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Plasmon Excitation by Charged Particles Outside a Metal Film
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A detailed study is given of the interaction between a metal film and a charged particle outside the film.
It is shown in particular that a point charge Ze moving with a given initial velocity u in a direction parallel to
the film excites surface plasmons in the film as a result of which a reaction force acts on the moving charge.
Provided I is much larger than the Fermi velocity of the metal, and assuming specular reflection for scat ter-
ing of the metal electrons at film boundaries, the force is given approximately by

for pp„d/tt))1 and n))1, and
p(Ze)p/(2sp)pj(-'pr)"pnptpe ~ pp=v2ppesp/I,

6(«')/(2sp)'j(p~) "P"e ' P =tf~ 'spits

for peed/pt«1 and P))1, where sp is the distance between the moving charge and the fdm, pp„ the volume
plasmon frequency, and d the thickness of the film. A brief discussion is also given of the case of disuse
reQection.

1. INTRODUCTION

'HE analysis of the energy losses of charged par-
ticles in a metal provides a very useful method for

the study of the dielectric properties of the metal. A
considerable amount of theoretical and experimental
work has been devoted to this subject.

For Alms of infinite thickness, theory predicts a
characteristic energy loss of her„associated with the
excitation of volume plasmons. ' Recent work, the
erst of which is that of Ritchie, shows that, for finite
thickness, boundary effects play an important role in
the energy losses, and predicts an additional energy
loss of Itpo„/V2 associated with the excitation of surface
plasmons. ' This prediction seems to have gained ex-
perimental support. '

The difficulty of the analysis is that there exist other
mechanisms of energy loss, such as interband transitions,
electron-electron scatterings, Bragg reflections (fol-
lowed hy plasmon excitations) and so on, which mix with

those arising from the direct plasmon excitations. The
existence of a macroscopic variable is required, which

behaves differently in different mechanisms of excita-
tion, and hence facilitates the analysis. It is expected
that the thickness of a film plays the role of such varia-
ble. In fact the thickness dependence of the energy losses
has also been observed previously. '

However, it seems to us that in previous theories the
dielectric properties of a metal have been oversimpli-
Qed so much that boundary effects are not properly
taken into account. We believe for example that the
result of a theory should depend on whether we use the
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assumption of specular reRection or that of diffuse re-
Rection for scattering of the metal electrons at bounda-
ries. Indeed, this occured in the theory of the anomalous
skin effect. ' These two assumptions are likely to lead to
a remarkable difference in the thickness dependence of
the energy losses.

The purpose of the present paper is to study the inter-
action between a metal 51m and a charged particle
with particular care being taken of boundary effects.
We shall simplify the problem by taking a special
configuration in which the charged particle is outside the
61m.

In Sec. 2 the charged particle will be considered to be
at rest. We shall discuss two limiting cases according to
whether the film thickness is much larger or smaller than
the screening radius of the metal.

Section 3 will be devoted to the dynamical problem in
which the charged particle is moving with a given initial
velocity in a direction parallel to the film. We shall see
that surface plasmons are excited. The possibility of
plasmon excitation by a charged particle outside a
metal film has already been pointed out by Heidenreich, '
and experimental work has also been done, but no
satisfactory quantitative discussion has ever been
given.

2. STATIC POINT CHARGE

Consider a static point charge Ze outside a metal film
of thickness d and with plane boundaries of infinite
extension. In classical electrostatics, it is usually con-
sidered that the electrostatic potential inside the metal

' G. E. Reuter and Sondheimer, Proc. Roy. Soc. (London) A195,
336 (1948).' R. D. Heidenreich, J. Appl. Phys. 34, 964 (1963).

'I E. C. Sha6er, J. Silcox, and S. M. Siegel, J. Appl. Phys. 35,
3079 (1964); A. J. F. Metherell, S. L. Cundy, and M. J. helan,
International Conference on Electron DiRraction and Crystal
Defects, Melbourne, 1965 (unpublished).

'See, for instance, W. Panofsky and M. Phillips (Addison-
%esley Publishing Company, Inc. , Reading, Massachusetts, 1960),
1st ed. , p. 44.
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film must be a constant, which can be taken to be zero.
Thus when the 61m is thin enough (we have no idea as
to how thin the film must be), we can introduce an
image point charge —Ze to make the potential zero in
the film. The image charge along with the real charge
then determines the potential in that part of the region
outside the film in which the real charge is located.

However, two objections can be raised against this
conclusion. (1) Although the film is very thin, its thick-
ness is finite; it is impossible to make the potential zero
everywhere inside the film simply by introducing an
image point charge. (2) The conclusion that the po-
tential must be zero inside the film is based on the fol-

lowing argument. The system of conduction electrons in
the metal is in a state of statistical equilibrium in the
presence of the point charge. No electrostatic potential
gradient should exist. Otherwise it induces an electric
current, which should not exist in an equilibrium state.
But this argument is incorrect. ' In fact a state of statisti-
cal equilibrium exists in a closed system even in the
presence of an electric field. A typical example for this

may be provided by a metal with impurity atoms. In
such a metal the electrostatic potential gradient due to
impurity atoms completely balances the chemical
potential gradient associated with a nonuniform dis-

tribution of metal electrons.
In this section this classical problem will be studied in

detail from a microscopic point of view. Ke shall use a
Cartesian coordinate system with the s axis normal to
the film and passing through the point charge at
(0, 0, —

2&&), where 2&& is the distance between the point
charge and the film. We divide the whole space into
three regions I, II, and III. Region II is occupied by the
film, and regions I and III are those outside the film

with s(0 and s&d, respectively.
I.et the function P(x)=—g(x, y, s) denote the electro-

static potential. It is determined by a set of Poisson
equations and appropriate boundary conditions. These

and
y&2&(q)=Q D e 2'e'2' d(s.

We use the boundary conditions

y&'&(a,y,0) =p&2&(x,y,0),
&&2&(X,y, d) =&&2&(X,y,d),

(&0 "&(~,y,s)/»). -o=(~4 "&(*y»)/») =2

(c&@&2&(x,y,s)/»), p= (8&"&(x,y»)/»). =s.

(2.2c)

(2.3)

The second pair of these relations involves the assump-
tion that no surface charge is present in the micro-
scopic sense. "

Substituting (2.2a) to (2.2c) into (2.3), we obtain

equations are:

(I) 6@&1'(x) = —41rZei&(x —
x&&); xs ——(0, 0, —se),

(II) AP&"(x) = &&'P&"(x) (2.1)
(III) 6@&'&(x)=0.
The term As&&2&(x) represents the screening charge in-
duced in the film. The screening e8ect has been taken
care of by the Thomas-Fermi model, which gives a
constant screening radius A, '."

It is convenient to introduce the Fourier transform of
P(x) with respect to the variables x and y;

~()=Z, C(a, ) ' ',
where r is a vector in the 2:-y plane; r=(x,y, 0). The
Poisson equation for P "&(x) then becomes

(8'/rls')C '"(q,s) q'C—&1&(&f,s) = —42rZel&(s+zs),

whose solution is

I &"(q 2) = (22rZe/q)e 2~*+*'~+A,e+2* S(0
and the Fourier inverse transformation leads to

p &'&
(&I) =Q,{(22rZe/q) e-2~ ~'0&+A,e+2*)

&& s'2' s(0. (2.2a)
In the same way we obtain

g&"(&I)= Q {8 exp[—(q2+l&2)'/227

+C, exp[(qs+l&2)'/ss]) e'2' 0(s(d (2.2b)

[(q'+X')'/'+q]+[(q'+X')"' —q] exp{—2(q'+&1')'/'d)
A2= ( 22rZe/q)e 2"+42rZ—ee 2"

[(q2+l&2) 1/2+ q]2 [(q2+ &&2) 1/2 q]2 exp{ 2(q2+ $2) 1/2&i)

42rZe[(q'+X')"'+q)e '*'
Bq

[(q2+.l&2) 1/2+ q] 2 [(q2+g2) 1/2 q]2 exp{ 2 (q2+ g2) 1/2o/)

42rZe[(q'+X')'/' qge "' exp{—2(q—'+&1')'"o/)
C,=—

[(q'+&&')'/'+q]' —[(q'+&&')"'—q]' exp{—2(qs+l&2)'/2d)

42rZee '"2(q +X')'/'e'~ exp{—(q +l&')'/'d}
D ——

[(q2+$2) 1/2 q]2 [(q2+P2) 1/2 q]2 ezp{—2(qs+l&2) 1/2&f }

(2.4)

Indeed, this argument, when applied directly to a thick film, leads to the trivial conclusion that the potential is zero everywhere
outside or inside the 61m.

' C. Kittel, Qguetmm Theor~ of Solids (John Wiley 8z Sons, Inc. , New York, 1963), p. 105.
"The induced charge &1'22&2& (x) may be called the surface charge in macroscopic sense.
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If we assume that
Xd))1)

q«P,

(2.5a)

(2.5b)

Finally we have

4Ze
y (pi (x) c—id (2.6c)

{(s+s d)2+r2)3/2

these solutions simplify to

Ap = (—2«rZe/q)e «"+(4«rZe/X)e «'«

8,= (4~Ze/~)e «*p-
C,= (4«rZe/X)e «zpe —'"",
Dp —(8«re/g)c «zpc —id+«d—

This shows that the screening of the point charge is
almost complete.

For degenerate electrons in metals, X is of the order of
103(cm ') so that Eqs. (2.5a) and (2.5b) are fulfilled in
practice. For nondegenerate electrons, as in semicon-
ductors or in ionized gases, the parameter X ' is given
by the Debye length

We then have X '= (kT/4«r/M2)'/2, (2 7)

y ' (x)=Q (4«rZe/X 2«rZe/—q)e «zp * e"'
+P,(2«rZe/q) e-«/ "+'~e' '2

The assumption q((A. is justified when zpX))1, i.e., when
the distance between the point charge and the 61m is
much larger than the screening radius. The inverse
Fourier transformation is easily carried out (we re-
place the sum by the integral (2«r) 'J'dpqj to give

y('i(x) =
{(s+s )2+r2) 1/2

Ze 2Ze(s —sp)
(2.6a,)

{(s s )2+r2)1/2 l({(s s )2+r2)3/2

The first two terms on the right-hand side clearly repre-
sent the classical result. The third term is equivalent
to the potential due to a dipole moment 2Ze/X located
at s=sp. This term is dominant only in the region
limited by

@(»(x)=—;s(0,
{(s+s )2+r2) 1/2

(2.8a)

P(2i(x) =
{s 2+ r2) 1/2

0(s(d, (2.8b)

with e the electron density. "The magnitude of e is
variable. For instance, the value e 10" can easily be
realized in semiconductors. At room temperatures then
we have X ' 10 ' cm. This estimation suggests that
the opposite extreme case Ad«1 is worth consideration.

We take now
M«1,

q(&A. ,

and the solutions (2.4) reduce to

A, = OL(q/X)', Xd$,

B,=C,=(«rZe/q)e "'
D,=-(2«rZe/q) e—«'p.

These yield then
Z8

We see that the classical result is correct for the most
part of region I, provided the two distances z and d are
much larger than X '.

Similarly we 6nd

(2.8c)(/ (3~(x) = — d(s
{(s+s)2+r21 1/2

In particular

Because of the assumption q&&P, these formulas are
valid for sp»X ' and/or r»X '. We conclude that

4Ze sp there is no screening at all, and instead the potential is
p("(x)= e ""cI2{X(d—s)) . (2.6b) short-circuited in the s direction by the film, a result

{s'+r')"' which is hardly expected in simple electrostatics.

2Z8
P (21(x,y,0)

Sp

(s 2yr2) 3/2

4Ze sp
y(2)(~ y d)~ c—xd

X (s,'+r')"'

These are equivalent to the potentials due to dipole
moments 2Ze/X and (4Ze/P, )e ""at s= sp and sp+d, re-
spectively. From (2.6b) we see that the screening
charge is located only in the surface layer of thickness
A, ', a quite understandable result.

3. MOVING POIN'jr. ' CHARGE

In the same configuration considered above, we now
let the point charge move with a given initial velocity u
in a direction parallel to the film. We take the x axis
to be parallel to the velocity. The moving point charge
induces in the film a time-dependent charge-current
distribution, which in turn reacts on the point charge
to change its energy and momentum.

'2T. H. Hill, An Introduction to StaHstica/ Thermodynamics
(Addison-Qlesley Publishing Company, Reading, Massachusetts,
1960), p. 32.
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tions 2.1a) to (2.1c) are replaced byThe Poisson equations (2.1a to
the O'Alembert equations

~y(')(x, t) = 4—m-Zeh(x —(), . a, x—x()), (3.1a)
c' at' &

Ke de6ne the Fourier expans

~(')(x,t) =
(2')'

1
y(')(x, t) =-P

d (2~ ' dq. dq„der 4„&')(q,n)

j(q r—cot)eifnze

(i) & et'(q r—0 ~)dq. dq„dco C„(')(q,s)e'

(3) ~ i(q r—o)t)d do) C (q, )('(P)(x, t) = — dq, q„
(2~)'

with&')(x' t') d'x'dt', (3.1b)=4~ E(x—x', t t')Q —x,
=nz/d; n=0, a1, a2,n-

Equation (3.1a) then gives

~y(')(x, t) =0,
1 8')
' atpl

(3.1c)
CO

"'( s) —I
V' ——l~- (q, s)(
' "' ()

c'I()IZ

= —4~Ze&&2m '(a&—Ig,)8(s+sp),

E„(q,a&) =

C."'(q,d) =

P(2)(x, y, —s, t)=P( x,y, s,

y(»(my s, = &') st. (3.2) '«' "') dxdydt.(By&')(x,t)/Bs), pe '=4 &')'(q, 0)=

sition vector of the movingwhere x,
d the classical

Weizsacker-ra' he moving charge (the ei

'—o)'/c')'I's}, (3.3a)

h'.h . ,- 6.d f'- -.
+Ap exp{(q'—o) cT suppress rclat

an
' '

ive

changes. o s
li htme that I is muc smame t a N

'
h aller than the ig

r '—a)' c')'t' mus t be replaced y

f'f

1o ity

' —' 't'tokeep onyou s. owds 'mes the charge ensi y
p

ecto s. In thei t d o t
S dheimer ha

boundary conditions.
l

'""8

cu' c'}4„&')(q,n)
immediately after scat-

m is the mirror reflection i

t 'ng " 'ffuse reflection, i.e., a.f -.. 1 trons completey i—

E(xte—' *e '«' "') d3xdt,

translational motion o
appears at the boundary.

sum tion of specu ar rl reflection the
—00

00

ge
—'«' —"') dxdydt,

d d h
(~e")(x,t)/'s). =«-' '—,t)is lsoe tenrovided the function (' x,

—00

ith the properties,whole space wit e

00

e solution fo

(2)~ P2C „(» q, e-)' ~fno 2@ (q )—

q' —(co/c)'+4m. E (q (o

e—
' o (P)' 0 e&fe'1 {C„q, e(&)' de—(fno @ (q )}

' s

'+ '—(a)/c)'+4~E„(q, (u)d f„q—

first treat

e ne lected theh form, we have n gthe relation in t is"Bywi g
crystal struc e a .ture of t e me a.

e infinite in the study oe infini e in fhas been taken to be in' in
o di l thd Sondheimer, an acReuter an

been irrelevant in ei

whence

(3.3b)

s. Rev. 111, 1218 (1958).' R. A. Ferrellp Phys. Rev.

r C „("(q,n) is given byoccurs in thed that discontinuity oIt should be note a

d ifweus theassumpt
ectio, t e eg

the case of specu ar
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Finally, Eq. (3.1c) takes the form

(8'/Bs2) C „&'&(lI z) —(q' —(qd/c) ')C „&'&(g,s) =0,
whence

C'„&'&(q,s) =D«exp{ —Lq' —(cv/e) 'j't'2} . (3.3c)
The boundary conditions (2.3) yield

(2qrZe/q)e "'Zqr8(M —ug, )+A =4 i2&(q 0)
D exp{—Lq' —(M/c)'g'"d} =C'„"&(«I d)

—2qrZee "&&2qrb(ar —ug, )+qA =C' &"'(g.0)
—Lq' —(~/e)'j"'D«

)&exp{—Lq' —(or/c) 2j't'd} =c„&"'(gqd) .

A «+(2 rqZe /q)e "'22r8(~ uq, ) = ——tdqD«e '"
—vgA «+2qri Zee «*'&(2qr8(co —ug, ),

D«e '"=—vqe «"D«—tdqA«+2lrtdZee «*&&&2«r8(co—uq, ),
with

g
—ifno+1 1=-Z-

d ~ f„2+q'j4qK„(q,(o) d ~ f„2+q2+4qrK„(g, u)
and

Substituting (3.3a) to (3.3c) into these equations and
eliminating C„& &'(II,d) and 4 „"&'(21,0), we obtain

where we have used the reality condition

K „( q, ——a))=c.c. of E„(q,(o).

In order to derive v and p we must evaluate the sum

sf 22Z1

d Lf '+q'+4 qq (q, )). „,.
The quantity K„(q,co), often referred to as the general-
ized dielectric function, has been derived by many pre-
vious authors. '~ Assuming that the metal electrons are
free and degenerate, we have

E-(a, )=(k'—( /)')I'. (q, )/k',
with

k2 f 2+g2

4qri'„(qp))= (kp/2k){g(x~)+g(x )},
where

g(x) =x+-', (1—x') ln((x+1)/(x —1)),
x~ = (k/2k«) & (qd/kyo) .

(3 4)

The parameters X ', vo, and ko denote the screening
radius, the Fermi velocity, and the Fermi wave number,
respectively. It is understood that the logarithmic func-
tions contain proper imaginary parts when their argu-
ments are negative. But we shall be interested in the
limit

1 1
t =-Z

d n f„2+q2+4qrE (q,co) d ~ f„2+q2+4qrE (q,co)

fx~ f
= [co/kiqpJ))1,

k/2kp((1, (3.5)

where we have used the fact that Iq" (q, a&) is an even
function of n Lsee Eq. (3.4)j, and quantities of the
order of (u/c)2 have been neglected.

Solving these equations for A ~, we obtain

2' Z8 1+(iq2 td2) q2
e
—'"&&2«re(a) —ug, )

g (I+~g)'—(t g)'

The potential at the position of the moving point
charge is obtained by subtracting the self-energy term
/the first term on the right-hand side of Eq. (3.3a))
from Q&'&(x, j), namely,

e& 0 for co& 0,
&&0 for (o(0. (3 7)

The condition (3.5) requires erst of all that the velocity
u be much larger than vo.

In this limit the sum S takes the form

in which case no imaginary part appears. The function
I' (q, &o) then simplifies to

4qri'„(q, &o) =k'{—((u,/&o) 2+ie}, (3.6)

where e is a small real quantity introduced to allow for
possible weak damping eGect:

«q &'&(x«,t) =
(2«r)2

dq, dq„des A~e ~'o.
1 ~

—i f22,Z

S=—
d1 —(cv /(o)'+ie ~ f '+q'

The electric force acting on the moving charge is

F=ZeL —grad& &"(x,t)j,=„.
Thus

Z, =ZeL —ay &»(x,t)/axj, =„

The sum is evaluated in Appendix A. We have

e 't"' 1 ch{q(s—d)}
for 0&s&2d

~ f„'+q' q shdq

(Ze)' g~
dg dg„do) —8

g
(qq2 u2)q2

&& 8(co—ug, ) Im
(I+~g)'—(t g)'

whence

qi = (1 (~,/~) 2+—ie) 'cthdq, —

gtdq
= (1—(M~/co) +2«) ($Mg)

The following formulas are quoted from the author's previous
work: N. Takimoto, Progr. Theoret. Phys. (Kyoto) 25, 327 (1961).



e can calculatee same way we

I46

in 'two
~

lculate11 inw the reaction force wi e in

h h l i h(I) Thick film. W en
satisfy

—Rdq gi
dq dq„des e "*'

e

to theI rge comparethe 61m thickness is ar
n th we can ignore p, cop asml smon wavelengt, we

(pp„/pp)' —ie
X&(pp —uq. )

= «)'/(2«)')(1+3/~'+ " .

pARTICLEB Y C H A REXC~ TATIONpLASMON 37i

(3.12)

qi = (1—(p/„/pi) 2+2p)—' e-

Then it follows that

—2qZO(Z—e)' dq. dq„dpp —e—

q

Xb(uq, —pp) sgn(pp)5(2 —cp, p1 2,
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q~(Ze) 2

Pg — Im dq~ qy
— 0

y d(0 e
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q~—(Ze)2
d des —e ""A
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—(Ze)' p'
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one can use the method of Wiener and Hopf. " De-
tailed analysis is shown in Appendix B. The results are

—(Ze)' vp 2
p ~

(2so)P I &ln~r~~/~}P+1'

with r a numerical factor, and

(3.17)

4. SUMMARY AND DISCUSSION

The screening of a static point charge outside a metal
film was studied in detail. It was shown that, except for
a minor correction, the classical result is correct, pro-
vided the film thickness d as well as the distance sp

between the point charge and the Qlm is much larger
than the screening radius X ' of the metal; and that when
d is much smaller than X ', as may presumably occur in
semiconductors, the electrostatic potential due to the
point charge is Coulomb-like everywhere in the space,
but is short-circuited by the film in the direction
normal to it.

The method was then extended to the calculation of
the reaction force F acting on a point charge outside
the 61m, but moving with a given initial velocity u in a
direction parallel to the film. Using the assumption of
specular reRection, we found among others that the
thickness of the 61m plays a significant role only when
the film is suKciently thin to satisfy

d((N/~„.

This, however, is not realizable in normal metals. We
also found that, when the inequalities d))N/cvv and
co„sp/N))1 hold, the zp dependence of the reaction force
Ii, is very sharp. This entails some restriction on the
velocity N. Let Asp be the experimental error for the dis-
tance sp. This error is insigni6cant if Azp/so((1. On the
other hand the uncertainty principle leads to

&sp&v. & h/m,

where Dv, is the uncertainty in the velocity in the s
direction. This relation is rewritten as

8 Sp

Q fgQ SpQ)y ASp

Roughly speaking, the two factors (I/spop„) and (sp/Esp)
will cancel each other, so that

Av, /e& Pm, /E; E=mu'/2.

F,= ((Ze)'/(2zo)') f 1+0(vp/I)), (3 18)

for e &(1 and so))N/voko

i.e., when the energy transfer involved is much smaller
than the energy of the incident particle.

The calculation based on the assumption of diffuse
reQection was done only for the case d = ~.A remarkable
difference was obtained in the sp dependence of Il . It
is also expected that the d dependence of F is quite
di8erent from that in the case of specular reQection.
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We shall evaluate the sum (we assume q/0)

~
—0nz

I=-g; f„=m/d.
d n f~+d

To begin with we notice that it has the integral form

1 e "r diI=-
P+q' e"'r—1

where the path of integration c consists of two straight
lines in the complex f plane, which enclose all poles of
the function t

e""r—1$—' in counterclockwise, but not
those of the function D'+q'j '.

We then deform the path in such a way that these
two lines, one above and the other below the real
axis, close themselves by making large semicircles in
the upper and lower half-planes, respectively. Each of
the poles at 1 =&iq is enclosed in either of these semi-
circles. If s satisfies the inequality

0&a&2d,

then contribution to the integral vanishes on the perime-
ters of the semicircles, as their radii go to infinity.
Hence the integral with the deformed path is equal to
the original one. Evaluation of the integral is now
straightforward, and we obtain the result shown in
Sec. 3.

APPENDIX B

When we use the assumption of diffuse reQection,
we must solve the integral equation

-(q'-( /)') c-"'(q, )
Bs

E„(q, s—s')C „&'&(q,s') ds'.

The author wishes to express his sincere thanks to
Dr. B. Ninham and Dr. C. J. Powell for stimulating
discussions.

APPENDIX A

Given this relation we may conclude that quantum We shall be interested only in the case d= ~. For
effects are negligible when simplicity we put

"Reference 5.

her„((E ) C'-"'(q, s)=a(z),
E'„(q,s)=—k(s) .
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Then we have

/' d'
—q' Ig(s) =4~ k(s —s')g(s') «', (81)

kds'

where the term of the order of (u/c)' has been ignored.
The boundary conditions are

with
f'+ q'+4nI'r. (q,o/) C(f)

ln
f'+q'

oo/oo

» 1——I+zp df
o/ I

whence

(2orZe/q)e o*o2or8(op —uq, )+Ap=g(0),
—2orZee '*o2or8(pp uq. )—+qA, =g'(0),

= (1/or) (qu/1/p) in{1—(o/„/o/) '+ ip) .

The reaction force I", is calculated from

g'(0)+qg(0) 2orZe
Aq ——— e o"2orb(pp —uq, ).

g'(o) —qg(o)

Thus the knowledge of the ratio g'(0)/g(0) is required
for the derivation of the reaction force F.

Let us define the Fourier transform of k(s) through
Since we have

—(/, +q)+q
X2or(Ze) '/q X 2orb(o/ —uq. )—(~p+q) —

q

v z=c.c. of vq,

F.= —(1/2or)' dq. dq„do/ ( iq—,)e '*op

The general expression for E(f) is given by Eq. (3.4)
with f„replaced by f, but in the following we shall use
the simplified form (3.6) valid under the condition

f((qu/op&(kp.

the expression for Ii, reduces to

(Ze)'
dqq'e ' "

X d8 cos8(ImL/, +2qf—')„=„„.

(82)u/v pkp&&sp .

It turns out that only those values of q satisfying
Now, according to Eq. 83, we have

q(&(2sp)
—' are relevant. Therefore, the second in- ImLq/(„+2q) j

equality becomes
= —

(mp ju) sgn(op)8(in{1 —(o/ /op)'))

To comply with the condition f«qu/i/p we introduce

4orE(f)—=4orl'r(q, o)) =k'{—(o/„/op)'+ ip) XC(f),
where C(f) is a convergence factor with the property

C(f)~1 for f&&qu/1/p,

C(f) 0 for f& qu/i/p.

Equation (81) can be solved with the use of the
method of Wiener and Hopf (modified by Reuter and
Sondheimer), provided C(f) satisfies some proper re-
quirements. The analytic properties of C(f) are still
arbitrary and can be chosen to make the problem as
simple as possible. Here we assume that C(f) is regular
in the strip

I Im(f) I (q and the equation

f'+ q'+ 4m. I'r(q, o1) =0

has no solution in the same strip. For example we can
take

(u/v )'q'

f'+ (u/1/p)'q'

—(u/1 p) sgn(o/)
for

I
o/I) pp„

—2(Ze)'u/
dq

~p,

m/2

—x/t2

//o

d8 Iqe-'*op
)

X(I (u/o1'pp) ln{(oo /'o/) —1)+2)P+(u/i/p) )
where 00 is deGned by

cos8p=o/~/uq; 0(8p(or/2.

P(u/orvp) ln{(o/, jo/)' —1)+2)'+(u/ip)'

for Io/I &o1„

where o/ stands for uq cos8. In the region Io/I )o/~, the
expression is nonvanishing only at Io/I = ~, or q= op,

but because of the factor exp( —2zpq) it has no con-
tribution to the integral. Hence

/(1+e—2m op/u)1/2

o /v2,g'(o)/g(o) = —(~p+q),

Then the result of Reuter and Sondneimer can be
The integrand has a peak at

directly used, and we obtain
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i.e., at the surface plasmon frequency. The peak is not
sharp in contrast with the case of specular reflection.
Namely, diftuse reflection of metal electrons at the
boundary broadens the plasmon resonance peak.

We change the integration variables to

2spg =x
&

cosa= p.
These yield

—(Ze)' 4u (
(2zp)' prvp4 p

+2nt&

&&([(u/vppr) ln((2u'/x'y') —1}+2]'+(u/vp)') '.
For exp( —V2u)((1, the second integrals can be omitted.
The first integrals will be evaluated approximately. We
notice that the factor with the logarithmic function is a
slowly varying function of x and y, and may be re-
placed by a constant. The evaluation of the remaining
integrals is then elementary and we arrive at

—(Ze)'vp 2
F.— 7

(2sp)'u (ln(rn')/v }'+1

where r is a numerical factor (r)0). The o. dependence
of r is not clear, but it does not affect qualitative prop-
erties of F,. (Rough estimation shows that r is of the
order of 10 and is independent of u.) Thus we see that
the n dependence of Ii, is much less sharp than in the
case of specular reflection.

Similarly, one can derive

Il = (—(Ze)'/(2zp)')(1+O(vp/u) }.

We have retained only collective aspect of the di-
electric function, when we introduced the factor C(f),
but this has been enough to get a rough idea of the dif-
ference between specular and diffuse reflection. It is
worthwhile to point out that, if the quantity F&(q,p~)

were independent of f, as in the Thomas-Fermi model
for the static problem, there is no difference at all be-
tween two reflections. This is obvious, for the charge-
potential relation then reduces to a local one. However,
in the problem which concerns us, this quantity de-
pends strongly on f. indeed, the f dependence is such
that a space charge in the specimen has a long-range
eBect. Therefore, dynamical properties of plasmons
are sensitive to surface scattering. Thus it is not sur-
prising that a remarkable difference in F, exists between
specular and disuse reflection.

Positron Annihilation in Solid Argon, K. L. RosF.
AND S. DEBENHDETTI )Phys. Rev. 138, A927
(1965)$. An error in the potential used in the
numerical computation of the positron wave func-
tion was found. This error does not change any of
the formulas, but modifies somewhat the calculated

curves; the agreement between theory and experi-
ment is not as good as shown in Fig. 6. Corrected
curves have appeared in a paper "Theory of Positron
Lifetime in Solid Argon: The Effect of Correlation"
by E. J. Woll and K. L. Rose, Phys. Rev. 145, 258
(1966).


