PHYSICAL REVIEW

VOLUME 146, NUMBER 1

Plasmon Excitation by Charged Particles Outside a Metal Film

Nosoru TAxkIMOTO*
Department of Applied Mathematics, University of New South Wales,
Kensington, New South Wales, Australia
(Received 6 December 1965)

A detailed study is given of the interaction between a metal film and a charged particle outside the film.
It is shown in particular that a point charge Ze moving with a given initial velocity # in a direction parallel to
the film excites surface plasmons in the film as a result of which a reaction force acts on the moving charge.
Provided # is much larger than the Fermi velocity of the metal, and assuming specular reflection for scatter-
ing of the metal electrons at film boundaries, the force is given approximately by

[(Ze)Y/ (220)2](3m) 2%~ ; a=V2wp20/u,
[(Ze?)/ (220)*](3) /6%~ ; B=dwo,20/t,

for wyd/ukl and >>1, where 2, is the distance between the moving charge and the film, w, the volume
plasmon frequency, and & the thickness of the film. A brief discussion is also given of the case of diffuse

for wpd/uw>>1 and &>>1, and
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reflection.

1. INTRODUCTION

HE analysis of the energy losses of charged par-

ticles in a metal provides a very useful method for

the study of the dielectric properties of the metal. A

considerable amount of theoretical and experimental
work has been devoted to this subject.

For films of infinite thickness, theory predicts a
characteristic energy loss of %w, associated with the
excitation of volume plasmons.! Recent work, the
first of which is that of Ritchie, shows that, for finite
thickness, boundary effects play an important role in
the energy losses, and predicts an additional energy
loss of #w,/V2 associated with the excitation of surface
plasmons.? This prediction seems to have gained ex-
perimental support.?

The difficulty of the analysis is that there exist other
mechanisms of energy loss, such as interband transitions,
electron-electron scatterings, Bragg reflections (fol-
lowed by plasmon excitations) and so on, which mix with
those arising from the direct plasmon excitations. The
existence of a macroscopic variable is required, which
behaves differently in different mechanisms of excita-
tion, and hence facilitates the analysis. It is expected
that the thickness of a film plays the role of such varia-
ble. In fact the thickness dependence of the energy losses
has also been observed previously.*

However, it seems to us that in previous theories the
dielectric properties of a metal have been oversimpli-
fied so much that boundary effects are not properly
taken into account. We believe for example that the
result of a theory should depend on whether we use the
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assumption of specular reflection or that of diffuse re-
flection for scattering of the metal electrons at bounda-
ries. Indeed, this occured in the theory of the anomalous
skin effect.® These two assumptions are likely to lead to
a remarkable difference in the thickness dependence of
the energy losses.

The purpose of the present paper is to study the inter-
action between a metal film and a charged particle
with particular care being taken of boundary effects.
We shall simplify the problem by taking a special
configuration in which the charged particle is outside the
film.

In Sec. 2 the charged particle will be considered to be
at rest. We shall discuss two limiting cases according to
whether the film thickness is much larger or smaller than
the screening radius of the metal.

Section 3 will be devoted to the dynamical problem in
which the charged particle is moving with a given initial
velocity in a direction parallel to the film. We shall see
that surface plasmons are excited. The possibility of
plasmon excitation by a charged particle outside a
metal film has already been pointed out by Heidenreich,®
and experimental work has also been done, but no
satisfactory quantitative discussion has ever been
given.”

2. STATIC POINT CHARGE

Consider a static point charge Ze outside a metal film
of thickness d and with plane boundaries of infinite
extension. In classical electrostatics,® it is usually con-
sidered that the electrostatic potential inside the metal

5 G. E. Reuter and Sondheimer, Proc. Roy. Soc. (London) A195,
336 (1948).

6 R. D. Heidenreich, J. Appl. Phys. 34, 964 (1963).

7 E. C. Shaffer, J. Silcox, and B. M. Siegel, J. Appl. Phys. 35,
3079 (1964); A. J. F. Metherell, S. L. Cundy, and M. J. Whelan,
International Conference on Electron Diffraction and Crystal
Defects, Melbourne, 1965 (unpublished).

8 See, for instance, W. Panofsky and M. Phillips (Addison-
Wesley Publishing Company, Inc., Reading, Massachusetts, 1960),
1st ed., p. 4.
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film must be a constant, which can be taken to be zero.
Thus when the film is thin enough (we have no idea as
to how thin the film must be), we can introduce an
image point charge —Ze to make the potential zero in
the film. The image charge along with the real charge
then determines the potential in that part of the region
outside the film in which the real charge is located.

However, two objections can be raised against this
conclusion. (1) Although the film is very thin, its thick-
ness is finite; it is impossible to make the potential zero
everywhere inside the film simply by introducing an
image point charge. (2) The conclusion that the po-
tential must be zero inside the film is based on the fol-
lowing argument. The system of conduction electrons in
the metal is in a state of statistical equilibrium in the
presence of the point charge. No electrostatic potential
gradient should exist. Otherwise it induces an electric
current, which should not exist in an equilibrium state.
But this argument is incorrect.® In fact a state of statisti-
cal equilibrium exists in a closed system even in the
presence of an electric field. A typical example for this
may be provided by a metal with impurity atoms. In
such a metal the electrostatic potential gradient due to
impurity atoms completely balances the chemical
potential gradient associated with a nonuniform dis-
tribution of metal electrons.

In this section this classical problem will be studied in
detail from a microscopic point of view. We shall use a
Cartesian coordinate system with the z axis normal to
the film and passing through the point charge at
(0, 0, —z), where 3, is the distance between the point
charge and the film. We divide the whole space into
three regions I, IT, and ITI. Region IT is occupied by the
film, and regions I and III are those outside the film
with 2<0 and 2>d, respectively.

Let the function ¢(x)=¢(x,y,2) denote the electro-
static potential. It is determined by a set of Poisson
equations and appropriate boundary conditions. These
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equations are:

@O AV (x)=—4dnZed(x—X0); Xo=1(0,0, —2z),
1)  A¢P(x)=N¢®(x), (2.1)
(III) A¢®(x)=0.

The term A% ®(x) represents the screening charge in-
duced in the film. The screening effect has been taken
care of by the Thomas-Fermi model, which gives a
constant screening radius A—L10

It is convenient to introduce the Fourier transform of
¢(x) with respect to the variables x and y;

$(x) =24 2(q,2)e™ ",

where r is a vector in the x-y plane; r=(x,y5,0). The
Poisson equation for ¢(x) then becomes

(0%/929)PW(q,2)— @?®V(q,2)= —4nZed (3+20) ,
whose solution is
dW(q,2)=(2nZe/q)e~ U+l 4 etez; 2<0,
and the Fourier inverse transformation leads to

oD(Q)=2o{(27Ze/q)e 14 A et e}

Xeitr; <0, (2.2a)
In the same way we obtain
¢ (@)= 2of Bq exp[— (¢*+N)'%z]
+Cy exp[ (222 ]}efar; 0<z<d, (2.2b)
and
@ (q)=2_(Dee%eitr; d<3z. (2.2¢)
We use the boundary conditions
P (x,5,0) =0 (x,9,0),

(061 (x,,2)/02) 0= (3¢ ? (x,,2)/ 92) 20,
(86 (x,y,2)/ 02) sma= (8 ® (x,,2)/ 05) sma..

The second pair of these relations involves the assump-
tion that no surface charge is present in the micro-
scopic sense.!!

Substituting (2.2a) to (2.2c) into (2.3), we obtain

(™) g1+ [g ™) /2= g] exp{ —2(g*+N) 2}

Aq=(—2nZe/q)e 10+-4nZec— 1%

[(@+M\)" 4¢P —[(g*+\) 2~ g exp{—2(g*+\2) 2}’

dnZe[ (g*4-N)12-gJe~e=0

B = b
* LY [N = g exp(— 2N )
dm 26l (gAY M1 gl exp{ — 2(gtF A VAd)

(2.4)

q

L@ P L) T exp(— 2N

dmZoe=12(g*4-\?) %04 exp{— (¢H-N)1I2d}

Dy= :
L(g*+N)12—gPP—[(g*+\?)"/2—g]* exp{ —2(¢g*+\?)"/*d}

9 Indeed, this argument, when applied directly to a thick film, leads to the trivial conclusion that the potential is zero everywhere

outside or inside the film.

0 C. Kittel, Quantum Theory of Solids (John Wiley & Sons, Inc., New York, 1963), p. 105.
11 The induced charge M¢® (x) may be called the surface charge in macroscopic sense.
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If we assume that
A>>1, (2.5a)
and
g\, (2.5b)

these solutions simplify to
Ag=(—2rZe/q)e 2+ (4mZe/N)e~ 00,
By=(4wZe/N)e~ %0,
Cyq=(4mZe/\)e~120g=d
Dq= (87!'Z€/)\) e—920g—Nd+qd |

We then have

oV (x)=>_q(4rZe/\—2nZe/q)e"1(02)¢ia T
42 (2w Ze/g)edaotelgiar,

The assumption ¢<KA is justified when zpA>>1, i.e., when
the distance between the point charge and the film is
much larger than the screening radius. The inverse
Fourier transformation is easily carried out [we re-
place the sum by the integral (27)~3/d%q] to give

Ze
{(o20) 2102

Ze 2Ze(z—20)
=z N(s—z0)

PO (x)=

(2.6a)

The first two terms on the right-hand side clearly repre-
sent the classical result. The third term is equivalent
to the potential due to a dipole moment 2Z¢/\ located
at z=3zp. This term is dominant only in the region
limited by
r<z, |z] <\
We see that the classical result is correct for the most
part of region I, provided the two distances z and d are
much larger than A7
Similarly we find

47e 20
O (x)=—

N me‘wch{k(d—z)} .

(2.6b)

In particular

@ 0 2Ze %0
& @ (x,y, )—Tm,
and
4Ze %0

—\d.

A v (502+72)3/2'

¢ @ (x’y’d)‘

These are equivalent to the potentials due to dipole
moments 2Ze¢/\ and (4Ze/N)e? at z=2, and 2,4, re-
spectively. From (2.6b) we see that the screening
charge is located only in the surface layer of thickness
A~L a quite understandable result.
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Finally we have

47 2+20—d
PO (x) =—e

A {(z+20— )22 302 '

This shows that the screening of the point charge is
almost complete.

For degenerate electrons in metals, \ is of the order of
108(cm™?) so that Egs. (2.5a) and (2.5b) are fulfilled in
practice. For nondegenerate electrons, as in semicon-
ductors or in ionized gases, the parameter A~! is given
by the Debye length

N 1= (kT /4mne?)t/?,

(2.6¢)

2.7

with # the electron density.'?> The magnitude of # is
variable. For instance, the value #~10'7 can easily be
realized in semiconductors. At room temperatures then
we have A1~107% cm. This estimation suggests that
the opposite extreme case Ad<<1 is worth consideration.
We take now
AL,
g,

and the solutions (2.4) reduce to
Aq=0[(g/N)*N\d],
B=C &2 (nZe/q)e e,
D=(2nZe/q)e~ .

These yield then
Ze

PV (X)=—;  2<0, (2.82)
((atan)rreyire
Ze
PV =—; 0<z<d, (2.8b)
{Z02+72}1/2
Ze
PO = ; d<z. (2.8¢)
(Gt

Because of the assumption ¢\, these formulas are
valid for zo>N! and/or #>N1. We conclude that
there is no screening at all, and instead the potential is
short-circuited in the z direction by the film, a result
which is hardly expected in simple electrostatics.

3. MOVING POINT CHARGE

In the same configuration considered above, we now
let the point charge move with a given initial velocity »
in a direction parallel to the film. We take the x axis
to be parallel to the velocity. The moving point charge
induces in the film a time-dependent charge-current
distribution, which in turn reacts on the point charge

to change its energy and momentum.

2T, H. Hill, An Introduction to Statistical Thermodynamics
(Addison-Wesley Publishing Company, Reading, Massachusetts,
1960), p. 32.
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The Poisson equations (2.1a) to (2.1c) are replaced by
the d’Alembert equations

1 9
( A—— ——)¢(1)(x,t) =—4rZed(x—xXo), (3.12)

c? 912

(A— i i)¢<z>(x,,)

c? 912

=dr / K(x—x, i~ )@ /) d%/dl, (3.1b)

1 92
(A————)¢(3)(x,t)=0, (3.1¢)

c? 912

where x, denotes the position vector of the moving
charge: xo=(ut,0, —2,). We have used the classical
trajectory of the moving charge (the Weizsicker-
Williams approximation), which is justified for small
energy-momentum changes. To suppress relativistic
effects we assume that # is much smaller than the light
velocity c.

The term on the right-hand side of Eq. (3.1b) repre-
sents —47 times the charge density induced in the
film.13 The limits of the space integral in that expression
depend on the particular boundary conditions for scat-
tering of the metal electrons. In their study of the
anomalous skin effect, Reuter and Sondheimer have
discussed two extreme boundary conditions.!* They
assume either (i) specular reflection, i.e., that the tra-
jectory of the metal electrons immediately after scat-
tering from a boundary is the mirror reflection in the
boundary of their trajectory immediately before scat-
tering, or (ii) diffuse reflection, i.e., that a coherent
translational motion of metal electrons completely dis-
appears at the boundary.

If we use the assumption of specular reflection, the
limits of the space integral range over the whole space,
provided the function ¢¥(x,¢) is also extended over the
whole space with the properties,

¢(2)(x) Y, —%, t)=¢(2)(x;y,2,t) )

SOy, 42, 0 =6 wyal). D
It should be noted that discontinuity occurs in the
quantity d¢®/9z at 2=0, £d, +2d,---.15

On the other hand, if we use the assumption of diffuse
reflection, the integral is taken over region II. We shall
first treat the case of specular reflection.

18 By writing the relation in this form, we have neglected the
crystal structure of the metal.

14 Reference 5.

15 The thickness d has been taken to be infinite in the study of
Reuter and Sondheimer, and accordingly the second relation has
been irrelevant in their problem.
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We define the Fourier expansions

1
(2n)? qy )

1 1
5015 L [ i fasn.ot
(x,t) PRy 9z | dgy | dw (q,n)

Xe%(Q'f—‘vt)elfnz,

~/
(2r) !

fo=nr/d; n=0,=41,£2,---.

¢(3)(X7t) =
with

Equation (3.1a) then gives

02 w?
@wm(q,z)—(qﬂ——)wl)(q,z)
02?2 c?

= —dnZeX 21w (w—uq,)d(3+20) ,
whose solution is

&,V (q,3)=(2rZe/q)e91#t%0| 2m(w0—uq.)
+ A4 4 exp{(¢®—w?/c®)V %},

provided ¢*—w?/c?>0. If this quantity is negative,
then the factor (¢>—w?/c?)!/? must be replaced by
—i[ (w?/c?)—¢*]"? to keep only outgoing waves. How-
ever, it turns out that this quantity is always positive.
This has the important consequence that no electro-
magnetic waves are emitted by the film in contrast
with the case of normal incidence, where, according to
Ferrell,' the film does emit electromagnetic waves.
Similarly, Eq. (3.1b) leads to

(— fui— g +o¥/c) 2, (an)
+28,®(q,d)e~/1— 28,2(q,0)
= 47rK"(q,w)<I>w @ (q,n) )

(3.3a)

with
Kn(q,CO) =/ K(X,t)e—ifnze—-i (q-1—wt) d3xdt ,

®,®'(q,d)= / (9P (x,1)/ 02) smae™* 074 dudydl,

®,®'(q,0)= / (9@ (X,1)/ 92) smoe™ 0 *=0 ddrydl.

The solution for ®,®(q,x) is given by
2(1)50 (2)/(q)d)e_ifnd— Zq)w (2)/(%0)
furg*—(w/c)*+4rKn(g-w)
1 {3, (q,d)e/i—B,®(q,0)} et
®,@(q,2)=-2 .
dn fatg*—(w/c)*+4rKu(q,w)
(3.3b)

@, (q,n) =

whence

16 R. A. Ferrell, Phys. Rev. 111, 1218 (1958).
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Finally, Eq. (3.1c) takes the form
(9%/02)2,@(q,2) — (g2~ (/) @ (q,5) =0,
whence
®.@(q,5)=Dy exp{—[¢*~ (w/c)’]""%}. (3.3¢)
The boundary conditions (2.3) yield
(2rZe/q)e*02md(w—uq.)+A =B, *(q,0),
Dq exp{—[¢*—(w/c)*]"?d} = 2, (q,d),
—2nZeem X 2w (w—uq.)+ 94 4= 3,?'(q,0),
—[¢*—(w/c)?]*2D,
Xexp{—[g*—(w/c)*]"?d} =3, @' (q,d).

Substituting (3.3a) to (3.3c) into these equations and
eliminating ®,®’(q,d) and ®,®’(q,0), we obtain

Agt+(2rZe/q)e 12w (w—ug.) = — gDy~
—vqd o+ 2mvZee= X 218 (w—ug.)

Dye='=—vge~ "Dy~ pgA ¢+ 2mpZee 11X 28 (w—1ug,) ,
with
1 e—’[fn0+ 1
V:—‘ = Z P )
A% fr AT (40) 47 [ g ArK (g0)
and
1 e—/nd 1
p==2 - =2 ’
d n [t @ HarKa(qw) dn fu24g*4rKa(q)

where we have used the fact that K,(q,w) is an even
function of 7 [see Eq. (3.4)], and quantities of the
order of (%/c)? have been neglected.

Solving these equations for 4,, we obtain

eifn0+

eif,,,d

2nZe — 14 (2—p?)q?
Ag=——e 10X 2rd(0—ugy)——
q (147r9)*— (ug)?

The potential at the position of the moving point
charge is obtained by subtracting the self-energy term
[the first term on the right-hand side of Eq. (3.3a)]
from ¢ W(x,), namely,

1
1) _ —qz
S M (xo,1) 2 /dqx/dqy/dw Aqem,

The electric force acting on the moving charge is

F=Ze[ — gradé @ (x,#) Jxes, -
Thus

Fo=Ze[— 3¢V (x,8) /0% Jxex,

(Ze)* qa
= /dqz/dqydw —e2e%0
2w q

(2= )1
Xé(w—ug.) Iém——————— |
(1+r9)*— (ug)*
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where we have used the reality condition
K_3(—q, —w)=c.c. of K,(q,).
In order to derive » and u we must evaluate the sum

e~ ifnz

1
S=-Z< > :
& N[44 K 1(0,0)7 ma

The quantity K.(q,w), often referred to as the general-
ized dielectric function, has been derived by many pre-
vious authors.l” Assuming that the metal electrons are
free and degenerate, we have

Kau(q,w)= (k= (o/c))Tn(q,0) /2, (3.4)
with
B=fatgt,
4rT(quw) = (ko/2k){g(x1)+g(x-)},
where

g(@)=2+3(1—2) In((e+1)/(x—1)),
Xy= (k/Zko):L- (w/kvg) .

The parameters A\~ vy, and %, denote the screening
radius, the Fermi velocity, and the Fermi wave number,
respectively. It is understood that the logarithmic func-
tions contain proper imaginary parts when their argu-
ments are negative. But we shall be interested in the
limit
[ | = eo/kvg |1,
k/2keL1,

in which case no imaginary part appears. The function
I'(q,») then simplifies to

ArT'(q,0) =k — (wp/w) +ic} (3.6)

where e is a small real quantity introduced to allow for
possible weak damping effect:

0 for w>0,
e<0 for w<O0.

The condition (3.5) requires first of all that the velocity
% be much larger than v,.
In this limit the sum S takes the form

1 1
= - Z .
d1—(wp/w)*+ie » fu+g?
The sum is evaluated in Appendix A. We have
ez 1 ch{q(z—d)}
n fn2+q2—q shdq

whence

3.5)

3.7)

e—if nz

, for 0<z<2d

=1~ (wp/w)*ie)" cthdq,
qu=(1— (wp/w)*+ie)~Y(shdg)~".

17 The following formulas are quoted from the author’s previous
work : N. Takimoto, Progr. Theoret. Phys. (Kyoto) 25,327 (1961).
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Now the reaction force F will be calculated in two

limiting cases.
(I) Thick film. When the film is thick enough to

satisfy
e, (3.8)

i.e., when the film thickness is large compared to the
plasmon wavelength, we can ignore u compared to »,
which is given by

= (1—(wp/w)*+ie)~'+0(e2).
Then it follows that

gz
F,= —(Ze)Z/dqx/dq,,/dw— —24%0
q

X 8(ugs—w) sgn(w)d2— (wp/w)?),
where we have used the relation
(x+ie) 1= (P/x)—mi sgn(e)d(x),

and the fact that sgn(e) is the same as sgn(w) [see
Eq. (3.7)1.

The physical meaning of the two delta functions is
obvious. The moving charge generates a distribution of
electric fields. A resonance occurs between the fields
and the collective motions (plasmons) in the metal at
the frequencies w==w,/V2. Associated with the plas-
mon excitations, the momentum of the moving charge
changes by ¢,= =#w,/V2u.

The evaluation of the integrals is elementary; we have

e—Zqzo

=

—(Ze)w, /‘” dg
4 Joprmn g [1—(wp?/2ug?) ]2
—(Ze)?a® >

= _ del + 21 1/2 —a,
G 2 ), ERCATE=1Te

with
a=V2w,z0/%.

The assumption (3.8) is justified when

VZw,d/u>1. (3.9)

For w,~10/sec, which is the plasmon frequency in
normal metals, and #>~10° cm/sec, which complies
with the condition (3.5), we have ¢>>10~7 cm and
a~107zy. This indicates that the relation

a>1 (3.10)

holds in practice. With this in mind we shall evaluate the
remaining integral. We expand the logarithmic func-
tion in the integrand into the Taylor series at {=1.
Then carrying out the integration, we arrive at the
asymptotic expansion

Fo=(—(Ze)*/(220)) (w/8)'/

Xa32e~(1—9/8a+- ). (3.11)
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In the same way we can calculate F7;:

—(Ze)?
F.,= Re / dqs / dqy / dw e72720
2

(wp/w)2—1e€
2— (wp/w)2+1e€
=((Ze)*/ (220 (1+3/a?+- - ).

We see that the leading term of F, is the same as in the

static case.
(IT) Thin film. When the film is sufficiently thin to

satisfy

X &(w— ”qz)

(3.12)

e 2],

(3.13)
we have

gr>qu(1— (wp/w)*+ie) " (dg) ™.
It follows then that

(Ze)® gs
F,= Im/dqz/dqy/dw —e 220
2 q

X d(w—uq,;)(142vg)?

—(Ze} gz
= [dqx/dqy/dw —e 2920
2 q

X 28(w—ugq,) sgn(w)d(w?—dqw,*/2)
§-1/2
(F=1)12

_(Ze)2ﬁ2 ood
) 2/,

3

)

with
B=dwpyz0/u.
Evaluating the last integral in the same way as before,
we find N
—(Ze)2 /7 1
= (Ze) ——63’26‘5{1-*-—4-- . } , (3.14)
(220) 2 48

provided

Bg>1.
The condition (3.13) goes over into

(wpd/u)2K1. (3.15)

For the numerical values considered above, we have
dzp>>10714, and d<10~". The second condition is never
realized in practice. It may, however, be realized in
metals with extraordinary low plasmon frequencies.

Also we have

(Ze)? 3d\1
F.= [1+(1——)—+---} .
(220)2 420 ﬁ
In the case of diffuse reflection, it is very hard to ob-

tain the general solution of the integral equation
(3.1b) for arbitrary values of d. For d= o, however,

(3.16)
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one can use the method of Wiener and Hopf.!® De-
tailed analysis is shown in Appendix B. The results are

—(Ze)? vy 2
P - ’ (3'17)
(220)2 u {In|ra|/7}2+1
with 7 a numerical factor, and
F,=((Ze)*/ (220)){1+O0(vo/u)} , (3.18)

for e=2<K1 and zp>>u/vok,.

4. SUMMARY AND DISCUSSION

The screening of a static point charge outside a metal
film was studied in detail. It was shown that, except for
a minor correction, the classical result is correct, pro-
vided the film thickness d as well as the distance 2,
between the point charge and the film is much larger
than the screening radius A=! of the metal; and that when
d is much smaller than A=, as may presumably occur in
semiconductors, the electrostatic potential due to the
point charge is Coulomb-like everywhere in the space,
but is short-circuited by the film in the direction
normal to it.

The method was then extended to the calculation of
the reaction force F acting on a point charge outside
the film, but moving with a given initial velocity # in a
direction parallel to the film. Using the assumption of
specular reflection, we found among others that the
thickness of the film plays a significant role only when
the film is sufficiently thin to satisfy

AL/ w,.

This, however, is not realizable in normal metals. We
also found that, when the inequalities &>>#%/w, and
wy%0/#>>1 hold, the z, dependence of the reaction force
F. is very sharp. This entails some restriction on the
velocity #. Let Az, be the experimental error for the dis-
tance z,. This error is insignificant if Azy/z,&<1. On the
other hand the uncertainty principle leads to

AzAv, 2 h/m,

where Av, is the uncertainty in the velocity in the z
direction. This relation is rewritten as

Av, hw, u 2

~S
u  mu? 2w, Az

Roughly speaking, the two factors (#/z0w,) and (z0/Az)
will cancel each other, so that

Av,/uZ hw,/E; E=mu?/2.

Given this relation we may conclude that quantum
effects are negligible when

T LI

18 Reference 5.
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i.e., when the energy transfer involved is much smaller
than the energy of the incident particle.

The calculation based on the assumption of diffuse
reflection was done only for the case d= «. A remarkable
difference was obtained in the z, dependence of F,. It
is also expected that the d dependence of F, is quite
different from that in the case of specular reflection.
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APPENDIX A
We shall evaluate the sum (we assume ¢5<0)

1 gifnz
I=-
4% furtd

To begin with we notice that it has the integral form

i fa=nm/d.

1 e df
[=—/ [P
7)o (2 g? etk —1

where the path of integration ¢ consists of two straight
lines in the complex ¢ plane, which enclose all poles of
the function [¢*#—17"! in counterclockwise, but not
those of the function [(24-¢>].

We then deform the path in such a way that these
two lines, one above and the other below the real
axis, close themselves by making large semicircles in
the upper and lower half-planes, respectively. Each of
the poles at {=-1q is enclosed in either of these semi-
circles. If z satisfies the inequality

0<2<2d,

then contribution to the integral vanishes on the perime-
ters of the semicircles, as their radii go to infinity.
Hence the integral with the deformed path is equal to
the original one. Evaluation of the integral is now
straightforward, and we obtain the result shown in
Sec. 3.

APPENDIX B

When we use the assumption of diffuse reflection,
we must solve the integral equation

62
Z <q2—<w/c>2)}<1>w<2><q,z>
dz2 .
—dr | Ku(q5—2)B.®(q,7) d'.

0

We shall be interested only in the case d= . For
simplicity we put
P, (q,2)=¢(2),
Ko(q,2)=k(2).



146

Then we have

a ®
(;;rqz)g<z>=4’r/0 He—)g) &, (BD)

where the term of the order of (#/¢)? has been ignored.
The boundary conditions are

(2rZe/ Qe *2mwd(w—uqs)+A4=g(0),
—2rZee= "2 d(w—uq.)+qA=g¢'(0),

whence

__ £O0+¢0 z“Zeb—qzozwa(w—uqJ :
g0)—gg0) ¢

Thus the knowledge of the ratio g’(0)/g(0) is required
for the derivation of the reaction force F.
Let us define the Fourier transform of k(z) through

k@)= (1/2n) / K(f)eirs df

The general expression for K(f) is given by Eq. (3.4)
with f, replaced by f, but in the following we shall use
the simplified form (3.6) valid under the condition

f<<g%/’l)()<<ko .

It turns out that only those values of ¢ satisfying
& (2z9)~* are relevant. Therefore, the second in-
equality becomes

%/ vokoK20. (B2)

To comply with the condition f<gu/vy we introduce
4rK (f)=4rT ;(q,w)=k*{— (wp/w)*+ie} X C(f),
where C(f) is a convergence factor with the property
C(fy1l for fLqu/v,
C(f)=~0 for f=qu/v,.

Equation (B1) can be solved with the use of the
method of Wiener and Hopf (modified by Reuter and
Sondheimer), provided C(f) satisfies some proper re-
quirements. The analytic properties of C(f) are still
arbitrary and can be chosen to make the problem as

simple as possible. Here we assume that C(f) is regular
in the strip |Im(f)| <g and the equation

g +4aT(q,0) =0
has no solution in the same strip. For example we can
take
(u/v0)%q* ]2
P Gufuoygrd

Then the result of Reuter and Sondneimer can be
directly used, and we obtain

§'0)/g(0)=—(t+9),

ct=|
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with

Vg=

1 /0” o ln[ 2+ qz+j:i;(2q,w)c (f )]

()2 oo

™

= (1/7)(qu/vo) In{1— (w,/w)?+ie€} . (B3)
The reaction force F, is calculated from
F.,= —(1/2#)3/dqx/dgy/dw (—iqx)e“zm
—(atg)+
X 21 (Ze)?/gX ZWB(w—uqz)-—(—q—g—g .
— (et —q

Since we have
y_q=c.C. of »q,

the expression for F, reduces to

(Ze)2 0
F.= / dq q?e~%a®
0

™

X/ d0 cosf(Im[vq+2¢ T™Vwmugz -

Now, according to Eq. (B3), we have

Im[q/(vq+29)]
= — (vo/u) sgn(w)d(In{1— (w,/w)2}),

for |w|>w,
_ ~ (u/v0) sgn(c)
[(s/mv0) Inf (/)2 — 1} +274 (t/v5)?
for |w|=w,

where w stands for #g cosf. In the region |w|>w,, the
expression is nonvanishing only at |w|=c0, or ¢g= o,
but because of the factor exp(—2z4¢) it has no con-
tribution to the integral. Hence

—‘2(28)2’14 wplu /2
Fz=-———< / dg [ o
) 0 —7/2

) 6o
of "
wp/u —fo

X ([(ae/mo) In{ (wp/ )~ 1} 427+ (26/20)?)
where 6, is defined by
cosbh=wy/ug; 0<6,<w/2.
The integrand has a peak at

w= wp/(1+e—21rvo/u)1/2
~w,/V2,
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i.e., at the surface plasmon frequency. The peak is not
sharp in contrast with the case of specular reflection.
Namely, diffuse reflection of metal electrons at the
boundary broadens the plasmon resonance peak.

We change the integration variables to

2z0q=x%, cosf=y.

These yield
—_— (Ze)Z 4y VZa
ol
(220)2 w0
V2o [z —
+ @ / dy>—
e Jo (1=y?)H2

X (L(2/vom) In{ (20/x%y%) — 1} 4-2 P+ (u/00)) 7.

For exp(—V2a)<K1, the second integrals can be omitted.
The first integrals will be evaluated approximately. We
notice that the factor with the logarithmic function is a
slowly varying function of x and y, and may be re-
placed by a constant. The evaluation of the remaining
integrals is then elementary and we arrive at

i - (Ze)%o 2
C (220)% {In(ra®)/7)2H1’
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where 7 is a numerical factor (»>0). The a dependence
of 7 is not clear, but it does not affect qualitative prop-
erties of F,. (Rough estimation shows that 7 is of the
order of 10 and is independent of «.) Thus we see that
the « dependence of F is much less sharp than in the
case of specular reflection.

Similarly, one can derive

(Ze)*/ (220)){1+0(vo/u)} .

We have retained only collective aspect of the di-
electric function, when we introduced the factor C(J),
but this has been enough to get a rough idea of the dif-
ference between specular and diffuse reflection. It is
worthwhile to point out that, if the quantity I';(g,w)
were independent of f, as in the Thomas-Fermi model
for the static problem, there is no difference at all be-
tween two reflections. This is obvious, for the charge-
potential relation then reduces to a local one. However,
in the problem which concerns us, this quantity de-
pends strongly on f. Indeed, the f dependence is such
that a space charge in the specimen has a long-range
effect. Therefore, dynamical properties of plasmons
are sensitive to surface scattering. Thus it is not sur-
prising that a remarkable difference in F, exists between
specular and diffuse reflection.

F.,= (~ (34)

Errata

Positron Annihilation in Solid Argon, K. L.. Rose
AND S. DEBENEDETTI [Phys. Rev. 138, A927
(1965)]. An error in the potential used in the
numerical computation of the positron wave func-
tion was found. This error does not change any of
the formulas, but modifies somewhat the calculated

curves; the agreement between theory and experi-
ment is not as good as shown in Fig. 6. Corrected
curves have appeared in a paper ‘‘Theory of Positron
Lifetime in Solid Argon : The Effect of Correlation”
by E. J. Woll and K. L. Rose, Phys. Rev. 145, 258
(1966).



