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0% ions, the Tm*-Tm?3+ pairs then being formed by
v irradiation. This model provided the required dis-
tortion along the (110) axes and accounted for the
need for oxygen during the growth process. However,
the absence of spectra corresponding to Yb3+-Yb*+
pairs seems to argue against this model. It is still
possible that the spectra could arise from Yb3*+-Yb*+
pairs, and that the rotation of the x and y axes in the
(110) plane could be produced by a migration of one
of the O*>~ ions to a more remote F~ site, but this seems
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to us to be rather unlikely. The construction of a
detailed model for the compensation must therefore

await further experiments.
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The behavior of the spherical model of a ferromagnet with an interaction energy between the magnetic
spins which varies with distance as 1/74*7 (where d is the dimensionality of the lattice and ¢>0) is analyzed.
It is shown that the model exhibits a ferromagnetic transition in one and two dimensions, providing 0 <e <d.
(The usual spherical model with nearest-neighbor interactions does not have a transition in one and two
dimensions.) The critical-point behavior is investigated. It is found that the singularities in the specific heat
and susceptibility are dependent on o and d, but the behavior of the magnetization is independent of ¢ and d.
In three dimensions the susceptibility diverges as (T'—7')~", where y=1 for 0 <¢ <%, y=0¢/(3—0) for
% <o <2 and y=2 for 0 >2. The asymptotic form of the spin-spin correlation function I'(r) is studied in the
neighborhood of the critical temperature T.. At T'=T,, T'(r) decays for large » as 1/r4~, Several two-dimen-
sional models with long-range interactions falling off as 1/72 in certain directions only are also investigated.

1. INTRODUCTION

N this paper, the properties of the spherical model
with long-range ferromagnetic interactions between
the spins, varying as 1/74+°, are determined. The spheri-
cal model may be considered as an approximate repre-
sentation of the “more realistic’”’ Ising model. Although
considerable success has been achieved in the under-
standing of systems with certain types of long-range
interactions, little detailed information is available con-
cerning the behavior of systems with interaction po-
tentials decaying as 1/7%+°. Some of the main results so
far obtained are now briefly reviewed, in order to see
what light they throw on the properties of 1/r¢¢
interactions.

Exact results have been obtained by Kac, Uhlenbeck,
and Hemmer'™* for a one-dimensional model of hard
rods with exponential attractive interactions, and by
Baker,%% and Kac and Helfand? for the Ising model in

* This research has been supported in part, by the U. S. Army,
through its European Research Office.

1 M. Kac, Phys. Fluids 2, 8 (1959).

2 M. Kac, G. E. Uhlenbeck, and P. C. Hemmer, J. Math. Phys.
4, 216 (1963).

3 G. E. Uhlenbeck, P. C. Hemmer, and M. Kac, J. Math. Phys.
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5, 60 (1964).
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6 G. A. Baker, Jr., Phys. Rev. 130, 1406 (1963).
7M. Kac and E. Helfand, J. Math. Phys. 4, 1078 (1963).

one and two dimensions with exponential interactions in
certain directions. In the limit that the exponential
interaction becomes infinitely long-range, the one-
dimensional gas has a phase transition, which is de-
scribed exactly by the van der Waals equation (with the
Maxwell equal-area rule), while the Ising models show
a Bragg-Williams-type transition in this limit.”» Whether
the properties of these systems (especially the critical
properties) are characteristic of systems with more
realistic interactions of the form 1/74+7 is not at present
known. There is, however, as we shall see, some evidence
to suggest that this is not so.

Using diagrammatic methods, Brout?® has developed
an expansion of the thermodynamic functions of the
Ising model, as a power series in the reciprocal range of
the interaction. It is found that the expansion reduces
to the Weiss-Bragg-Williams result in the limit of
infinite-range interactions. However, for finite-range
interactions, the expansion breaks down in the critical
region. Brout® and, later, Horwitz and Callen® have
partially overcome these difficulties by obtaining self-

72 Note added in proof. It has been shown rigorously by J. L.
Lebowitz and O. Penrose [J. Math. Phys. 7, 98 (1966)] that, for
a general class of interaction potentials which have a range
parameter 1/, the van der Waals-Maxwell result is obtained in
the limit ¥ — 0, in any dimension.

8 R. Brout, Phys. Rev. 118, 1009 (1960).

9 G. Horwitz and H. B. Callen, Phys. Rev. 124, 1757 (1961).
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consistent theories, claimed to be valid for all tempera-
tures. Siegert?:!! has obtained similar expansions in the
reciprocal range of interaction, using a different tech-
nique, for a general class of interactions. In the critical
region Siegert’s method leads to similar difficulties as
do the “high-density” expansions. We conclude, there-
fore, that these methods are not likely to be very useful
for deriving the critical behavior of systems with 1/7¢+¢
interactions.

The method of Yvon!? based on a cluster-integral
technique, similar to that of Mayer, has been used by
Domb and Hiley'® to derive a series of closed-form
approximations to the partition function of the Ising
model with nearest-neighbor interactions. They found
that the extrapolated series of closed forms converged
towards the correct behavior in the critical region,
although the rate of convergence was rather slow. This
method has been generalized by Hiley and Joyce for
arbitrary interactions, and a preliminary study of 1/r4+°
type interactions has been made, using the first-order
closed forms corresponding to a generalized Bethe ap-
proximation. Although considerable numerical compu-
tation would be required to analyze the higher order
approximations for long-range interactions, the method
does provide, in principle, a series of estimates for the
critical behavior.

Exact series expansions at high and low temperatures
have yielded (in the absence of exact solutions) the most
reliable information concerning the critical behavior of
lattice systems with nearest-neighbor interactions.s
This method has been generalized for long-range inter-
actions, and used to investigate the properties of the
Ising model with 1/7%+7 interactions.'® Foraninteraction
energy varying as 1/7% in two dimensions, it is found
that the high-temperature susceptibility in zero field, for
T near T, behaves as

Xo(T)=B/[1—(To/T)], (L.1)

where y=1.1324-0.01. This result!? differs substantially
from the usual nearest-neighbor value of 1.75, and the
Weiss mean-field value of 1. It would be interesting if
this nonclassical behavior with long-range interactions
of the form 1/7%+ could be supported qualitatively by
an analytic theory.

Most approximate theories of the nearest-neighbor

1 A, J. F. Siegert, Northwestern University, 1962 (unpublished).

WA, J. F. Siegert, Statistical Physics 3, Brandeis Summer
Insti)tute 1962 (W. A. Benjamin and Company, Inc., New York,
1963).

12 7. Yvon, Cahiers Phys. No. 28 (1945).

( 13 C. Domb and B. J. Hiley, Proc. Roy. Soc. (London) A268, 506
1962).

1“4 B. J. Hiley and G. S. Joyce, Proc. Phys. Soc. (London) 85,
493 (1965).

( 15 A comprehensive review is C. Domb, Advan. Phys. 9, No. 35
1960).

16 G. S. Joyce (to be published).

17 C. Domb, N. W. Dalton, G. S. Joyce, and D. W. Wood, in
Proceedings of the International Conference on Magnetism, Notting-
htmg ) (Institute of Physics and the Physical Society, London,
1965).
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Ising model, such as the Weiss-Bragg-Williams and
Bethe theories, effectively introduce infinite-range inter-
actions, by the use of mean fields, thus giving the value
of y=1. However, the spherical model, first discussed
by Berlin and Kac,'® contrasts strongly with these
theories, and predicts, for finite-range ferromagnetic
interactions in three dimensions, y=2. We shall find in
Sec. 4, that the three-dimensional spherical model with
an infinite-range interaction of the form 1/7%+ has

v=1, 0<o<$
=0/(3—0), $<o<2
=2, o>2. (1.2)

In the range $<o<2 we see that v lies between the
nearest-neighbor and mean-field values, in qualitative
agreement with the results of the exact series extrap-
olations mentioned above. Thus the spherical model
with long-range interactions is of interest. Brout!? and,
later, Baker? have shown that the spherical model has
the same high-density limit as that of the Ising model
for T>T.. It is plausible, therefore, that the spherical
model is a reasonable approximation to the Ising model
with 1/7%t7 interactions. We shall now discuss the
detailed properties of the spherical model with these
interactions.

In Sec. 2, the generalization of Berlin and Kac’s
analysis is briefly indicated and the final result for the
partition function presented. We consider, in Sec. 3, the
existence of a phase transition in one and two dimen-
sions, while in Sec. 4 the thermodynamic properties are
derived. The behavior of the correlation function in the
critical region is obtained in Sec. 5, and finally some
special two-dimensional models are defined and analyzed
in Sec. 6.

2. THE PARTITION FUNCTION

We consider a lattice assembly of V sites in which the
ith and jth spins, €; and ;, respectively, have an Ising
interaction energy —J;jee;, where J;; is assumed to be
of finite-range (the number of spins interacting with any
chosen spin is finite) and positive within the range of
interaction, and e;e;===1. The range of the interaction
will be extended to infinity, only after the limit N —
has been taken. The Hamiltonian for this assembly, in
the presence of an external magnetic field 4, is

Je=—3 2 Jijeei—nH Y €,
1

)

(2.1)

where the first summation is taken over all 7 and j with
J =0 and p is the magnetic moment per spin. Defining
B=1/kpT and W=guH, we can write the partition
function as

On(D)=27% 3 .-+ X exp{(8/2)X JujeieitW 2L ei}.

a=il  ey=tl 47
(2.2)

18 T, H. Berlin and M. Kac, Phys. Rev. 86, 821 (1952).
19 R. Brout, Phys. Rev. 122, 469 (1961).
2 G. A. Baker, Jr., Phys. Rev. 126, 2071 (1962).
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This partition function is now evaluated approxi-
mately, using the spherical model. The methods de-
veloped by Berlin and Kac!® for the nearest-neighbor
spherical model can be used with minor modification to
deal with further-neighbor interactions. Therefore the
complete details of the derivation of the partition func-
tion are not given, but the steps in the argument are
indicated.

In the spherical model the spins are allowed to have
all values — 0 <¢;< » for all ¢;, with the restriction

N
> e?=N. (2.3)
=1
Introducing the § function
N 1 +ioo N
(=% )= [ eplyv=1 ey, @9
=1 271 J o =1

we find that the spherical-model partition function can
be written as

AN—I aotie Heo
QN(S)= / ds CXP(NS)/"'/del"'dEN

271 J ag—in

N N
Xexp{(8/2L Jijeie;—s 2 e+W 2 &}, (2.5)
.3 i=1

=1

where
An=2axN2NI¥ =D /T(N/2).

An orthogonal transformation of the variables {e;}
reduces the multiple integral to a product of Gaussian
integrals, which yields

A N—-Ln.N /2

On(S)=——"—

271

ag+io 1 ~
/ ds expN{s—— 3 In(s—18);)
2N

ag—7iw0 7=1

+W2/4(s—%ml>} . 6)

The determination of the eigenvalues A; of the inter-
action matrix J;; and the derivation of the

N
lim N=1 3 In(s—2B8\;)

N > 7=1

were carried out by Berlin and Kac'® for a d-dimensional
simple cubic lattice, by imposing cyclic boundary con-
ditions. Their analysis can be readily generalized to
further-neighbor interactions providing the range of the
interaction is finite and not too large. (This latter re-
striction is necessary because of the cyclic boundary
conditions.) The integral in (2.6) is then evaluated in
the limit N —w by the method of steepest descent.
Finally allowing the range of interaction to become
infinite, we find, for a d-dimensional “simple cubic”
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lattice, that

InQ= leu;ﬂ N7 InQy=—3%—3% In(Bp)+B¢z:/2

1 27
[ i
2(2m)?
0

+o0
Xln[zs—zﬁ_‘ Z i ‘Z’ Jll"'ld COS(l1w1+ e -I—ldwd):] ’

1 —» l4
2.7)

where J;,...1, is obtained from J; by taking the 7th spin
as an origin for the coordinates (lia,- - -,l4a) of the jth
spin. (¢ is the lattice spacing.) The quantity ¢ is
defined as

+ W2/2B¢(Zs— 1) -

~+0
o= 2 Jy1g<w.

Iy —0 Ig

(2.8)

The parameter 2z, can be calculated as a function of
temperature and external field via the saddle-point
equation,

27
1
ﬁ¢= /"'/dwl"'dwd
@m?J

X[Zs_d)wl ZZ . ';, Jll~--ld COS(l1w1+ s +ldwd):]_‘
1 — lag
+W2/ﬁ¢(23— 1)2 .

In zero field a critical temperature 7°.>0 exists, pro-
viding the integral in (2.9) converges at z,=1. If this
condition is satisfied, a normal saddle point z,, as deter-
mined by (2.9), can be found only for 7> 7,. When
T<T,(H=0), the saddle point “sticks” at z,=1, and
the partition function is given by Eq. (2.7), with W=0
and z,= 1. A normal saddle point exists for all tempera-
tures, if no transition occurs, or if the external field is
nonzero, in which case Egs. (2.7) and (2.9) can always
be used.

We now apply the general expressions?! (2.7) and (2.9)
to a ferromagnetic interaction which varies with the
distance between the 7th and jth spins r;; as 1/r;%te
(where ¢>0). It is convenient, when comparing the
properties of models with different ¢, to normalize the
exchange energy J;; so that the energy per spin at 7’=0
is constant for a fixed magnetic field. This can be
achieved by defining

Jsj=J o=@ 37 i@t
J

(2.9)

(2.10)

2 M. Lax has used the spherical model to determine the parti-
tion function of a “classical” spin system, in Phys. Rev. 97, 629
(1955), and a dipole lattice system, in J. Chem. Phys. 20, 1351
(1952). These results, when simply reinterpreted, are exactly
similar to the expressions (2.7) and (2.9). If the summations in the
integrands of (2.7) and (2.9) are carried out over nearest neighbors
ogly, t}ée results of Berlin and Kac [see Ref. 18, Eq. (51)] are
obtained.
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and maintaining J, constant. The ground-state energy
per spin then becomes

E0=—%]0—MH. (211)

For a d-dimensional “cubic” lattice we immediately find

that
Jipewtg=Jo|l| 7@ /3 ||~ (2.12)
1

where |1|2=02+ - - -41s% The substitution of (2.12) in
(2.7) and (2.9), with ¢=J, and K=4¢, gives

InQ=—3—% InK+3Kz,4W?/2K (3,—1)

o 1n| g,— ,1,;_1 d,el® 2.13
2(27r)d/d In[2,—S4,0 1Sa,0(0)] (2.13)

for the logarithm of the partition function per spin, and
for the saddle-point equation

K=W2/K(2,—1)?

+

/dm[zs——Sd,,—lSd_a(m)]“l, (2.14)
(2m)?
with
Sa,e(0)=2"|1]7@) cos(l- @), (2.15)
1

and
Sd,,(O)ESd,,.

The limits of integration are 0 to 2« for all components
of the d-dimensional vector o, and I o =lwi+ - - - +lawa.

We now use the basic Egs. (2.13) and (2.14) to
determine the thermodynamic properties of the model.

3. CRITICAL TEMPERATURES

The spherical model, as is well known, exhibits a
transition for d>2 even for nearest-neighbor interac-
tions, while in one and two dimensions the model shows
no ferromagnetic behavior with finite-range interactions.
We therefore investigate the one- and two-dimensional
systems, to see if a transition can be induced by allowing
long-range interactions.

The critical temperature is determined by the equation

K.=

(2m)? /d“’[l—Sd,a_lSd,a(w)]_l, 3.1)
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TasLE I. Curie temperatures K1 for the
one-dimensional spherical model.

T K1 I K1
0.1 0.9918 0.6 0.7020
0.2 0.9676 0.7 0.5851
0.3 0.9272 0.8 0.4391
0.4 0.8703 0.9 0.2522
0.5 0.7959 1 0

providing the integral converges. It is clear, on reducing
the limits of integration in (3.1) to O and , that the
convergence depends on the behavior of the integrand
for small | @|. This behavior may be determined, using
the methods developed by Nijboer and De Wette.?? In
one dimension, we find that

1 v D(i+3io, 7l:2)
S1,¢(w1)=———[ > ———————— coslw
PG+3o)lu=e  [Li]H

27‘-’;(14'!7) © wi]®
— ite li——
(140) h=—w 27

3] oo

where T'(n,x) is the incomplete gamma function and
w17%0. The transformed sum (3.2), on expanding for
small w;, becomes

o

—|—O(w12)

w1

2T

2t (1—%0)
oT'(3+30)

S1.0(w1)=2t(1+0c)—

(6<2). (3.3)

It follows, by substituting (3.3) into (3.1), that there
is a ferromagnetic transition in one dimension, pro-
viding

0<o<1. (3.4)

Since the spherical model, for nearest-neighbor inter-
actions, gives a critical temperature below that of the
corresponding Ising model, it is reasonable to conjecture
that the Ising model has a transition in the same
range (3.4).%

The detailed variation of K. with ¢ has been com-
puted by numerical integration of (3.1). The rapidly
convergent series (3.2) was used to calculate the inte-
grand, and the dominant singularity at w;=0 was sub-
tracted out and integrated separately by use of (3.3).

2B. R. A. Nijboer and F. W. De Wette, Physica 23, 309
(1957).

% A similar argument leading to (3.4) bas been given by M. Kac
(to be published) ; also the International Union of Pure and Applied
Physics (IUPAP) Conference, Brown University, 1962 (unpub-
lished).
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The numerical values of K, are given in Table I, while
in Fig. 1, K is plotted against o.

In the limit ¢ — 0, (the mean-field limit), it can be
easily shown, by expanding the integral (3.1) as

1 « T
Kc=1+_ Z Sl,a_t/ Sl,vt(wl)do‘n’
0

T t=2

[ =y {1430, ma?(l2+1:%)}
I’(l—}—%o’) lilg=—0 (l12+l22)!+%‘7

S2,¢7((A))=

© 2
o (2
Ilg=—® 2

providing ||2=w?4ws?%0. The parameter « deter-
mines the rapidity of convergence of the two series. It
follows, by expanding (3.6) for small ||, that

m2T'(1—%0)
oT'(14+30)
providing 0<2. When o=2, the expansion becomes
S2,0(@) =Sz 21702 In]|0]|24+0(|e]?). (3.8)

The substitution of (3.7) and (3.8) into (3.1) with a
change of variable to polar coordinates leads to the
conclusion that there is ferromagnetism in the range

0<o<2.

The critical temperatures in this range have been
determined by numerical integration. The integrand of
(3.1) was computed via (3.6), with «? conveniently taken
as 1/6.25. The dominant singularity ||~ of the inte-
grand was subtracted out, using (3.7), and integrated
separately. The region of integration was subdivided
into (M X M) cells and the contribution to the integral
from each cell was found approximately using a cuba-
ture formula derived by Miller.?* A set of successive
values of M was taken, which yielded a sequence of
approximations to the integral. Finally this sequence
was extrapolated using a method suggested by Isen-
berg.?s The numerical values of K;! are presented in
Table II. The methods described above may be easily
extended to the three-dimensional lattice.

The above conclusions concerning the existence of a
phase transition in the spherical model are independent
of the particular form of the potential (providing all
J:;>0), but depend only on the long-range behavior of
the potential approaching 1/7#. The short-range part
of the potential alters only the values of 7. and not
the existence of 7°.>0.

S2,0(0)=S2,,— lol+0(le]?), 3.7

Crm sl 1~ (Ao (A=) (K o ) G060 ],

% J. C. P. Miller, Math. Comp. 14, 130 (1960).
25 C, Isenberg (to be published).
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that, in one dimension,
K. =14+ (r%/12)02+- - - . (3.5)

We now analyze the two-dimensional system in a
similar manner. The conversion of the series Sz ,(®») to
rapidly convergent form can be effected as before, by
the methods of Nijboer and De Wette,?? which yield

>7r1+;aa2+cr

‘ 2+o
| i d () + 2 ]} e

TaBLE II. Curie temperatures K, for the
two-dimensional spherical model.

wz>
2

7 K1 7 K1
0 1 1.0 0.868
0.2 0.994 1.2 0.812
0.4 0.977 1.4 0.744
0.6 0.950 1.6 0.660
0.8 0914 2 0

4. THERMODYNAMIC PROPERTIES

To discuss the thermodynamic properties we must
first analyze (2.14) in order to determine z,(K,WW) ex-
plicitly in terms of X and W. The details of this analysis
are given in the Appendix. The energy per spin,

E=kBT2(3 an/aT)H,
may be derived from (2.13) which yields
—E/Jy=%[2:— K'+W2K2(3,—1)1]. (4.1)

At low temperatures (7'<T.) the zero-field energy rises
linearly for all ¢. The high-temperature behavior
(T>T.) may be obtained by substituting (A8) into
(4.1). The variation of the critical energy E, with o can
be calculated in one and two dimensions by use of
Tables I and II.

The zero-field specific heat, derived from (4.1), is

Cy="Htal1+K*(dz/dE)]. (+2)

We see that, since z,=1 for all 7<T,, the specific heat
remains constant below 7', for all ¢. The behavior in
the critical region, when 7"> T, is more interesting and
may be obtained from (A6), by writing

dzs/dK=(dK/d§)1.
We find that

3d<o<d

oc=1%d.

(0<2) (4.3)
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In the range 0< o< 3d, (¢<2), the specific heat becomes
discontinuousat 7°.. The magnitude of this discontinuity,
for small ¢, is determined by finding (dK/dzs)k—x, from
(2.14), which leads to

Cv(T.)—CvH(T.)
Akp[1—S8a, 2 X |12 ], (4.4)
1

The divergence of the index in (4.3), in one and two
dimensions, as ¢ — d, is explained by the fact that
K:1— 0 as ¢ — d, and the behavior of Cy, when o=d,
is nonalgebraic for large K. Consider, for example, the
one-dimensional system with ¢=1. In this case, the
saddle-point integral (2,14) can be evaluated exactly,
using

S11(w) =3[ (r—w1)?*—372],

to give

(MZ 0) (4-5)

K:3iln[(a+1)/(a_1)], where a*=3(2z,4+1), (4.6)
a

and we readily find that near 77=0

Cy=%kp[1—18K2 exp(—3K)+---]. 4.7)

It is interesting to note that this behavior is similar to
that of the two-dimensional nearest-neighbor spherical
model. In three dimensions with ¢>2 the specific heat
falls off linearly near 7. just as for the usual nearest-
neighbor model.

The limit ¢ — 0 (d fixed) and the limit d —« with
nearest-neighbor interactions, both give rise to the same
Weiss-Bragg-Williams type of behavior. We therefore
briefly investigate the spherical model on a hypercubical
lattice with nearest-neighbor interactions, and compare
the results obtained with (4.3). The nearest-neighbor
saddle-point equation, obtained from (2.14) by allowing
o — o, has already been studied for 4<3.1® For higher
dimensional lattices the behavior of z,(K,H) in the
critical region is most conveniently determined by
straightforward generalization of the methods developed
by Maradudin e/ al. for studying the properties of
Green’s functions.?® From the resulting asymptotic ex-
pansions of (K ,— K) in terms of £, we find, using similar
arguments as above, that Cy varies in the neighborhood
of Tt as

[(2/ks)Cv—1]
=—A(K.—K),
=+D/In(K.—K),
= _E[1+F(K0—K)ll2] ’
=—G[1—H(K.—K) In(K.—K)],
=—J[1+P(K.—K)], (4.8)

26 A, A. Maradudin, E. W. Montroll, G. H. Weiss, R. Herman,
and H. W. Milnes, Green’s Functions for Monoatomic Simple Cubic
Lattices (Académie Royale de Belgique, Bruxelles, 1960).
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where 4, D, E, - - - are positive constants. We see that
the variation of Cy with d, is qualitatively similar to
the variation with o (d fixed). It is interesting to note
that the results (4.8) for >3 are in reasonable agree-
ment with the estimates obtained by Fisher and Gaunt?’
for the hypercubical Ising model by using exact series
expansions.

The mean magnetic moment per spin is found from

(2.13) and (2.14) to be
M=FkgT(0 InQ/0H)=uW/KE. (4.9)
Substituting (A9) in (4.9) and allowing H — 0, we find
that the spontaneous magnetization is
M=u[(K—K,)/K]'?, (4.10)

which is independent of d and ¢ (apart from the de-
pendence of K.). The magnetization as a function of
field at T=T. is easily obtained from (A7) and (4.9),
which yield for small H

M(K o H)~H@1@)  1i<e<d
~—HBIH, o= (6<2)
~HS, 0<o<id. (4.11)

In three dimensions with nearest-neighbor interactions
the index in (4.11) becomes £. (The same result holds
for ¢>2 and d=3.) This value is in surprising agree-
ment with the estimate of 1/5.204-0.15 obtained by
Gaunt et al.?® for the Ising model using exact series
extrapolations.

The zero-field susceptibility for 7> T, is

Xo=u?/Jok. (4.12)
As T'— T+, we find, using (A6), that
Xg~ (K o— K)ol 1ld<o<d
~—(Ke—K)7'In(K:—K), o=3d (0<2)
~(Ko—K), 0<o<id. (4.13)

The variation of the susceptibility index y [see Eq.
(1.1)] with ¢ in three dimensions is shown in Fig. 2. The
behavior of X, near 7’=0for 0> 1 and d=1 is of interest,
since it shows how the model “prepares” for the onset
of the phase transition in the range 0<¢<1. The case
o=1 can be studied using (4.6), which leads to

Xo=(u?/6J,) exp(3K), (K —ox). (4.14)

For 1<0<2, (d=1), it can be shown, using the methods
described in the Appendix, that

Xo~ Ko=) (4.15)

We note that as o— 1% the susceptibility index is
symmetric about o=1. When ¢> 2 we find that X,~ K?
as K — 0. This varied behavior for different o suggests
that a study of the one-dimensional Ising model with
1/r*< interactions would lead to interesting results.

% M. E. Fisher and D. S. Gaunt, Phys. Rev. 133, A224 (1964).
#D. S. Gaunt, M. E. Fisher, M. F. Sykes, and J. W. Essam,
Phys. Rev. Letters 13, 713 (1964).
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The low-temperature susceptibility may be derived
from (A9) and (4.9). When o< 2, it is found that X, only
exists for 0<o<1d, in which range the critical behavior
is Xo~(K—K )™

5. CORRELATION FUNCTION
The correlation I';; between two spins e;, ¢;, defined as
Tij=eie)/ (€)' Xe”)!?, (CRY)

was derived for the nearest-neighbor spherical model by
Berlin and Kac.!8 Their analysis is readily extended to
include further-neighbor interactions. It is found that
for T>T, (H=0)

o

cos(\wi+ - + - +Aawa)
X , (5.2)

—¢12- Z Jigee1g cos(bwr+ - - - F+lawa)

1 ~®

where M\, - - -, Aaa are the coordinates of the jth spin
with respect to the sth spin.

We now restrict our attention to long-range inter-
actions of the form (2.10). The correlation function
then becomes

K1
P0j= /d(u
(27r)d Zs—

To study the behavior of Ty; in the critical region, we
rewrite (5.3) in polar coordinates, using the expansion
(A1), as follows®:

T k¥ (kr)
T'(r)~DK~ -4 / ——dk,
o BE+EHO(R?)

where 72=\;24---+\z% and B, D depend only on &
and ¢. Since the dominant part of I'(») near T, is deter-
mined by the integration near the origin, we can allow,
to a first approximation, the upper limit in (5.4) to
become infinite. If the integral then diverges at the
upper limit an exponential damping factor can be in-
cluded to ensure convergence. We find, by putting x= %7,
that the critical-point correlation function (¢=0) decays
for large 7 as

T(r)~E/ri—o,

cos(X- o)
Sd,a—lSd,v(‘l’) '

(5.3)

(6<2), (5.4)

(T=T.). (5.5)

Fisher3® has shown that, if the pair correlation func-
tion (for a fluid) G(r) is =>~D/r% 2" at the critical point,
then the direct correlation function C(r) is ~F/rdt>.
Applying these results to the spin-spin correlation func-

» See I. N. Sneddon, Fourier Transforms (McGraw-Hill Book

Company, Inc., New York, 1951), é) 65.
% M. E. Fisher, J. Math. Phys. 5, 944 (1964).
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Fic. 2. Variation of the sus- g i
ceptibility index vy with ¢ for
the three-dimensional spherical 4, 1.6 b
model. Theasymptoticbehavior © , o |
of Xp when ¢ equals § and 2 is :
not purely algebraic. 1.2 -
1 1 1 1 1
(o] 1 2 3
g
tions, with 7=2—o0, we have
C(r)~F/rdts (r—w). (5.6)

We see that C(r) falls off at 7', in the same way as J;.
It is easy to show, using (5.2) and the definition of C(r)
[see Ref. 30, Eq. (3.8)], that the direct correlation
function for the spherical model decays in the same way
as J; for all temperatures (7>7., H=0).

The behavior of Ty; for 77> T, in the critical region
has not been found generally, but two special cases are
now considered which are particularly amenable to
analysis. We discuss first d=2, o=1. In this case (5.4)
becomes

« k]o(k?’)
I‘(r)&DK“I/ dk (a=BE). (5.7)
o atk
This integral can be evaluated®! as
T(r)~A4/r—3Ama[Ho(ar)—Yo(ar)], (5.8)

where 4 is a constant, H, is Struve’s function, and ¥ is
a Bessel function of the second kind. Two asymptotic
formulas follow from (5.8) according to the magnitude
of (ar). When « is fixed and 7 —, the asymptotic ex-
pansion of Ho(x) for x—c0 can be used to derive

T'(r)=~D/a?3. (5.9)
However, for r large and fixed, and « — 0, we find that
T(r)~A/r+AaIn(ar), (5.10)

where

a~—(K.~K)/In(K,—K).

We note that the correlations for large  do not decay
exponentially away from 7', as would be predicted by
the usual Orstein-Zernike theory.

As a second example consider the case d=3, and
o=1. We find from (5.4) that

s /‘ ksm(kr)

5.11
7 atk ( )

If a damping factor is introduced to ensure convergence
when a=0, the integral can be evaluated?®! to give
T'(r)~G'/r*+(G'a/7)

X [sin(ar) ci(ar)+cos(er) si(ar)]. (5.12)

3t A, Erdelyi et al., Tables of Integral Transforms 2 (McGraw-Hill
Book Company, Inc., New York, 1954).
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The two asymptotic formulas, obtained from (5.12), are
as follows:

I'(r)~1/r*—ma/2r, rlarge and fixed, a—0
~1/a?r, a small and fixed, r—w, (5.13)

where a~ (K .— K). It is reasonable to conjecture from
the above discussion that, for the Ising model, I'(r) in
the critical region does not decay exponentially for
large 7, when long-range interactions of the form 1/r4*°
(¢<2) are present.

The behavior of the zero-field susceptibility in the
critical region may be obtained, for the above two
examples, by substituting (5.8) and (5.12) into the
fluctuation relation

Xo=u?8 3_; (€o€;) .

The summation can be replaced by an integral and the
substitution x=aR leads to results in agreement with
(4.13). The fluctuation relation is not valid for the
spherical model when H>0. To obtain the correct sus-
ceptibility per spin in a field, the sum of the spin-spin
correlation function must be found for V spins before
the limit NV — is taken.??

6. ANISOTROPIC MODELS

The derivation of exact series expansions, with long-
range interactions present, requires the evaluation of
multiple integrals whose integrands involve the Fourier
transform of the interaction energy. The interaction
(2.10) is inconvenient, since its Fourier transform cannot
be expressed in simple closed-form. Some models for
which the Fourier transform of the interaction energy is
particularly simple will therefore be introduced.

The first model is a two-dimensional quadratic lattice
system in which the interaction between a spin in the
kth column and /th row, and one in the £’th column
and //th row is given by

JRLEY)=To|k—F'|2, U=l
V=141,
otherwise .

K=k

=1/,

=0, (6.1)

Baker,® Kac and Helfand” have studied a similar model,
except that the interaction energy along the /th row was
exponential. We find on substituting (6.1) in (2.9), and
using (4.5) that the saddle-point equation in zero field is
. [r+¢()] / /

w2 . zs[ 7+ {(2) ]— 7 coswe—5S1,1(w1) .
(6.2)

The evaluation of (6.2) is carried out, first, by inte-
grating over ws, and then expressing the final integral

dw 1dw 2

2 ] am grateful to J. L. Lebowitz for pointing out this anomaly.
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as an elliptic integral, giving
K= (4/m)[r+5(2)Je'F(6,0),

6=sin"Y(1/d), *=b%a?,
b= (4/n)[7(z,—1)+2.4(2) 43,
a’= (4/71'2)[7'<Zs+ 1)"}_285'(2)]_]—% ’

and F(6,) is an elliptic integral of the first kind. At the
critical temperature, (6.3) reduces to

Ko=4/m)[r+¢(2) JoF (3m,x),

where

(6.3)

(6.4)

where
x=(148rx2)~1/2,

To determine the critical properties of the model we
expand (6.3), as follows:

K=K,—Bg'*4-0(%), (6.5)

and use the methods developed in Sec. 4. The critical
behavior is similar to the usual three-dimensional spheri-
cal model with nearest-neighbor interactions. A pre-
liminary analysis!® of the exact series expansions for the
Ising model, defined by (6.1), indicates that near 7', the
susceptibility index + is approximately 1.3, whereas the
spherical model gives y=2. We note that the estimated
v lies between the nearest-neighbor Ising value of 1.75
and the mean-field value 1.

The second model is also a quadratic lattice system
but the interaction between the spins is defined by

JRLEV)=Tolk—F' |72, V=1
=Jo|l=V|"%, K=k
=0, otherwise. (6.6)

The Fourier transform of this interaction may be
written down in terms of (4.5), and the saddle-point
equation becomes

dwldw 2

KO //
w2 . 2§‘(2)z8-%51,1(w1)—%51,1(")2)‘

Integration over w; leads to
4¢(2) et sy cosf-1
K= / ln<———~>d9 , (6.8)
72 Jy v cosf—1
v=[3(43,+2)7"2.
This integral may be evaluated at 7', to give
K,=4G~1.221287- - -,

6.7)

where

(6.9)

where G is Catalan’s constant.
In the critical region (7> T.) we find from (6.7) that

(Kc—K)~—¢Int. (6.10)

We deduce, therefore, that the critical properties of this
spherical model are the same as those obtained for a
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1/73 interaction acting in e/l directions. The analogous
conjecture for the Ising model has been tested by
analyzing the high-temperature series expansions for the
susceptibility. It is found that both the model (6.6) and
the 1/73 model'” have, within the errors of extrapolation,
the same susceptibility in the critical region, namely

Xor~ (K o— K)—118:0.01 (6.11)

as the spherical approximation would suggest. Further-
more the critical temperature (6.9) is in reasonable
agreement with the value K ~~1.183, estimated from
the exact Ising-model series expansions. Evidently these
simple models with anisotropic interactions can simulate
the behavior of more physically realistic isotropic
models.

7. CONCLUDING REMARKS

The one-dimensional Ising model, with an exponential
interaction Jv exp(—vr;;) between the spins, exhibits a
phase transition only in the limit ¥ — 0. In this limit
one obtains the mean-field result. From the discussion
in Sec. 3, it appears likely but not proved, that the
Ising model, with 1/7+° interactions, has a transition
in one dimension for 0<¢<1. In this range we have
found that the high-temperature critical properties, in
the spherical-model approximation, are classical for
0< o< % and nonclassical for #<s<1. The existence of
a nonclassical behavior for certain 1/7% interactions
is further supported by exact series extrapolations. Thus

(P“Pc)“"—‘B}p~p¢[ (@0} (G—0) Sgn{p—pc} ’
=—C|p—p.|® sgn{p—p.}/In?|p—pcl ,

=D|p—p.|®sgn{p—0p.},

where p and p denote pressure and density, respectively.
Similarly the zero-field susceptibility (7>7T.) corre-
sponds to the isothermal compressibility Kz at p=p..

The Fourier transform of the spin-spin correlation
function I'(k), which is the integrand of (5.2) may be
written as

D(k)=ksT/[(w¥/X)+T ()= T ()],  (7.1)

where J(%) is the Fourier transform of the exchange
interaction. The spin-spin correlation function in zero
field corresponds to the net pair correlation function

G(r) of the lattice gas at p=p.. We find, therefore, from
(7.1) that

8ksT
®(k)—2(0)—ps2(8p/V)r

where ®(k) is the Fourier transform of the interaction
energy of the lattice gas. Uhlenbeck, Hemmer, and Kac3?
(UHK) have shown, using an approximate method,
based on van der Waals and Orstein-Zernike theories,

G(k)

(r>717, (7.2)
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there are indications that the long-range behavior pre-
dicted by the exponential model is not typical of that
given by a 1/7%+ interaction.

The Heisenberg model has been studied by Lax,?!
using the spherical model. More recently, various
authors®®3 have used Green’s-function methods to
obtain closed-form approximations for the Heisenberg
model, which are valid over the whole temperature
range. The existence of a phase transition in both these
theories is determined by the convergence or divergence
of the same integral as in (2.9). We see, therefore, that
the Heisenberg model, with long-range interactions of
the form 1/79+7, has, in the Green’s-function approxi-
mation a phase transition for ¢<d, in one and two
dimensions. The critical temperatures of the Heisenberg
model for o<d are easily obtained, using the results
given in Tables I and II. In this range, it is readily found
that the spin-wave expansion for the deviation of the
magnetization from the saturated state AM has a
sensible first term

AM~AT (¢<d),

where A depends on ¢ and ¢, and becomes infinite
as o —d.

The relationship between the Ising model and the
lattice gas® enables us to interpret the results of this
paper as an approximate description of the liquid-gas
transition with long-range interactions. For example,
(4.11) becomes the critical isotherm of a lattice gas:

1d<o<d
o=3%d

0<o<3d,

(6<2)

that the long-range part of G(%) for a continuum gas is
given by

p~%sT
&(0)+p%3p/0V)r

G"’(k)=

&(k)
&(k)—(0)—p3(3p/V)r

Near the critical point, (8p/dV)r is small, and (7.3)
becomes, for small £ and p=p,,

(7.3)

Gl-r(k)"’ p el
T () —B(0)—p(3p/IV)r

which has the same form as the spherical-model result

(7.2). This agreement is perhaps not so surprising since

UHK made a basic assumption that the direct correla-
3 H. B. Callen, Phys. Rev. 130, 890 (1963).

% R. A. Tahir-Kheli and D. ter Haar, Phys. Rev. 127, 88 (1962).
3 T. D. Lee and C. N. Yang, Phys. Rev. 87, 410 (1952).




358

tion function for large distances was proportional to
&(r) which is true for the spherical model.

We have seen that the spherical model provides an
interesting approximate representation of systems with
long-range interactions. Whether the critical properties
of the model are typical of the Ising model with long-
range interactions is not at present known definitely;
but it is hoped that the results given will form a quali-
tative background to future work on this difficult
problem.
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APPENDIX : ANALYSIS OF SADDLE-POINT
EQUATION

The behavior of the saddle-point parameter z,(K,W)
is here determined under several different conditions
by analyzing (2.14).

We consider first the case 7>T',, H=0 in the critical
region. The methods described in Sec. 3 may be used
to show that

Sa,0(0)=Sa,,—Ak°+0(k?), (s<2) (A1)

where k2= (w24 -+ +wq?), and 4 depends only on d
and ¢. When o=2, the expansion becomes

Sa.0(©)=Sa,c+Bk2 Ink+0(k2) .

Since there is no transition in one and two dimensions
when o= 2, this special case is not discussed further. For
o> 2 the leading term in the expansion is proportional
to k2, which results in critical properties similar to those
given by finite-range interactions. Attention will there-
fore be restricted to the range 0<¢< 2. On substituting
(A1) into (2.14), and changing to polar coordinates,
we find that

(A2)

T kd—l
KD f —
o EFEEH-O(R?)

where £=2,—1, and D, E depend only on d and ¢. In
the critical region £ is small and positive, and hence the

(A3)
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main contribution to the integral comes from integration
about £=0. Using (A3), we write

kd—a‘—
(K. K)"’—— (A4)
0 1+E£j‘lk"
A simple change of variable leads to
Dg@0) o (Ea0lE x(d-20)]a
(K;—K)~~ / dx.  (AS)
cEdl [, 14«

Depending on whether this integral converges or di-
verges as £— 0, three possibilities arise, as follows:

(Ke=K)~ g4, 3d<o<d
~—¢ng,  o=3d (¢<2)
~E, 0<o<id. (A6)

Thus (A6) determines the variation of (z,—1) with K,
for H=0, in the critical region (7> T,).

The behavior of (3,—1) at T=1T, for small H is
readily obtained to first-order, by use of (A6) and
(2.14), giving

$~H2tr/(d+u), %d<o’<d
~—H*3/InH, o=3%d (6<2)
~H?I3, 0<o<id. (A7)

For small H at high temperatures, one has z,>1, and
the integrand in (2.14) can be expanded as a geometric
series. The resulting equation may be solved iteratively,
to give

2, K=1+W2+K25, ,~2 Z/“I—Z(Hu).,.. . (A8)
1

For I'<T.and H small, the expansion (A6) can again
be used, since a normal saddle point exists with (z,—1)
small. The saddle-point equation (2.14) can be solved
by iteration for £, to yield finally

£~ (W/K)(K/K— K )\

X[A—-GF(K,W)YK—K)+---7, (A9)
where
F(K,W)=W/K)@I(K/K—K,) @2 lile<d
=—(W/K)(K/K—K,)'?
XIn(W/K)(K/K~K)"2, o=}d
=W/K)(K/K—K: )2, 0<o<id. (A10)



