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0' ions, the Tm'+-Tm'+ pairs then being formed by
y irradiation. This model provided the required dis-
tortion along the (110) axes and accounted for the
need for oxygen during the growth process. However,
the absence of spectra corresponding to Yb'+-Yb'+
pairs seems to argue against this model. It is still
possible that the spectra could arise from Yb'+-Yb'+
pairs, and that the rotation of the x and y axes in the
(110) plane could be produced by a migration of one
of theO' ions to a more remote I'—site, but this seems

to us to be rather unlikely. The construction of a
detailed model for the compensation must therefore
await further experiments.
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The behavior of the spherical model of a ferromagnet with an interaction energy between the magnetic
spins which varies with distance as 1/re+' (where d is the dimensionality of the lattice and o &0) is analyzed.
It is shown that the model exhibits a ferromagnetic transition in one and two dimensions, providing 0 &o. &d.
(The usual spherical model with nearest-neighbor interactions does not have a transition in one and two
dimensions. ) The critical-point behavior is investigated. It is found that the singularities in the specijc heat
and susceptibility are dependent on o- and d, but the behavior of the magnetization is independent of 0 and d.
In three dimensions the susceptibility diverges as (T T,) r, where y—=1 for 0 &o &-„y=o/(3 —o) for
—, &o &2 and y =2 for o &2. The asymptotic form of the spin-spin correlation function I'(r) is studied in the
neighborhood of the critical temperature T,. At T=T„P(r) decays for large r as 1/r" ~ Several t.wo-dimen-
sional models with long-range interactions falling off as 1/r' in certain directions only are also investigated.

l. INTRODUCTION
' 'N this paper, the properties of the spherical model
~ - with long-range ferromagnetic interactions between
the spins, varying as 1/r"+, are determined. The spheri-
cal model may be considered as an approximate repre-
sentation of the "more realistic" Ising model. Although
considerable success has been achieved in the under-
standing of systems with certain types of long-range
interactions, little detailed information is available con-
cerning the behavior of systems with interaction po-
tentials decaying as 1/ra+'. Some of the main results so
far obtained are now briefiy reviewed, in order to see
what light they throw on the properties of 1/r"+'
interactions.

Exact results have been obtained by Kac, Uhlenbeck,
and Hemmer' ' for a one-dimensional model of hard
rods with exponential attractive interactions, and by
Baker, ' and Kac and Helfand for the Ising model in

*This research has been supported in part, by the U. S. Army,
through its European Research Ofhce.' M. Kac, Phys. Fluids 2, 8 (1959).' M. Kac, G. E. Uhlenbeck, and P. C. Hemmer, J. Math. Phys.
4, 216 (1963).' G. E. Uhlenbeck, P. C. Hemmer, and M. Kac, J. Math. Phys.
4, 229 (1963).

4 P. C. Hemmer, M. Kac, and G. K. Uhlenbeck, J. Math. Phys.
5, 60 (1964).' G. A. Baker, Jr., Phys. Rev. 122, 1477 (1961).' G. A. Baker, Jr., Phys. Rev. 130, 1406 (1963).' M. Kac and E. Helfand, J. Math. Phys. 4, 1078 (1963).

one and two dimensions with exponential interactions in
certain directions. In the limit that the exponential
interaction becomes infinitely Iong-range, the one-
dimensional gas has a phase transition, which is de-
scribed exactly by the van der Waals equation (with the
Maxwell equal-area rule), while the Ising models show
a Bragg-Williams-type transition in this limit. ~ Whether
the properties of these systems (especially the critical
properties) are characteristic of systems with more
realistic interactions of the form 1/r"+' is not at present
known. There is, however, as we shall see, some evidence
to suggest that this is not so.

Using diagrammatic methods, Brout' has developed
an expansion of the thermodynamic functions of the
Ising model, as a power series in the reciprocal range of
the interaction. It is found that the expansion reduces
to the Weiss-Bragg-Williams result in the limit of
in6nite-range interactions. However, for 6nite-range
interactions, the expansion breaks down in the critical
region. Brout' and, later, Horwitz and Callen' have
partially overcome these difhculties by obtaining self-

r'Note added ee Proof It has been s.hown rigorously by J. L.
Lebowitz and O. Penrose PJ. Math. Phys. 7, 98 (1966)] that, for
a general class of interaction potentials which have a range
parameter 1/y, the van der Waals —Maxwell result is obtained in
the limit y —+ 0, in any dimension.

R. Brout, Phys. Rev. 118, 1009 (1960).
' G. Horwitz and H. H. Callen, Phys. Rev. 124, 1757 (1961).
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consistent theories, claimed to be valid for all tempera-
tures. Siegert" "has obtained similar expansions in the
reciprocal range of interaction, using a diferent tech-
nique, for a general class of interactions. In the critical
region Siegert's method leads to similar difficulties as
do the "high-density" expansions. We conclude, there-
fore, that these methods are not likely to be very useful
for deriving the critical behavior of systems with 1/r"+
interactions.

The method of Yvon" based on a cluster-integral
technique, similar to that of Mayer, has been used by
Domb and Hiley" to derive a series of closed-form
approximations to the partition function of the Ising
model with nearest-neighbor interactions. They found
that the extrapolated series of closed forms converged
towards the correct behavior in the critical region,
although the rate of convergence was rather slow. This
method has been generalized by Hiley and Joyce" for
arbitrary interactions, and a preliminary study of 1/r~+'

type interactions has been made, using the first-order
closed forms corresponding to a generalized Bethe ap-
proximation. Although considerable numerical compu-
tation would be required to analyze the higher order
approximations for long-range interactions, the method
does provide, in principle, a series of estimates for the
critical behavior.

Exact series expansions at high and low temperatures
have yielded (in the absence of exact solutions) the most
reliable information concerning the critical behavior of
lattice systems with nearest-neighbor interactions. '""

This method has been generalized for long-range inter-
actions, and used to investigate the properties of the
Ising model with 1/r"+ interactions. "For aninteraction
energy varying as 1/r' in two dimensions, it is found
that the high-temperature susceptibility in zero Geld, for
T near T., behaves as

~oP') =&/9 —(T./T) l',
where p= 1.13~0.01. This result' differs substantially
from the usual nearest-neighbor value of 1.75, and the
Weiss mean-6eld value of 1. It would be interesting if
this nonclassical behavior with long-range interactions
of the form 1/r"+ could be supported qualitatively by
an analytic theory.

Most approximate theories of the nearest-neighbor

A. J.F.Siegert, Northwestern University, 1962 (unpublished).
~ A. J. F. Siegert, Statistical Physics 3, Brandeis Summer

Institute l96Z (W. A. Benjamin and Company, Inc. , New York,
1963).

1 J. Yvon, Cahiers Phys. No. 28 (1945)."C.Domb and B.J. Hiley, Proc. Roy. Soc. (London) A268, 506
(1962)."B.J. Hiley and G. S. Joyce, Proc. Phys. Soc. (Londonl SS,
493 (1965)."A comprehensive review is C. Domb, Advan. Phys. 9, No. 35
(1960).

~ G. S. Joyce (to be published).
7 C. Domb, ¹ W. Dalton, G, S. Joyce, and D. W. Wood, in

Proceedings of the International Conference on Magnetism, Sotting-
ham (Institute of Physics and the Physical Society, London,
1965).

Ising model, such as the Weiss-Bragg-Williams and
Bethe theories, effectively introduce infinite-range inter-
actions, by the use of mean fields, thus giving the value
of y=1. However, the spherical model, first discussed
by Berlin and Kac)" contrasts strongly with these
theories, and predicts, for 6nite-range ferromagnetic
interactions in three dimensions, y= 2. We shall find in
Sec. 4, that the three-dimensional spherical model with
an infinite-range interaction of the form 1/r'+' has

1 ) 0&a&&
=o./(3 —o), 2s(o(2
=2) a&2. (1.2)

In the range ~&|7&2 we see that y lies between the
nearest-neighbor and mean-field values, in qualitative
agreement with the results of the exact series extrap-
olations mentioned above. Thus the spherical model
with long-range interactions is of interest. Brout" and,
later, Baker" have shown that the spherical model has
the same high-density limit as that of the Ising model
for T)T,. It is plausible, therefore, that the spherical
model is a reasonable approximation to the Ising model
with 1/r"+~ interactions. We shall now discuss the
detailed properties of the spherical model with these
interactions.

In Sec. 2, the generalization of Berlin and Kac's
analysis is brieQy indicated and the final result for the
partition function presented. We consider, in Sec. 3, the
existence of a phase transition in one and two dimen-
sions, while in Sec. 4 the thermodynamic properties are
derived. The behavior of the correlation function in the
critical region is obtained in Sec. 5, and finally some
special two-dimensional models are de6ned and analyzed
in Sec. 6.

where the erst summation is taken over all i and j with
J;;=0 and p, is the magnetic moment per spin. Defining
P=1/k~T and W=PpH, we can write the partition
function as

Q~(I) =2 Q Q exp{(P/2)Q J;;e,e,+8'Q e,}.
e1=+1 eN=+1 s l)

(2.2)
» T. H. Berlin and M. Kac, Phys, Rev. 86, 821 (1952).
"R.Brout, Phys. Rev. 122, 469 (1961}."G. A. Baker, Jr., Phys. Rev. 126, 2071 (1962).

2. THE PARTITION FVNCTION

We consider a lattice assembly of E sites in which the
ith and jth spins, e; and e, ) respectively, have an Ising
interaction energy —J,;e;e, ) where J;, is assumed to be
of finite-range (the number of spins interacting with any
chosen spin is finite) and positive within the range of
interaction, and e,e, =~1.The range of the interaction
will be extended to inanity, only after the limit E—+~
has been taken. The Hamiltonian for this assembly, in
the presence of an external magnetic 6eld H, is

BC= s Q Jrjejej

@PAL

ej) (2.1)
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0.8

TABLE I. Curie temperatures E, for the
one-dimensional spherical model.

0.6
3
K, 0.4

0.2

0 0.2 0.4 0.6 0.8
0

FIG. 1. Variation of Curie
temperature E, ' with 0 for one-
dimensional spherical model.

0.1
0.2
0.3
0.4
0.5

0.9918
0.9676
0.9272
0.8703
0.7959

0.6
0.7
0.8
0.9
1

0.7020
0.5851
0.4391
0.2522
0

E = ——Jp—pH

For a d-dimensional "cubic" lattice we immediately find

that
(2.12)~~ -~u=~o III '"+'/&'Ill '"+'

1

where III'=l~'+ +ld'. The substitution of (2.12) in

(2./) and (2.9), with g= Jo and E'=PP, gives

and maintaining Jp constant. The ground-state energy
per spin then becomes

(2.11)

providing the integral converges. It is clear, on reducing
the limits of integration in (3.1) to 0 and ~, that the
convergence depends on the behavior of the integrand
for small

I ~ I.This behavior may be determined, using
the methods developed by Nijboer and Be Wette. "In
one dimension, we find that

1 I'(-,'+-,'o, m lP)
S] ~(My) = P coslyQ)y

1'(l+l )-'=" ll I'+

InQ = —
2
—

x2 in'+ ~~ Ks,+W'/2E(s, —1)

dna 1nl s,—Sd,, 'S&,,(~)j (2.13)
2(2~)"

2m 2&'+'~

(1+o)

M]
+n.i+' g l,——

l1=eo 2

Xl' ——,~l 4——I, (3.2)
2 4 2~)

for the logarithm of the partition function per spin, and
for the saddle-point equation

E= VI'/E ( ,s—1)'
where I'(n, x) is the incomplete gamma function and
MQWO. The transformed sum (3.2), on expanding for
small M~, becomes

2' ~F(1 2o') My,
~(~)j ) (2'14) S ( ) 2g(1+ ) +0(

o.i'(—'+—'o) 2'
Sg,.(~)=P'lll-&"+'& cos(1 aa), (2.1S) (o(2) . (3.3)

and
Sg .(0)=—So, .

The limits of integration are 0 to 27r for all components
of the d-dimensional vector ~, and I ~= lgo~+ +lqa&d

~e now use the basic Eqs. (2.13) and (2.14) to
determine the thermodynamic properties of the model.

Ec
(2n)"

d~L1 —S. S. (~)?', (3 1)

3. CRITICAL TEMPERATURES

The spherical model, as is well known, exhibits a
transition for d&2 even for nearest-neighbor interac-

tions, while in one and two dimensions the model shows

no ferromagnetic behavior with finite-range interactions.
We therefore investigate the one- and two-dimensional

systems, to see if a transition can be induced by allowing

long-range interactions.
The critical temperature is determined by the equation

It follows, by substituting (3.3) into (3.1), that there
is a ferromagnetic transition in one dimension, pro-
viding

0&|7&1. (3 4)

"B.R. A. Nijboer and F. W. De Wette, Physica 23, 309
(1957).

23 A similar argument leading to (3.4) has been given by M. Kac
(to be published); also the International Union of Pure and Applied
Physics (IUPAP) Conference, Brown University, 1962 (unpub-
lished).

Since the spherical model, for nearest-neighbor inter-
actions, gives a critical temperature below that of the
corresponding Ising model, it is reasonable to conjecture
that the Ising model has a transition in the same
range (3.4)."

The detailed variation of E, with 0- has been com-
puted by numerical integration of (3.1). The rapidly
convergent series (3.2) was used to calculate the inte-
grand, and the dominant singularity at co&=0 was sub-
tracted out and integrated separately by use of (3.3).
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The numerical values of E, ' are given in Table I, while
in Fig. 1, E, ' is plotted against o-.

In the limit o —+ 0, (the mean-field limit), it can be
easily shown, by expanding the integral (3.1) as

GO

E~= 1+ P Si ~ Si ~ (coi)dcoi,
7P 5=2

that, in one dimension,

E.=1+(~'/12) o'+ (3.5)

tA'e now analyze the two-dimensional system in a
similar manner. The conversion of the series S~,(io) to
rapidly convergent form can be effected as before, by
the methods of Nijboer and De Wette, 22 which yield

1
— I'f1+—'o, iru'(ti +lq')) (2)

S, .( )= coslio~i cosl2oo2 —
~

~vari+' u2+
I'(1+-,'o) iia=—~ (li2+/2')'+'*~ E2+u)

s ~ Q)y Q)2

+ '+ P ]1-—I+] t -—
I

I' -l, —
I
1-—I+I 1-—

I2~) 4 2~)
' 'u' E 2~) k 2~)

(3.6)

providing
l
oil 2='oi2+oi22/0. The parameter u deter-

mines the rapidity of convergence of the two series. It
follows, by expanding (3.6) for small

~

io ~, that
ir2' 'I'(1—2o)

S,-(~)=S,.—,I~I'+o(I~I') (3&)
ol'(1+-,'o.)

providing 0-( 2. %hen 0-=2, the expansion becomes

S,,,(~)=S,,,+ 4 I
~I'»I~I +O(l ~l'). (3.S

The substitution of (3.7) and (3.S) into (3.1) with a
change of variable to polar coordinates leads to the
conclusion that there is ferromagnetism in the range

0( 0.(2.
The critical temperatures in this range have been

determined by numerical integration. The integrand of
(3.1) was computed via (3.6), with u' conveniently taken
as 1/6.25. The dominant singularity

~
io~

' of the inte-
grand was subtracted out, using (3.7), and integrated
separately. The region of integration was subdivided
into (M&(M') cells and the contribution to the integral
from each cell was found approximately using a cuba-
ture formula derived by Miller. '4 A set of successive
values of 3f was taken, which yieM. ed a sequence of
approximations to the integral. Finally this sequence
was extrapolated using a method suggested by Isen-
berg. "The numerical values of E,—' are presented in
Table II. The methods described above may be easily
extended to the three-dimensional lattice.

The above conclusions concerning the existence of a
phase transition in the spherical model are independent
of the particular form of the potential (providing all

J,;)0), but depend only on the long-range behavior of
the potential approaching 1/r "+'. The short-range part
of the potential alters only the values of T, and not
the existence of T.)0.

ALE II. Curie temperatures E, ~ for the
two-dimensional spherical model.

0
0.2
0.4
0.6
0,8

1
0.994
0.977
0.950
0.914

1.0
1.2
1.4
1,6
2

0.868
0.812
0.744
0.660
0

4. THERMODYNAMIC PROPERTIES

To discuss the thermodynamic properties we must
first analyze (2.14) in order to determine s,(E,R') ex-
plicitly in terms of E and O'. The details of this analysis
are given in the Appendix. The energy per spin,

E=k13T'(8 1nQ/8T)rr,

may be derived from (2.13) which yields

—E/Jo= g Lsa —E '+8"E—'(z, —1)—'j (4.1)

At low temperatures (T(T,) the zero-field energy rises
linearly for all 0.. The high-temperature behavior
(T))T,) may be obtained by substituting (AS) into
(4.1).The variation of the critical energy E, with o can
be calculated in one and two dimensions by use of
Tables I and II.

The zero-field specific heat, derived from (4.1), is

C,= ,'k~D+E'(d. ,/dE-) j. (4.2)

%e see that, since s, =1 for all T&T„ the specific heat
remains constant below T, for all 0-. The behavior in
the critical region, when T&T„is more interesting and
may be obtained from (A6), by writing

dz, /dE= (dE/d() —'.
Ke find that

Cv= .', kii[1 (Ao/(d o))(-E, E—)"'~&I&"—'&+ —j, -', d(o(d (-(2)
=2kiiL1+(8'/1n(E, —E))+ . ], 0'= pd.

'4 J. C. P. Miller, Math. Comp. 14, 130 (1960)."C. Isenberg (to be published).

(4.3)
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The divergence of the index in (4.3), in one and two
dimensions, as a~d, is explained by the fact that
E,—'-+ 0 as 0.—& d, and the behavior of Cy, when 0.=d,
is nonalgebraic for large E. Consider, for example, the
one-dimensional system with 0.=1. In this case, the
saddle-point integral (2,14) can be evaluated exactly,
using

to give

s, ( )=lI( — )'—l 'j ( &0) (4.5)

In the range 0&o.&—,'d, (o.&2), the specific heat becomes
discontinuous at T,.The magnitude of this discontinuity,
for small o, is determined by finding (dE/ds. )x x, from
(2.14), which leads to

C;(T.) C,+(—T,)

=lkaI1 —Sa, '&'Ill """+"3 (44)
1

where 3, D, E, . - are positive constants. We see that
the variation of C& with d, is qualitatively similar to
the variation with o (d fixed). It is interesting to note
that the results (4.8) for d) 3 are in reasonable agree-
ment with the estimates obtained by Fisher and Gaunt"
for the hypercubical Ising model by using exact series
expansions.

The mean magnetic moment per spin is found from
(2.13) and (2.14) to be

M =kaT(8 lnQ/8H) =IJW/Ef. (4.9)

Substituting (A9) in (4.9) and allowing H -+ 0, we find
that the spontaneous magnetization is

M =pg(K —E,)/Eg'~', (4.10)

which is independent of d and o (apart from the de-
pendence of E,). The magnetization as a function of
field at T= T, is easily obtained from (A7) and (4.9),
which yield for small Il

E= lnL(a+1)/—(a—1)), where as=-,'(2s, +1), (4.6)
3$

and we readily find that near T=O

M(K.,H) Ht" '«"+'&i, —,'d&o&d
—B'~' lnlI, g = ~Id

0&0.&-'d
(«2)

(4.11)

Cv ———',kaL1 —18K' exp( 3K)—+ ]. (4 7)

It is interesting to note that this behavior is similar to
that of the two-dimensional nearest-neighbor spherical
model. In three dimensions with a-&2 the specific heat
falls oR linearly near T, just as for the usual nearest-
neighbor model.

The limit a —+ 0 (d fixed) and the limit d —+~ with
nearest-neighbor interactions, both give rise to the same
Weiss-Bragg-Williams type of behavior. We therefore

briefly investigate the spherical model on a hypercubical
lattice with nearest-neighbor interactions, and compare
the results obtained with (4.3). The nearest-neighbor
saddle-point equation, obtained from (2.14) by allowing
o. —&~, has already been studied for d&3."For higher
dimensional lattices the behavior of s,(E,H) in the
critical region is most conveniently determined by
straightforward generalization of the methods developed

by Maradudin et al. for studying the properties of
Green's functions. "From the resulting asymptotic ex-
pansions of (E, E) in terms of $, we fin—d, using similar
arguments as above, that Cy varies in the neighborhood
of T~+q as

I (2/ks)Cv —1)
A(E, E), — —

=+a/ln(K, E), —
=—EI 1+1(E,—E)'i'j,

GP H(K, K) ln(E, —K—)j, — —d=6
d=7 (4.8)

'6 A. A. Maradudin, E. W. Montroll, G. H. Weiss, R. Herman,
and H. W. Milnes, Green's Functions for 3IIonoatomic Simple Cubic
Lattices (Acaddmie Royale de Belgique, Bruxelles, 1960).

In three dimensions with nearest-neighbor interactions
the index in (4.11) becomes s. (The same result holds
for o) 2 and d=3.) This value is in surprising agree-
ment with the estimate of 1/5.20+0.15 obtained by
Gaunt et a/. " for the Ising model using exact series
extrapolations.

The zero-field susceptibility for T)T, is

Xo=P /Jok

As T~ T,+, we find, using (A6), that

(4.12)

Xo- (E,—E)—~ &~—&

—(E,—E) 'In(E, —E),
-(K,—E)—',

~d&o.&d

0=ad
0&fr& —,'d.

(~ &2)
(4.13)

Igo /(o —1) (4.15)

We note that as a ~ I+, the susceptibility index is
symmetric about 0-= 1. When cr) 2 we find that Xo E2
as E ~~.This varied behavior for different 0- suggests
that a study of the one-dimensional Ising model with
1/r'+' interactions would lead to interesting results.

"M. E. Fisher and D. S. Gaunt, Phys. Rev. 133, A224 (1964).
~8 D. S. Gaunt, M. E. Fisher, M. F. Sykes, and J. W. Essam,

Phys. Rev. Letters 13, 713 (1964).

The variation of the susceptibility index y Lsee Eq.
(1.1))with 0 in three dimensions is shown in Fig. 2. The
behavior of Xo near T=0 for o.& 1 and d = 1 is of interest,
since it shows how the model "prepares" for the onset
of the phase transition in the range 0&0-& I. The case
0 = 1 can be studied using (4.6), which leads to

7to=(p'/6~o) exp(3K), (E ) (4.14)

For 1&a.&2, (d=1), it can be shown, using the methods
described in the Appendix, that
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The low-temperature susceptibility may be derived
from (A9) and (4.9).When o(2, it is found that Xp only
exists for 0&0 &2d, in which range the critical behavior
is Xp-(E—1~,)-'.

S. CORRELATION FUNCTION

The correlation Fg between two spins e;, e;, defined as

FIG. 2. Variation of the sus-
ceptibility index p with 0 for
the three-dimensional spherical
model. The asymptotic behavior
of xo when r equals —,

' and 2 is
not purely algebraic.

1.8—

y 1.6—

).4—

1.2—

I I I

I'„=(e,e )/(e,.s)&/s(e s)i/s (5.1)
tions, with g=2 —cr, we have

was derived for the nearest-neighbor spherical model by
Berlin and Kac."Their analysis is readily extended to
include further-neighbor interactions. It is found that
for T)T, (H=O)

~ ~ o dgy o ~ e dgg

cos(Xicoi+ ' +Xdppa)

s0 P Q' ' 'P J &..i. &icos(l&tot+ ' ' '+ldtod)
Zy l(g

, (5.2)

where Xj.u, , X&u are the coordinates of the jth spin
with respect to the ith spin.

We now restrict our attention to long-range inter-
actions of the form (2.10). The correlation function
then becomes

F» ——

(27r)"

cos(X' pp)

Ail
s,—Sa,. 'Sd,.(pp)

(s.3)

r(r)=Z/r'=, (T= T.) . (s.s)

Fisher" has shown that, if the pair correlation func-
tion (for a Quid) G(r) is~D/r" '+" at the critical point,
then the direct correlation function C(r) is ~F/r"+' ".
Applying these results to the spin-spin correlation func-

ss See I. N. Sneddon, Folrser Transforms (McGraw-Hill Book
Company, Inc. , New York. , 1951),p. 65.

"M. E. Fisher, J. Math. Phys. 5, 944 (1964).

To study the behavior of Fp, in the critical region, we

rewrite (5.3) in polar coordinates, using the expansion

(A1), as follows":

- klaj«, (kr)
I (r)=De i" :a -u—(a&2), (5.4)

, a~yk. yO(ks)

where r'=his+. +Ra', and 8, D depend only on d

and o. Since the dominant part of I'(r) near T, is deter-
mined by the integration near the origin, we can allow,

to a first approximation, the upper limit in (5.4) to
become infinite. If the integral then diverges at the

upper limit an exponential damping factor can be in-

cluded to ensure convergence. We 6nd, by putting x=kr,
that the critical-point correlation function ($=0) decays
for large r as

C(r) F/r"+' (r ~~ ) . (s.6)

We see that C(r) falls off at T„ in the same way as I;;.
It is easy to show, using (5.2) and the definition of C(r)
Lsee Ref. 30, Eq. (3.8)j, that the direct correlation
function for the spherical model decays in the same way
as J;;for al/ temperatures (T)T„H=O).

The behavior of Fp; for T& T, in the critical region
has not been found generally, but two special cases are
now considered which are particularly amenable to
analysis. We discuss first d=2, a =1. In this case (5.4)
becomes

"kJo(kr)
I'(r)~DIE ' — dk (u=8/) .

p u+k
(5.7)

G' "k sin(kr)
I'(r)~— dk.

p u+k
(5.11)

If a, damping factor is introduced to ensure convergence
when n=0, the integral can be evaluated" to give

I'( )=G'/ '+(G' / )
XLsin(ur) ci(ur)+cos(ur) si(ur)j. (5.1,2)

"A. Erdelyi et al. , Tables of Integral Transforms Z (Mcoraw-Hill
Book Company, Inc. , New York. , 1954).

This integral can be evaluated" as

I'(r) A /r —
s AsruLHp(ur) —I'p(ur) j, (5.8)

where A is a constant, Hp is Struve's function, and Yp is
a Bessel function of the second kind. Two asymptotic
formulas follow from (5.8) according to the magnitude
of (ur). When u is fixed and r ~po, the asymptotic ex-
pansion of Hp(x) for x ~pe can be used to derive

I'(r) D/u'r'. (5.9)

However, for r large and axed, and n ~ 0, we find that

I'(r) A/r+ Au ln(ur), (s.10)
where

u —(K,—E)/ln(E, —E) .

We note that the correlations for large r do not deca, y
exponentially away from T, as would be predicted by
the usual Orstein-Zernike theory.

As a second example consider the case d=3, and
a=1. We find from (5.4) that
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The two asymptotic formulas, obtained from (5.12), are as an elliptic integral, giving
as follows: K= (4/ ') L.+1-(2)3 -'T(e),
F(r) 1/r' rrn—/2r, r large and fixed, n-+0

1/n'r', n small and fixed, r ~~, (5.13)

where n (K.—K'). It is reasonable to conjecture from
the above discussion that, for the Ising model, F(r) in
the critical region does not decay exponentially for
large r, when long-range interactions of the form 1/r "+

(0(2) are present.
The behavior of the zero-Geld susceptibility in the

critical region may be obtained, for the above two
examples, by substituting (5.8) and (5.12) into the
fluctuation relation

Xo=u'P Z; (ooo,).
The summation can be replaced by an integral and the
substitution x=nR leads to results in agreement with

(4.13). The fluctuation relation is not valid for the
spherical model when HNO. To obtain the correct sus-

ceptibility per spin in a field, the sum of the spin-spin
correlation function must be found for E spins before
the limit E —&~ is taken.

6. ANISOTROPIC MODELS

The derivation of exact series expansions, with long-

range interactions present, requires the evaluation of
multiple integrals whose integrands involve the Fourier
transform of the interaction energy. The interaction
(2.10) is inconvenient, since its Fourier transform cannot
be expressed in simple closed-form. Some models for
which the Fourier transform of the interaction energy is

particularly simple will therefore be introduced.

The erst model is a two-dimensional quadratic lattice
system in which the interaction between a spin in the
kth column and 1th row, and one in the k'th column

and 1'th row is given by

X(m, kV') =J,~k —k')-'
=,J„ l'=la1,
=0, otherwise.

where
8= sin '(1/b), t'= b'/a'

&'=(4/ ')L (.—1)+ |(2)l+l,
~'= (4/~') Lr(s.+1)+s.f(2)3+o,

and J"(8,t) is an elliptic integral of the first kind. At the
critical temperature, (6.3) reduces to

(6.3)

K.= (4/~') L.yf.(2)j~J (-,',~),
where

x=(1+8rir ') '~'.

(6.4)

To determine the critical properties of the model we
expand (6.3), as follows:

K=K, Bg'»+ p(—(), (6.5)

J(kl, k'1') =Joik —k'i —',
= Jo/1 —1'/

=0

l'=1
k'=k
otherwise. (6.6)

The Fourier transform of this interaction may be
written down in terms of (4.5), and the saddle-point
equation becomes

21(2)E=— dMydc02

(6.7)
2f(2)s,——,'5, i(io,)——,'5', ,(ohio)

Integration over &oo leads to

and use the methods developed in Sec. 4. The critical
behavior is similar to the usual three-dimensional spheri-
cal model with nearest-neighbor interactions. A pre-
liminary analysis" of the exact series expansions for the
Ising model, defined by (6.1), indicates that near T, the
susceptibility index p is approximately 1.3, whereas the
spherical model gives y= 2. We note that the estimated
y lies between the nearest-neighbor Ising value of 1.75
and the mean-field value 1.

The second model is also a quadratic lattice system
but the interaction between the spins is defined by

Baker, ' Kac and Helfand' have studied a similar model,

except that the interaction energy along the 3th row was

exponential. We find on substituting (6.1) in (2.9), and

using (4.5) that the saddle-point equation in zero field is

4f (2) "" 'i""& (v cos8+ii
K= ln/ )d8,4 cos8 —iiX 0

~= Lo(4s.+2)3'".

(6.8)

L +1-(2)jE=
7r2

dGoylG02

s,[r+t (2)j rcosoro —&Si,i—(oui)

(6.2)

This integral may be evaluated at T, to give

E,= —436 1.221287. . . (6.9)

where 6 is Catalan's constant.
In the critical region (T)T,) we find from (6.7) that

The evaluation of (6.2) is carried out, first, by inte-

grating over co2, and then expressing the final integral

32 I am grateful to J. L. Lebowitz for pointing out this anomaly.

(K.—K)-—( luau. (6.10)

We deduce, therefore, that the critical properties of this
spherical model are the same as those obtained for a
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1/r' interaction acting in a/'l directions. The analogous
conjecture for the Ising model has been tested by
analyzing the high-temperature series expansions for the
susceptibility. It is found that both the model (6.6) and
the 1/r' model" have, within the errors of extrapolation,
the same susceptibility in the critical region, namely

X ~(lt lt)—1.18+0.01 (6.11)

as the spherical approximation would suggest. Further-
more the critical temperature (6.9) is in reasonable
agreement with the value E ~1.183, estimated from
the exact Ising-model series expansions. Evidently these
simple models with anisotropic interactions can simulate
the behavior of more physically realistic isotropic
models.

7'. CONCLUDING REMARKS

The one-dimensional Ising model, with an exponential
interaction Jy exp( —yr;, ) between the spins, exhibits a
phase transition only in the limit p ~ 0. In this limit
one obtains the mean-field result. From the discussion
in Sec. 3, it appears likely but not proved, that the
Ising model, with 1/r'+' interactions, has a transition
in one dimension for 0&o-&1. In this range we have
found that the high-temperature critical properties, in
the spherical-model approximation, are classical for
0&o &—,

' and nonclassical for ~ &o-&1. The existence of
a nonclassical behavior for certain 1/r"+' interactions
is further supported by exact series extrapolations. Thus

there are indications that the long-range behavior pre-
dicted by the exponential model is not typical of that
given by a 1/r"+ interaction.

The Heisenberg model has been studied by I.ax,"
using the spherical model. More recently, various
authors"" have used Green's-function methods to
obtain closed-form approximations for the Heisenberg
model, which are valid over the whole temperature
range. The existence of a phase transition in both these
theories is determined by the convergence or divergence
of the same integral as in (2.9). We see, therefore, that
the Heisenberg model, with long-range interactions of
the form 1/r"+', has, in the Green's-function approxi-
mation a phase transition for o-&d, in one and two
dimensions. The critical temperatures of the Heisenberg
model for o&d are easily obtained, using the results
given in Tables I and II. In this range, it is readily found
that the spin-wave expansion for the deviation of the
magnetization from the saturated state AM has a
sensible first term

AM-A T«(~(d),
where A depends on d and o., and becomes infinite
aso~d.

The relationship between the Ising model and the
lattice gas" enables us to interpret the results of this
paper as an approximate description of the liquid-gas
transition with long-range interactions. For example,
(4-.11) becomes the critical isotherm of a lattice ga,s:

(p p,)—g3I p p I

(&+~)/(&—~) sgnjp p, )
Clp p I' —gs(n—p p.&/»'Ip p I

p I'sgnfp

—,'d& r&d
0=2d
0&o&~d,

where p and p denote pressure and density, respectively.
Similarly the zero-field susceptibility (T&T,) corre-
sponds to the isothermal compressibility Ez at p=p. .

The Fourier transform of the spin-spin correlation
function I'(k), which is the integrand of (5.2) may be
written as

f'(k) =k~T/L( '/Xs)+ J(0)—J(k)l, (7 1)

where J(k) is the Fourier transform of the exchange
interaction. The spin-spin correlation function in zero
Geld corresponds to the net pair correlation function
G(r) of the lattice gas at p= p, . We find, therefore, from
(7.1) that

k~
G(k) = (T& T,), (7.2)

C (k) C(0) p, '(Bp/BV)—r——

where 4(k) is the Fourier transform of the interaction
energy of the lattice gas. Uhlenbeck, Hemmer, and Kac'
(UHK) have shown, using an approximate method,
based on van der Waals and Orstein-Zernike theories,

C(k)
X„

C (k)—C (0)—p
—

'(Bp/e) V) r
(7.3)

Near the critical point, (Bp/BV)r is small, and (7.3)
becomes, for small k and p= p„

p 'kgT
Gi r(k)~

C'(k) —C'(0) p '(e)p/e)U)p

which has the same form as the spherical-model result
(7.2). This agreement is perhaps not so surprising since
UHK made a basic assumption that the direct correla-

~ H. B. Callen, Phys. Rev. 130, 890 (1963).
8' R. A. Tahir-Kheii and D. ter Haar, Phys. Rev. 127, 88 (1962l."T.D. Lee and C. N. Yang, Phys. Rev. 87, 410 (1952).

that the long-range part of G(k) for a continuum gas is
given by

p k13T
G'"(k) =

@(0)+p '(~p/~V)r
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tion function for large distances was proportional to
C (r) which is true for the spherical model.

We have seen that the spherical model provides an
interesting approximate representation of systems with
long-range interactions. Whether the critical properties
of the model are typical of the Ising model with long-
range interactions is not at present known definitely;
but it is hoped that the results given will form a quali-
tative background to future work on this difFicult

problem.

D n. pd —O'—I

(K, E)~— dk.
E 0 1+Ep'k'

(A4)

A simple change of variable leads to

D((& )/a —& '/t g(& 2)/—
(E, E) — dx. (AS)

main contribution to the integral comes from integration
about k=0. Using (A3), we write

APPENDIX: ANALYSIS OF SADDLE-POINT
EQUATION

The behavior of the saddle-point parameter s, (E,W)
is here determined under several different conditions
by analyzing (2.14).

We consider first the case T& T„B=Oin the critical
region. The methods described in Sec. 3 may be used
to show that

Sg,((o) =Sg,.—Ak'+O(k'), (o (2) (A1)

where k'=((o&'+ .+(oz'), and A depends only on d
and 0-. When 0 =2, the expansion becomes

Sg,,((o)=S„a+8k' ink+0(k') (A2)

Since there is no transition in one and two dimensions
when 0-= 2, this special case is not discussed further. For
0'&2 the leading term in the expansion is proportional
to k', which results in critical properties similar to those
given by finite-range interactions. Attention will there-
fore be restricted to the range 0&0.&2. On substituting
(A1) into (2.14), and changing to polar coordinates,
we find that

Pd—1

E~D dk,
() P+Ek +O(k')

(A3)

where P=z,—1, and D, E depend only on d and a. In
the critical region $ is small and positive, and hence the
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Depending on whether this integral converges or di-
verges as $ —& 0, three possibilities arise, as follows:

(E —E) $'" '/' -'d(o(d
—( In(, o = —,'d

0&~& ',d-(p&2)
(A6)

Thus (A6) determines the variation of (s,—1) with E,
for H=O, in the critical region (T)T,).

The behavior of (z,—1) a/ T=T, for small H is
readily obtained to first-order, by use of (A6) and
(2.14), giving

P~ H2a/ (&+a)

—H'/'/lnH,
H'~' ]

&d&0.&d
O=gd
0&0 &2d.

(o.&2)
(A7)

s,K=1+W'+E'S 'p'~1~ 2('+a)+ (A8)
1

For T(T, and H small, the expansion (A6) can again
be used, since a normal saddle point exists with (z,—1)
small. The saddle-point equation (2.14) can be solved
by iteration for $, to yield finally

g= (W/E) (E/E K.)"'—
X&1—GP(K, W)(E—E,)-+" g, (A9)

where

P(K W) (W/K) (d-a) /a(K/K K ) (d a)/2a-
= —(W/E) (E/E —K,)'/''

Xln(W/K') (E/K' —K'.)'/' o ='d-
=(W/K)(K/K —K,)'/2, 0«&-,'d.

2d&0.&d

(A10)

For small H at high temperatures, one has s,&)1, and
the integrand in (2.14) can be expanded as a geometric
series. The resulting equation may be solved iteratively,
to give


