation, and an impurity. At zero temperature, oscillations in
the density have the form AX &&"+'& cos(2kyX+0), where v is the dimensionality of X, kr is the Fermi mo-
mentum, and 0 is a phase angle. The amplitude A is determined by the backward scattering amplitude at the
Fermi energy for the potential V(X). At a 6nite temperature the amplitude of the oscillations in normal
metals is reduced approximately by the factor $/sinh$, where (= (2s/Pky)X, and P is the reciprocal of the
thermal energy XT. In the high-density limit, the results of the dielectric theory become the Born-approxi-
mation version of the exact scattering theory. Mild restrictions on the potential to guarantee certain ana-
lytical properties of the scattering matrix are imposed.

I. INTRODUCTION

SEVERAI- authors' ' have recently discussed the
possibility of long-range spin polarization in a non-

magnetic metal when it is in contact with a ferromag-
netic metal. It was assumed that the electrons of nega-
tive s component of the spin (spin-down) see a potential
which is constant everywhere, and that the electrons of
positive s component of the spin (spin-up) see a step-
function potential which is constant in each metallic
slab, but assumes a discontinuity at the contact plane of
the two media. For this special potential model,
Bardasis, Falk, Ferrell, Fullenbaum, Prange, and Mills, '
and independently Yosida and Okiji, ' have correctly
concluded that the asymptotic electron density for
the spin-up component differs from a constant value by
terms which are only of oscillatory nature. The original
aim of this paper was to show that the results of these
authors' ' can be established for a general one-dimen-
sional potential by using the scattering-matrix method
which we applied earlier to other surface problems. ' It
became clear, however, that some of the basic features
of the development transcend the dimensionality of the
potential, and to bring out these features clearly we shall
discuss the questions of electron density oscillations for
two and three-dimensional potentials, and the damping
of the oscillations at finite temperatures.

We consider here a free noninteracting electron gas
whose motion is perturbed by a static local potential
U(r). The problem is to calculate the electron density,
n(r), in the region where U is negligible. The single-
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electron Hamiltonian H is

a= —-', Vsy U(r), (1.1)

where Hartree's atomic units
l el = h= no= 1 have been

used. The density is given by the diagonal element of
the density matrix at thermal equilibrium, namely,

e(r) =(rlP(H) lr), (1.2)

and the density-matrix operator J'(B) is defined by

Z(a) = L1+expP(SZ —i-)j-&, (1.3)

where P is the reciprocal of the thermal energy IC T and i
is the Fermi energy. By using the complete set of func-
tions lf;(r) which are eigenfunctions of H with eigen-
values E;, the density of (1.2) takes the form

ts(r)=Z&lgs(r)l'J'(~s)+'2'ly, (r) I'J'(&') (14)
where the subscript b denotes bound states, if any, and
the subscript i denotes free scattering states. To evaluate
e(r) asymptotically we shall insert in (1.4) the asymp-
totic form of the wave functions f;(r) which is well
known from scattering theory, and perform the implied
integrations by contour integration methods.

The oscillations are discussed first at zero tempera-
ture. In the second section we deal with the general
one-dimensional potential studied in I, and show how
the results of Refs. 2 and 3 follow as a special case from
our general formulas. In Sec. III, the potential is
cylindrically symmetric such as that of an edge dis-
location, and the amplitude of the oscillations is shown
to fall o6 as p '~', where p is the distance from the
symmetry axis of the potential. The case of a spherically
symmetric potential, such as that of an ionized impurity
in a metal, has received considerable attention, and the
density oscillations (often known as the Friedel oscil-
lations) were discussed by Friedel, ' Kohn and Vosko, s

I anger and Vosko, and others. However, for complete-
' J. Friedel, Nuovo Cimento Suppl. 2, 287 (1958).' W'. Kohn and S. H. Vosko, Phys. Rev. 119, 912 (1960).
J. S. Langer and S. H. Vosko, J. Phys. Chem. Solids 12, 196

(1960}.
3'/9
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ness and to introduce the discussion of Sec. V, we shall
discuss this case briefly from the general point of view
of this paper.

In all cases considered, the perturbed electron density
approaches its asymptotic constant value in an oscil-
latory fashion. The absence of long-range terms is due
to the behavior of the backward scattering amplitude
at zero energy.

In Sec. IV we consider a "rigid"-charge distribution
to be embedded in a solid, and study the density oscil-
lations in the screening charge of the free electrons of the
crystal, with the object of relating the results of the
dielectric theory to those of the exact theory by using
two methods. In the Fourier-transform method, pre-
viously used by I anger and Vosko, ~ the density oscilla-
tions in all dimensions can be treated by one formula-
tion. In the second method we work directly in position
space and show that the asymptotic form of the kernel
in the integral representation of the screening charge
density rejects the character of the oscillations, and
again brings out the intimate connection between the
results in different dimensions. By either method it is
shown that in the high-density limit, which is charac-
terized by ~kf))1, the amplitude of the density oscil-
lations given by the dielectric theory follows from the
exact theory by making the Born approximation in
calculating the backward scattering amplitude of the
potential.

In Sec. V the oscillations are discussed at finite tem-
peratures, and the damping brought about by the
thermal spread in the Fermi surface is described. It is
shown that for all potentials considered, the oscillations
in normal metals decay exponentially with distance.
This agrees with the qualitative remark by Kohn and
Vosko, ' but disagrees with the "empirical" considera-
tions of March and Murray. ' The analysis leads
naturally to a new derivation of the Sommerfeld formula
for the Fermi-Dirac integrals.

II. GNE-DIMENSIGNAL PGTENTIAL

Consider two metallic slabs joined 'at x=0 and ex-
tending over the interval —L~& x&L~. Let the potential
energy V of a free electron of spin down (s,= ——,') Ibe
zero in this interval. For a spin up electron (s,= —',), let
V vary only in the x direction, and assume that

tions. The x motion is given by solutions to Schrodinger's
equation,

d'y/dx'+2I e,.—V(x)fy(x) =0, (2.2)

where the energy e,=-,'q '. In the limit that L& —+~
and Ls —+~, the wave functions u(x) and v(x) of I
become appropriate solutions of (2.2), and we recall
that these functions have the asymptotic form:

u(x) $e"**+Ssse '"**,Stre'&*'j

n(x)- I
Ssre-'"" 5»e'&"+e 'v**j, -

for x(0, g ~~ .
(2.3)

Here k, '=q '+rr', and 5 is the scattering matrix with
the subscripts 1 and 2 referring to the medium on the
right and left, respectively. It was established that

5= Lf'(q.)+ik*f(q.)j '

ik g(q ) g (q )

(X
2zq~

2ik.
(2.4)

f'(q*)+—ik.f(q*)&

SS*=I,for q, real, q,5~~=k S~2,

(u(q.) I
t (q,))=0,

(2.5)

(2.6)

(u(q*) Iu(q '))=2'~(k*' k*)=2~(k*/q*)~(q* q*) (2 7)

(~(q*) I ~(q.'))= 2~~(q*—q*') . (2.8)

N, (x)-q, s/(6~s)+a+ C, (2.9)

The functions f(q ) and g(q ), and their derivatives
f'(q, ) and g'(q, ) with respect to x, are the values of the
functions f(q.,x) and g(q. ,x), and their derivatives with
respect to x, at x=o. These functions' are solutions to
Eq. (2.2) with the condition that for large x, f(q„x)

exp(iq„x), and g(q„x) exp( —iq,x).
In this model there are no true bound states. At tem-

perature T=0 the density in (1.4) reduces to an integra-
tion of Iu(x) I' and Iv(x) I' over all states below the
Fermi surface which is a hemisphere of radius qf in the
first medium and radius kf in the second medium with
the obvious relation kr' ——qr'+n'. To evaluate the

asymptotic density et(x) we split the integration over
Iu(x) I' at k, =o. and set q, =ip for k,(a. By using
(2.3)—(2.8), we obtain after elementary manipulations

U(x) = —-'n' —Ls(x(0, (2.1)

and that U(x) rises to zero in a distance much less than
L~. The problem is to calculate the asymptotic electron
densities of spin-up electrons et(x) and res(x) for large
positive and negative x, respectively.

The electron motion in the y and z directions is de-
scribed by a plane wave exp Li(k,y+k, e)jnormalized to
one per unit area and obeying cyclic boundary condi-

N. H. March and A. M. Murray, Proc. Phys. Soc. (I.ondon)
79, 1001 (1962).

I V&s(ip) I

'e '&~(q '+p') dp, (2.10)—
Sx' p k.

5»(q, )e'*'&**(qf'—q.')dq. , (2.11)

where Re (Im) denotes the real (imaginary) part.

9 The functions f(q) and g(q) are the Jost functions, and they
would conventionally be denoted by f( g) and f(q), respect—ively.
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If we assume that the potential V(x) satisfies the two
conditions,

The asymptotic density n2(x) at the left is given by

I V(s) Ize'&*ds( ~ (2.12)
kf 1

n2(x)- +
(67r') 47r'

S2g(q )e ""**(kr'—k.')dk, .

(2.21)

I V(s) Is'e' 'ds(~ (2.13)

' ' '+ (2 14)

C= Ci+C2+Cs,
respectively.

In the integral Ci, q,= ip and we have

(2.15)

Illl Sll (ip)e "'(qr'+ p')dp . (2.16)

In the asymptotic sense, px))1 and nx))1, the effective
upper limits of the integration in (2.10) and (2.16) are

Since it is simple to derive by using (2.4) the
following property:

(p/k, ) I Si2(ip) I

'—2 ImSii(ip) =0, (2.17)

it follows from (2.10) and (2.16) that"

'J3+Ci 0. (2.1S)

The path of integration in C~ can be taken along the
line Imq, =p, and we see that C2 is of order exp( —2@x)
which is negligible. We are, therefore, left with the
integral C3 and from (2.9) and the above results we have

ni qr'/6vr'= Ani—C3, — (2.19)

where we have defined An~ to be the deviation of the
density ni from the constant value qr'/(6'')

In the integral C3 we write q =qy+iy, Sii(qr+iy)
=Sii(qr), and stretch the limit i y to iao since the main
contribution to the integral comes from y=0. To lowest
order we have the result

Ani(x) —(qr/Sm'x') ReLSii(qr) e"«'j. (2.20)

' A lucid account of the saddle point method is given by B.L.
Van der Waerden, Appl. Sci. Res. 82, 33 (1951—1952)."Ifwe require that p, &~, then p can be replaced by n in (2.14)
and (2.16), and Eq. (2.18) becomes exact.

where p is positive, then it follows that the scattering
matrix S of (2.4) is an analytic function of the complex
variable q, in the strip IImq I

&p, excluding possible
branch cuts. Details of the analyticity and the passage
to the limits I-~ and 1-2~~ are discussed in Appendices
A and B.

Ke can now evaluate C asymptotically by deforming
the path of integration in the complex q plane so as to
pass through the lines of steepest descent" which are
parallel to the imaginary axis at the points q =0 and

q =qf. This is denoted symbolically by

&n2= n 2(x) kr'—/(6'') (kf—/Sn'x')

XReI S2&(qr)e ""&'1. (2.22)

Equations (2.20) and (2.22) state that the asymptotic
density deviates from its constant value at by terms
which are sinusoidal in x whose period is equal to half
the reciprocal of the Fermi momentum, and whose
amplitude is determined by the backward scattering
amplitude at the Fermi surface. These features and the
Inethod of integration are common to all potentials under
consideration. I.et us now discuss some applications:

(1) For the step-function potential model discussed
in Refs. 2 and 3, Sii(qf) = (qr —k&)/(q&+k&) = —S22(qf),
and by substituting these values in (2.20) and (2.22) we
obtain the results of these authors.

(2) If we take e)kr the first medium becomes
vacuum, qr becomes pure imaginary, and IS»I =1 in
the range of interest. With these modifications Eq.
(2.22) gives the asymptotic electron density (for each
component of the spin) near the surface barrier of the
metal. It is interesting to mention that Makinson" had
published a graph for this density using a step-function
potential for the surface barrier.

(3) If the potential U(x) is modified so that V(—~)
= V(~) then k,=q, and Eqs. (2.20) and (2.22) remain
valid, although the details of the derivation are altered
slightly. If we make the (first) Born approximation
(see, for example, Sec. IIB of I) in calculating the back-
ward scattering amplitudes 5~~ and 522, we have

An, ii(x)—— sin2kr(x —x') V(x') dx',
8' 2x2

(2.23)

An/+(x) —— »n2kf ( I
x

I
+*')U(*')d*', (2.24)

Sm'x'

where the subscript 8 denotes the Born approximation.
It is obvious that ni ng if V(x) —=—V(—x).

"R. E. B. Makinson, Proc. Roy. Soc. (I.ondon) A162, 367
(1937).

To evaluate this integral we shall assume that IJ, &n, and
it follows that 5 is analytic in a strip, say, 0&Imk, &p',
Rek, &0, where p' for the k, integration plays the role of
p in (2.14) for the q, integration. On the path k, =iy,
0&y& p', the integral is pure imaginary and hence does
not contribute to m2. The contribution to m2 from the
path Imk, =p' is negligible as in the case for e~, and the
main contribution comes from the path Rek =k~, and
we have
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III. TWO- AND THREE-DIMENSIONAL
POTENTIALS

We consider a spherically symmetric potential U(y)
and a cylindrically symmetric potential V(p), where
((/= (x,y), and calculate the perturbations in the electron
densities (for a given spin direction) An(y) and An(p) at.
zero temperature. The potentials with which we shall
be concerned have at most a finite number of bound
states, "and we shall erst estimate the contribution of
these states to Ae. A bound state of finite binding energy

—Eb= -'y'&0

contributes to dn a term of order exp( —2yy) Lor
exp( —2') in two dimensions) which is negligible for
suKciently large y (or p). Bound states of zero binding
energy could exist in three dimensions for states of
angular momentum I&1 (and in two dimensions for
states of angular momentum ns&2). Such states con-
tribute to /) n a term of order y '('+" (and p 2~) which
can atmost be of order y '(and p ') and this will prove
to be small compared to the contribution of the free
states.

A free scattering state P(k, r) for the potential V(y)
is resolved as usual in partial waves, namely, "
P(k r) e'a'+ f(8,k) e'"'/y

OO 7r
= X e'(2l+1)pjcoso)e'ecs~ sio kr —l—+—S,), (3.1)

l=o kr 2

where 8 is the scattering angle, f(8,k) the scattering
amplitude, "and 6~ is the phase shift. To obtain Ae we
integrate ~P(k, r)

~

' over k and subtract the same ex-
pression with 8~ =0 to account for the unperturbed
density kys/(67r2). Thus

2(+1 kj

gn(y) P— (—1)& Re esi)'sr(e»s& —1)(Q (3 2)
4x'r' 0

which can 'also be written in terms of the backward
scattering amplitude f(2r,k),~as follows:

gration in (3.2) can now be deformed according to Eq.
(2.14), except that the contour must be dented on the
imaginary axis to avoid the possible poles of the bound
states. The contribution from these dents is negligible
being of order exp( —2yy). Near the origin, |),(0) is an
odd multiple of 2r/2 if there is a zero-energy s-wave reso-
nance; 8&(k) cck"+' if there are no zero-energy bound
states, or s-wave resonance and the potential satisfies
Carter's condition, JI)"

~
V(y) ~ys('+')dy(~ )which is

consistent with conditions (2.12) and (2.13)j; and
8&(k) ~k" ' for t&1, if there is a zero-energy bound
state. "In all these approximations the real part of the
integral of (4.2) vanishes on the path k = sy, and we have
no contributions to Ae. If we allow, for example,
8&(k) =ak+bks, u and f/ real, we see that the path k=sy
contributes a term of order br ' which we shall neglect.
The dominant contribution to Ae comes from the path
k= k/+iy, and we have to lowest order the result

/I)n(y) ~ (ky/47rsys) Re(f(2r ky)esi/sfr j (3 il)

which has been obtained previously by I'riedel, ' and
Kohn and Vosko. '

For the potential V(p), the scattering states are
resolved into cylindrical partial waves m, and we have

P(k, r)~ [exp(ik, z) 7(e'2p P+f(8,k,)e'is pP/p'/')

1/2

=e'"*' P i e cosyn8 ~ibm(&p)

m=o zkpp

XCOSLkpp —(2n2+1)412r+8 ], (3.5)

where c = 1 for nz=0, and e = 2 for m) 0, 8 is a phase
shift, 8 is the angle between the vectors (o, and imp

=—(k„k„),
and f(8,k, ) is the scattering amplitude. By the above
procedure, we have

1 kf

ZLn(p)~ P e~(—1)~ Im e"spP(e"'" 1)—
2% p m 0

X(k '—k ')"'dk„(3.6)

1 ky

hn(r) ~ Irn e"'"f(2r k)kdk.
27r2r2

(3.3) An(p) ~ Im (22nk, (k ys ks) $'/—2
2' p 0

X f(7r, kp)ess"ppdkp. (3.7)

We shall now assume that the potential U(y) satisfies
the conditions (2.12) and (2.13) and this ensures that
the scattering matrix 5&(k)=—exp2i8 &(k) is analytic in the
strip

~

Imk
~
(/1, except for simple poles on the imaginary

axis corresponding to bound states. ""The path of inte-

"The binding in the potential V(p) applies only to the motion
in the xy plane. The s motion is free and can be described by a
plane-wave exp (ik,s) .' We use the boundary condition of outgoing waves at ~, in-
coming (or ingoing) waves exp( —ikr)/r can equally well be used
instead.

I5 Not to be confused with the function f of Sec. II.
V. Bargmann, Rev. Mod. Phys. 21, 488 {1949).

'7 See R. G. Newton, J. Math. Phys. 1, 319 (j.960).

Imposing the same conditions (2.12) and (2.13) on

V(p) and examining the behavior of the phase shifts at
zero energy, "we conclude that the dominant contribu-
tion to d, n(p) comes from the path k, =ky+sy, ;and we
have the result,

)s)n(p)~ —(21/2ky/82r2ps/2) Re/f(7r ky)esi/sfpf (3 8)

' In the absence of resonances and zero-energy bound states,
~k™,m& 1 and the contribution to An from the origin vanishes

in erst approximation. A zero-energy resonance for m=o is
possible and boer. 1/lnkp and here again the contribution to nn 1s
negligible.
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-q'(ql v&=4--'(q)(qle&,

e(q) =1+(4'/q')G(q),

(4 1)

(4.2)

IV. DIELECTRIC THEORY

In the preceding sections a knowledge of the potential
V was assumed and exact expressions for the density
oscillations Ae were derived. In practice, however, one
assumes a charge distribution such as a point charge, a
line of charge, etc., as a source of the potential, and
calculates approximately the screening of these charges
by the electron gas, and the resulting screened potential.
The most widely used approximate theory for dealing
with this problem is the dielectric theory of Lindhard"
which is equivalent to the treatment of Langer and
Vosko, ~ and identical to the subsequent treatment of
March and Murray. " In this section we shall discuss
how the density oscillations as obtained by the dielectric
theory are related to those of the exact theory.

We shall use spherical symmetry, and treat all dimen-
sions v, where v=1, 2, 3, simultaneously by using
vectors in v dimensions. Let Q(x), where X= lXl, be
the density of the source charge, An(x) the perturbation
in the density of the electron gas, and V(X) the resulting
screened potential, then the dielectric theory" gives at
zero temperature the following relations:

wh««=-', (v—2), J is the Bessel function, 8 is the
angle between q and X, and C denotes the space
harmonic. Due to spherical symmetry only the erst
term of the expansion (4.6) contributes to the integral
(4.5).By inserting the asymptotic expression for Bessel's
function and taking account of the logarithmic singu-
larity of G(q) at q= 2k' we obtain by various methods
the asymptotic formula, '~

An(X) ——e(v)(2k'
l
V&X

—~"+@»

)(cos(2k' —(m/4)(v+1))l 1+1/(47rkr)i —r, (4..7)

g(v)=kr(~ —r) lsf 8~ ~+s /s (4.8)

which agrees with Langer and Uosko' "' for v=3. Ex-
cept for the last factor, Eq. (4.7) can be obtained from
the corresponding expression of Secs. II and III by
using the Born approximation to calculate the backward
scattering amplitude at the Fermi energy. Thus, in the
high-density limit for which mkf))1, Eq. (4.7) becomes
the Born approximation version of the exact scattering
theory. For real metals with kf ~ the last factor in
(4.7) differs from unity by about 12', and by twice as
much if we included both directions of the electron spin.

We shall now derive Eq. (4.7) by working directly in
X space. Equation (4.4) leads to the convolution,

q
—2kf

kr 1 4kfs —q' q+2kf
G(q) = —+ ln

2m' 2 Sqkf
(4.3) an(x)= — V(X')E(vl lX—X'l)d"X', (4.9)

(ql ~n&= —(ql V&G(q), (4.4) where the kernel IC(vlX) is defined by"

where e(q) is the longitudinal static dielectric constant
for the wave vector q, and the angular brackets denote
the Fourier transform, for example,

E(vlX)=
(2~)"

G(q)e'& xdq" (4.10)

(ql an&—= An(X) exp( —iq X)&"X.
and has the asymptotic behavior

E(.
l
X)-o,(v)X-&+»~'

XcosL2krx —(y+1)(m/4) j. (4.11)
We shall now discuss two methods for calculating

An(x) for large X. The first is an extension of the
method used by Langer and Vosko, ' namely, we invert
Eq. (4.4) and we have, after expressing (ql V& in terms
of (qlg&, th«

For large X, there are two regions in X' space which
contribute to the integral (4.9), namely, the regions
X&)X', and X=X' which contribute the densities De&'~

and 5m( ), respectively. To calculate Ae&" we substitute
(4.11) in (4.9), and make the approximation lX—X'l

X—X' 2', where the caret denotes a unit vector, and
(qlu&G(q) . „,

qs+4~G(q)
(4.5)An(X) =

(2~)"
"Because of spherical symmetry, the vector 2kf can point in

any direction."'After this paper was submitted for publication, a paper byR. A. Brown LPhys. Rev. 141, 568 (1966)j appeared. Brown's
Eq. (3.11) is of the form given by our Eq. (4.7) for v =2."It is obvious that

The plane wave exp(iq X) is now resolved into partial
waves by using the Gegenbauer expansion, 2'

&(&i~ If +(~I )h,

z(|il I=f xi2ipiuy,

1 a1.
&& (&

I ) = — ——i 2k' )16m'r' 8r r

J + (qX)
e's x=2 1'(rr) P (n+ns)i C„(cos8), (4.6)

m=o (qX)

"J. Lindhard, Kgl. Danske Videnskab. Selskab, Mat. Fys.
Medd. 28, No. 8 ('1954)."N. H. March and A. M. Murray, Proc. Roy. Soc. (London)
A261, 119 (1961). and

2' G. N. Watson, A Treatise on the Theory of Bessel Functions
(The Macmillan Company, New York, 1945), p. 368.
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we obtain

Dn&'& —6(v)X—&"+sl "(2Lr
~
V)

)&cosL2krX —(v+1)(~/4) j. (4.12)

for all practical purposes that

2'
J(P) Re P e""""f(7rk„).

n=o
(5.2)

Equation (4.12) suggests that

Ae Dhe&') (4 13)

With Pkr'))1 and kyar))1, it is safe to make the
approximation,

Dntsl~ —An/(47I ky) (4.15)

By adding (4.12) and (4.14) we rederive Eq. (4.7). The
contribution Ae& & is obvious, and its computation is
suggested by the way we calculate scattering amplitudes
for short-range potentials. The contribution Ae&') is due
to the long-range oscillatory nature of the potential, and
it is seen to become negligible in the high-density limit.
In this limit Eq. (4.12), which is precisely the Born

approximation version of the exact theory, becomes an
accurate formula for the density oscillations. "

where 'D is a constant, which implies by Poisson's
equation that

V (x/krs)Dn (4 14)

By substituting for V in (4.9) the tentative value (4.14),
and writing X'=X+S and X' X+X S, we recognize
that the remaining integral is the Fourier transform of
E(v

~
X) for q=2kr, namely, G(2k~) by Eq. (4.10). The

consistency of Eqs. (4.12) to (4.14) is established, and
we have

k.=kg+(2n+1)rri/(Pkr) . (5.3)

By approximating f(rr, k„) with f(rr, k~) we can sum the
series to obtain:

J(P) ( 2m—/P) Reef(vr, kr)e"s&"jL2 sinh)$ ', (5.4)

where, $==27rr/Pkr. Obviously, J(P) is related to its
value at zero temperature, J(co ), by the equation

J(P) =J( )(5/»nht), (5 5)

which implies that the amplitude of the density oscilla-
tions is reduced from its value at O'K by the factor
$/sinh).

It is of interest to discuss the nature of these approxi-
mations. For large $ the first term of the series (5.2) is
dominant, and the oscillations decay exponentially with
r as r exp( —2sr/Pkr), and our Eq. (5.5) is accurate.
This supports the qualitative remark of Kohn and
Vosko' but contradicts the empirical findings of March
and Murray. ' For small $ the series (5.2) can be summed
by the Euler Maclaurin" method and one finds that

J(~)=J(-)L1--.'~'+ j, (5.6)

We shall now discuss the damping of the density
oscillations in normal metals at temperatures for which

Pl))1 and the Fermi surface is slightly diffuse. It is
simple to start with the three-dimensional case. The
Fermi-Dirac distribution function

J(P)=—Im e"'"f(7r,k)F(k)kdk, (5.1)

for large r. If we assume that the scattering matrix is
analytic in a small strip in the upper half k plane, we

can as we discussed previously deform the contour of
integration to a rectangle (with proper dents if necessary
to avoid simple poles on the imaginary axis) whose
vertices are k=O, ~, ~+i@, and ip The inte. gral is
determined essentially by the residues of the simple
poles of the distribution function F(k) inside the
rectangle. These poles are located at k=k„, where
k s=krs+2zi(2n+1)/P, n=O, 1, 2 ., and we have

s4 The Fourier transform (2kr ( V) in (4.12) is expressed in terms
of (2kr (Q) by using Eq. (4.1) which is also accurate in the high-
density limit.

F(k) = $1+exp,'-P(k' —kr')] '

is inserted in the integrand of (3.3), and the limits of
integration are now zero and infinity. The problem is
then to perform the following integration:

which agrees with (5.5) to second order. The same equa, -

tion (5.6) also follows directly from (5.1) by applying
the Sommerfeld method" for evaluating the Fermi-
Dirac integrals, for small f implies that exp(2ikr) is a
smooth function compared to F(k) near k=ky. This is
not an accident, for in Appendix C we demonstrate that
the Sommerfeld asymptotic method follows by summing
the residues at the poles of the Fermi-Dirac function by
the Euler Maclaurin method, and making a Taylor
expansion at the Fermi energy. Thus Eq. (5.5) is good
for small and large $, and should be reasonable for
intermediate'r $.

In one and two dimensions the results are the same,
namely the amplitude of the oscillations is reduced from
its zero-temperature value by the damping factor
(/sinh(, where /=2~X/Pkr. The details of the calcu-
lations are slightly different. In one dimension one
integrates 6rst over k and obtains a series of the type
(5.2) in which kr' is replaced by kr' —k, '; this series is

25K. T. W'hittaker and G. N. Watson, A Course in Modern
Amalys~s (Cambridge University Press, New York, 1940), 4th ed. ,
p, 125.

"See, for example, J. E. Mayer and M. G. Mayer, Statistical
Mechanics (John Wiley Bz Sons, Inc., New York, 1950), Sec. 16g.

'7 For copper at room temperature pi~'~560 and p is of order
0.2 for r corresponding to the distance between an atom and its
tenth nearest neighbor. This shows that in the nuclear-magnetic-
resonance measurements of T. J. Rowland, Phys. Rev. 119, 900
(1960), the thermal damping of the oscillations is completely
negligible.
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integrated term by term over k„and k„and summed to
give the final result. Most of the contribution to the
integration over k„and k, comes from the vicinity of
k„=k,=0. In two dimensions, one again systematically
integrates over k, 6rst and integrates the resulting
series over k„and then sums it.

If the electron density is sufficiently low, or the tem-
perature is suKciently high, so that Pkr' is of order
unity, we see that most of the contribution in (5.2)
comes from k=ki. We have from Eqs. (5.2) and (3.3)
that

Multiply (A1) by g and (A2) by f, and subtract and
integrate the result over x between the limits zero and
x to obtain

I f(q *)g(q*») f(q x)g (q x)j
—Lf'(q) g(q') —f(q)g'(q*) 3

+(q'—q*') f(q, x')g(q', x')dx'=0 (A. 4)
0

Assume now that

1
A~(r p)~ e

—Qr Imkl Re[~2ir Re%If(~ k&)) (5 7)
7rr2

f'(q)+ikf(q) =0,

g'(q*) —kg(q*) =0,

(AS)

Since Rek& is now signi6cantly different from k~ we see
that, in addition to the severe damping of the oscilla-
tions, the periodicity of the oscillations is altered con-
siderably and the memory of the Fermi surface is lost.
In the extreme case, when Boltzmann statistics apply,
the oscillations are completelylost and Arl~ exp( 2r'—/P)
for su%.ciently large r.

It is of interest to remark. that the dielectric theory
gives the same damping factor as the exact theory. The
details of the argument will become apparent in a future
article dealing with a perturbation expansion of the
density matrix.

Finally, this investigation suggests that the potential,

2mr 2mr
V(r) =Ar ' sinh cos(2krr+0),

Pkg Pkr

might be suitable to represent the long-range inter-
action between ions in the liquid state of simple metals.
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APPENDIX A. ANALYTICITY OF 8

Since V(x) satisfies the conditions (2.12) and (2.13),
it follows by the method of successive approximations
of Bargmann" that the functions f(q„x) and g(q„x)
which are defined for x+0, are analytic functions of q
for Imp, & —p, and Imp, &p, respectively. Therefore,
S of (2.4) is analytic in the strip of interest, namely,
0&Imq, &p, and has no poles unless f'(q, )+ik,f(q,)=0,
and the problem is to show that such poles do not exist.
For brevity we shall write q and k instead of q and k, .
Since f and g satisfy the equations

which follows from (A5) and (A3), and use these equa-
tions together with (A3) in (A4) to obtain for large x
that

i(q+q*) I"'"I+2ik
I f(q) I'

+(q' —q*')
i f(q, x')

i
'dx'=0, (A7)

which leads to
Imk~ f(q) ~'=0. (AS)

From Eq. (A8) we have that either k is real, or f(q) =0.
If f(q) is zero then (AS) implies that f'(q) =0, and hence

f(q, x) =0. If k is real, then q is either real, or pure imagi-
nary. For q= ip, p real, fand g are real, and (A5) and (A6)
cannot be met. If q is real, then from (AS) and (A6) we
have that the Wronskian f'g fg'=2iq=——2ik~ f(q) ~',
or

~ f(q) ~'is negative. All these absurd results show that
Eqs. (AS) and (A6) cannot hold, and hence 5 has no
poles in the domain,

~
Imq

~

&ii.

APPENDIX B. CONTINUUM LIMIT

In this Appendix the passage to the limits J~~~,
and L2~~ is sketched. For simplicity, let V(x) rise
suddenly (step function) to a value higher than the
Fermi level at the points x= I-~ and x= L2. All the solu-
tions g(x) of Eq. (2.2) which are of interest correspond to
bound states. For k,&n, P(x) is essentially (2L2) '~'u(x),
as I.~ and 1.2~~, and the contribution of these states
to the density remains as it is in Sec. II. For k,&n we
can write g(x)=au(x)+bd(x), for —L2&x&Lr. For
x&Li, P(x) ~exp —I~i(x—L,i), and for x& L,2, P(x)—
~ expX2(x+L2), where Xi and 4 are attenuation con-
stants determined by the height of the potential well,
the case of rigid walls corresponds to P q=X2= ~. The
matching of Q and p' at x=Li and x= L, leads to—

we have

f"(q, *)+(q'—2V)f(g, x) =0,
g"(q*,x)+(q*'—2V)g(q*, x) =0,

f(q *)=g*(q**)

f*(q,x) =g(q*,x) .

(A1)

(A2)

(A3)

v'(Lr)+I~in(Li) :—C] ~u'(I. i)+I~iu(Li)

v'( —L2)—I~2n( —L2)

b n'( —Lg) —Xmu( —L2)

(B1)
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L(4—iq, )e '&~ '+(lii+iq, )S&ie'"~'](—ik, —X&)S&ie'"'~&
a'/b'= aia2

(4+iq.)Si2e'&*~'L(ik.—X2)e "~&—(ik.+X2)S22e'"*~'j
(B3)

In the denominator and numerator of (B3), we select
only the term expLi(q&i+k, L&)g as having a definite
value for the allowed states, as I-j and 1.2 independ-
ently —+, neglect the other exponentials, and we have

la'I/I &'I = IS»S»I/IS»S»I =q*/k' (B4)

From Eq. (B4) and the normalization condition,J' „"
I p(x) I

'dx=1, we obtain that

la'I =kq*(q*L~+k Li) '
(B5)

lf I
=-,'k.(q.L,+k.L,)-'.

From the Bohr quantization condition, j vr q~L&+k L2,
where j is an integer labelling the state, we have that
the density n(x) is given by

dk..
n(x)=&l@ (*)I'-- I&(x)I' L+L dq* (B6)

7r dg~

By making the appropriate substitutions in (B6),and
ignoring the cross terms, such as ah*, we arrive at the
same integrals of the text in terms of lul' and lvl'.

poles of the distribution function E in the hrst quadrant
of the complex E plane, namely,

8= —M P Q O+~co+n(d),
n=O

co= 2vri/p.

(C4)

~=~8.)+2 C.(-,' )"~-(f), (C6)

By applying the Euler Maclaurin summation for-
mula, "and observing the vanishing of g and its deriva-
tives at ~, Eq. (C4) yields

&=&(f+k~) 3~4—'(i+2~)
8

Q ( 1)m ~2my2m(i+ 1~) (( 5)
m=i (2m)!

where the first few Bernoullian numbers 8 are: Sq= 6,
82=84 1/30, 83 1/——42. The fu——nction g(f+-', co) and its
derivatives p' are now expanded at i in a Taylor
series, and we have

APPENDIX C. SOMMERFELD FORMULA

The problem is to evaluate the integral
C2n+1=

(2n+1)! (2n)!

y(E) (BF/BE)dE, (C1)
22n 8

P( 1)m , (C7)
(2m)! (2n+1 2m)!—

where the function P(E) is smooth over energy intervals
of order ET near E= l, and F is the Fermi-Dirac func-
tion. We shall assume first that g(E) and its derivatives
vanish at ~. By a partial integration we have

C2n =
(2n)! (2n —1)!

n 22m

Q( ])m
m=i (2m)! (2n —2m)!

(C8)

~=y(0)F(0)+ P'(E)FdE, (C2)
0 By performing the simple computations, we And that

c]—c3 c5=c7=0, as we expect from the fact that
which, if we neglect terms of order exp( —pi), can be 8 is real, and c2= —6, c4——7/360, c6———31/(6!)(21),
written as c8= 127/(15)8!, and

~'(E)L~+ee" "j-'dE, -
(C3) ~=~8.)+.'( &2')'~"(t.)+ -( ET)V'(t)

360
where the path of integration C is taken along the
imaginary axis from i~ to zero, along the real axis from
zero to ~, and along a line parallel to the imaginary
axis at ~. On the imaginary axis Ii=1, and this path
contributes in first order P(0) which equals P(0)F(0) to
within terms of order exp( —P|). Since P(E) vanishes
at 0D, the contour in (C3) can be closed by the line
ImE=27ricVP, where lV is a large positive integer; on
this line J"&1, and the contribution to the integral is
zero. Thus 8 is determined by the residues at the simple

127
+ ( I'2')'&'0)+ (&&)'~'(t-)+", -(C9)

(21)6! (15)8!

which is the Sommerfeld formula.
Finally, the case when P(E) does not vanish at ~,

can be handled by multiplying g by a convergence
factor such exp(iXE), with X positive and real. The
above method now goes through, and by setting A, =O
at the end of the calculation we obtain (C9).


