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Using the confutation rules of angular momentum
and the components of C, we find

C C+—C+C = —2{T22X1+T1T21V2),

C C++C+C =2(C'+C ').
Expanding C,'+C„2, we find that

Ka 5cns+5Cn1+5Cn2+5Cns+5Cnsp,

where K„s and 5C„1 are given in Eq. (14) and

ae„s=ss~ (M) (T2 (Tr+ T2)/2)
X (tils+ t714jtI15+Uls+ U 22+ t724+ II2s+ tI22)

5c 2= s+(M)((T12—T2')/2)
X{(Is+Is++Is Is ) (I4+Is—++I4 Is )),

5c„s——Is+ (M)(T2 (T1—T2)/2)
X{(Is++Is+ is+——Is+) (I&++Is+)

+(is +is +is is —)(I1 +is ))
The states which K„2,BC„3,and BC„4connect have energy
separations, due to K„s and X„1, of 33, 84, and 117
Mc/sec, respectively. These operators therefore do not
perturb the energy levels appreciably.

One complication arises due to the matrix element

(s(2 12)P j K„t
~

'(A ts) 2)= (is+(M)/392) (T1—T2)'.

In principle, such a matrix element requires a diagonali-
zation of the two initially degenerate (As, )s states. In
the present case, this matrix element is sufficiently
small as to be negligible.
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The spin-lattice Hamiltonian Grst proposed by Van Vleck to explain electronic spin-lattice relaxation
has been experimentally determined for Cr3+ ions in ruby single crystals. Its magnitude was obtained through
measurements on the effect of applied uniaxial stress on the KSR spectrum of the Cr3+ ions. The spin-lattice
Hamiltonian was found to be a quadratic spin operator, in agreement with Van Vleck s prediction, with no
evidence for any other spin dependence. It was also determined through these measurements that the Crs+
ions can be considered, for interactions with lattice modes, to occupy two inequivalent types of site in the
A1~0g lattice.

I. INTRODUCTIOH

HE spin-lattice interaction for an insulating para-
magnetic crystal was first treated successfully by

Van Vleck' in terms of an interaction Hamiltonian
derived from crystal-field theory. In Van Vleck's treat-
ment the interaction between the magnetic moment of
an ion and vibrations of the crystal lattice comes about
indirectly: the lattice vibrations modulate the crystal
field, thereby perturbing the orbital state of the ion;
spin-orbit coupling then transmits this perturbation of
the orbital electronic motion to the spin of the ion.
Because this interaction between the lattice vibrations
and the spin of the ion is a second order process, Van
Vleck found for the iron-group ions that he considered,
which have strongly quenched orbital angular momen-
tum, that the dominant part of the interaction can be
expressed as an operator quadratic in the effective
spin of the ion. This spin operator, the spin-lattice
Hamiltonian, is also, to first order, linearly dependent
on the lattice strain, and it therefore leads to the one-

*Supported by National Aeronautics and Space Administration.
t Now at Texas Instruments, Inc. , Dallas, Texas.
f. Now at Texaco, Inc., Houston, Texas.' J. H. Van Vleck, Phys. Rev. 57, 426 (1940).

phonon spin-lattice relaxation which dominates relaxa-
tion processes at low temperature.

Using microwave-ultrasonic techniques Shiren and
Tucker' verified Van Vleck's prediction of the quad-
ratic spin dependence of the spin-lattice Hamiltonian,
and they determined the magnitude of the interaction
for several iron-group ions. '4 It was shown by Shiren
and by Donoho that one-phonon relaxation times pre-
dicted from experimentally measured values of Van
Vlecks spin-lattice Hamiltonian are in good agree-
ment with observed relaxation times. An excellent
review of experimental and theoretical work on spin-
lattice interactions for iron-group ions has recently
been published by Tucker. '

This paper describes a measurement of the spin-
lattice Hamiltonian for Cr'+ ions in ruby. In this experi-
ment uniaxial stress was applied to single crystals of

~ N. S. Shiren and E. B. Tucker, Phys. Rev. Letters 6, 105
(1961).

3 N. S. Shiren, Bull. Am. Phys. Soc. 7, 29 (1962).
4 E. B.Tucker, Phys. Rev. Letters 6, 183 (1962).
~ N. S. Shiren, in Magnetic and E/ectric Resonance and Retaxa-

tion, edited by J. Smidt (Interscience Publishers, Inc. , New York,
1963).

6 P. L. Donoho, Phys. Rev. 133, A1080 (1964).' E. B.Tucker, Proc. IREE 53, 1547 (1965).
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ruby along various crystallographic directions, and the
resulting changes in the ESR spectrum were measured
accurately at a frequency of approximately 10.0 6Hz.
These changes are interpreted as being due to a spin-
lattice Hamiltonian quadratic in spin and linear in the
lattice strain due to the applied stress. This stress-
induced spin-lattice Hamiltonian is regarded as a
perturbation added to the normal spin Hamiltonian of
the Cr'+ ion; this perturbation causes a shift in the
energy levels of the ion. From the measurements de-
scribed here, most of the quantities characterizing the
spin-lattice Hamiltonian were determined to an accuracy
of several percent. In addition it was determined that
no additional terms in the spin-lattice Hamiltonian,
such as terms linear in the spin, are present to any
appreciable extent. It was further determined that the
Cr'+ ions in ruby occupy two inequivalent sites with
respect to their interaction with lattice strain, result-
ing in diBerent values for the spin-lattice Hamiltonian
constants for the two sites. This result is similar to that
obtained by Royce and Bloembergen' in studying the
effect of an applied electric field on the ESR spectrum
of ruby. Measurements similar to those reported here
have been carried out by Feher and Watkins9 and by
Feher" for several iron-group ions in MgO. The results
reported here are in good agreement with ultrasonic-
paramagnetic-resonance measurements of Tucker, 4 and
Dobrov. "

II. THEORY

In order to facilitate understanding of the experi-
mental method used here and the analysis of the results,
certain aspects of the theory of spin-lattice interactions
and its application to the experimental situation studied
here must be considered. Only a rather phenomeno-
logical treatment is undertaken, however, since a
detailed derivation of the spin-lattice Hamiltonian has
been given by Van Vleck' and, more recently, by
Mattuck and Strandberg. "

The Cr'+ ion in ruby is in a trigonal environment
which leads to an axially symmetric spin Hamiltonian

H, =g„PH,S,+g,P(H+,+H„S„)+D(S,' 5/4), (1)—
where the g tensor is nearly equal to that for a free
electron because of the strong orbital quenching. The
effect of a crystal-held component of symmetry lower
than trigonal would be to introduce additional quad-

ratic spin terms, but such a held would have only a
very small effect on the value of the g tensor. This fact
is clearly exhibited in a comparison of the spin Hamil-
tonian of the Cr'+ ion in ruby with that in MgO. The
large trigonal field introduces a zero-field splitting, 2D,
in the case of ruby, but the g tensors in the two cases
are only slightly different. Consequently, when the
lattice is strained, resulting in the production of crystal-
field components of lower symrr~etry than in the un-
strained crystal, it can reasonably be expected that the
strain-induced perturbation to the spin Hamiltonian
would be predominantly quadratic in the spin. Although
a term linear in both spin and magnetic-Geld strength
might also be present, it should be quite small in its
effect compared to the quadratic term. Mattuck and
Strandberg" have, in fact, shown that the ratio of the
term linear in spin to the quadratic term is approxi-
mately the ratio of the Zeernan energy to the spin-
orbit energy. The linear term in this case should, there-
fore, be roughly two orders of magnitude smaller than
the quadratic term, and it is not considered further in
this discussion.

The most general quadratic, Hermitian spin operator
which can be used for the perturbing spin-lattice
Hamiltonian is

HsI. p;,; F,,S,—-S—„ (2)

where F is a second-rank, symmetric, traceless tensor
which depends on the lattice strain. For a linear strain
dependence, F can be represented in the following way:

~,;=2~6;,~~eat. (3)

In the above expression, e is the conventional strain
tensor, and 6 is a fourth-rank tensor symm. etric to the
interchange of i and j or k and 1, but not necessarily
symmetric to the interchange of any other pairs of
indices. Because of this symmetry it is possible to use
the familiar six-dimensional Voigt notation, in which
the number of indices is contracted in a manner widely
used in the study of the elastic properties of solids.
In this notation, F becomes a six-dimensional vector,
and 6 becom. es a second-rank six-dimensional tensor.
It should be noted that the contracted form of 6 does
not necessarily possess the symmetry of elastic-con-
stant tensors which would require that G;;=G,;.

Since the symmetry at each Cr'+ is C3, the number of
independent components of 6 is reduced from 36 to
10, and the tensor can be written in the following way:

G„—G»/2 G„
—G43/2 —G~4

—(Hi+%2) —(Hi+&2)
G41 G41 0 G44

—G52 G52 0 —G45
—G16 G16 0 G~5

'E. B. Royce and N. Bloembergen, Phys. Rev. 131, 1912 (1963).'E. R. I'"cher and G. D. Watkins, Bull. Am. Phys. Soc. 7, 29 (1962)."E.R. I cher, Phys. Rev. 136, A145 (1964).
"W. I. Dobrov, Phys. Rev. 134, A734 (1964)."R. D. Mattuck and M. W. P. Strandberg, Phys. Rev. 119, 1204 (1960).
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Although the point-group symmetry at the Cr'+ site
is only Ca, the maximum point-group symmetry of the
A1~0& crystal lattice is D3~. If the symmetry operations
of D3q not included in C3 are applied to 6, it is found
that all components of (4) are unchanged, except for
G», G52, G&6, and G45, which merely change sign under
any of the twofold rotations of D3&. Such a rotation
will change 6 for each ion in the manner described
above, but will have no effect on the spin Hamiltonian.
Thus, the Cr'+ ions can be regarded as occupying two
nonequivalent types of site, each of which leads to the
same spin Hamiltonian, but to different spin-lattice
Hamiltonians. As a result, although all ions exhibit the
same ESR spectra in an unstrained crystal, ions in the
different types of site will, in general, exhibit different
spectra in a strained crystal. The ESR spectrum for
such a strained crystal can, therefore, be expected to
consist of a number of split lines. This splitting is ob-
served experimentally in the work reported here, and
its presence actually simplifies the analysis of the data,
rather than introducing any corn.plication.

Experimentally it is desired to perform measurements
which permit the deduction of the components of G.
This can be accomplished by measuring the magnetic-
Geld shifts of the observable ESR absorption lines as
functions of applied uniaxial stress. Extraction of the
values of the components of 6 is, however, somewhat
complicated in this case by the fact that there are ten
independent components of 6 for Cr'+ ions in ruby and
by the fact that the application of uniaxial stress
generally produces an effect on the KSR spectrum
dependent on several of these components simul-
taneously. It is necessary, therefore, to perform measure-
ments on a number of different crystals stressed along
carefully chosen directions such that a sufficient number
of independent relations between the observed line
shifts and splittings and the components of 6 can be
obtained. It is necessary, therefore, to consider the
choice of appropriate crystallographic directions for
the application of uniaxial stress in order to clarify the
experimental technique and the analysis of the data to
be described in the following sections.

If the total spin Hamiltonian, the sum of Eqs. (1)
and (2), is diagonalized under the assumption that the
components of F are small compared to both the Zeeman
energy and the zero-Geld splitting energy 2D a linear
relationship between the shift or splitting of any reso-
nance line and the components of F can be derived.
Combination of this relationship with Eq. (3) then gives
the dependence of the line shift or splitting on the com-
ponents of 6 and on the strain resulting from the applied
uniaxial stress. The diagonalization of the spin Hamil-
tonian is first considered.

The secular equation for the eigenvalues of the spin
Hamiltonian is a quartic equation in the energy whose
solution provides four allowed values of the energy, E;.
Because of the zero-field splitting, all six of the possible
transitions between these levels are generally allowed,
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FIG. 1. Rate of change of resonance Q.eld with respect to spin-
lattice interaction parameters; 12 and 23 (high-6eld) transitions
at frequency 10.1 6Hz.

resulting in six observable resonance lines. The transi-
tion between levels i and j will be designated the ij
transition, with corresponding transition frequency
p;, = (E, E,)/h. The —value of the magnetic-field
strength at resonance will be designated H, , The value
of the resonance GeM for a particular transition is a
function of the angle between the field and the c axis
of the crystal. Experimentally, the resonance lines are
observed at a fixed transition frequency by varying the
magnetic-field strength through the resonance value,
so that the effect of applied uniaxial stress, which varies
the energy levels, is most conveniently described in
terms of the shift in the resonant magnetic-Geld strength
when stress is applied. If the stress-dependent line
shift is denoted, for the ij transition, by AH;;, then
the shift at constant transition frequency v;; can be
expressed as

where the partial derivatives of the resonance Geld
IX,, with respect to the components of F are evaluated
at constant u;; from the implicit solution of the secula, r
equation for the resonance Geld. If the x-s plane is
chosen as the plane containing the c axis of the crystal
and the magnetic field, then it is found that BH,;/BF i, is
zero unless k=1, 2, 3, or 5. These derivatives are
functions of the angle between the c axis and the mag-
netic GeM, and are plotted in Figs. 1 and 2 for the more
important transitions observed in this experiment. In
these Ggures and in all subsequent discussion, the energy
levels are numbered from 1 to 4 in order of decreasing
energy. The derivative BH;;/BF2 is not plotted, since
it is just the negative of BH;,/BF i.

The dependence of hH;; on the components of G
can now be calculated if the dependence of the com-
ponents of F on the components of G and on the strain
can be evaluated. As explained in Sec. III, it was
necessary experimentally to measure the component
of the stra, in along the axis of uniaxial stress rather
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Fre. 2. Rate of change of resonance Geld with respect to spin-
lattice interaction parameters; 23 (low-6eld) and 34 transitions
at frequency 10.1 6Hz.

than to measure the stress itself. It is, therefore, most
convenient to express the dependence of F on G terms
of this measured strain. In the diagonalization of the
spin Hamiltonian and the computation of the derivatives
BH;;/BFs it is most convenient to use the coordinate
system already described, in which the s axis is the
c axis of the crystal and the magnetic fj.eld lies in the
x-s plane at an angle 8 to the s axis. Consequently, in
Eq. (5) the components of F are also evaluated in this
coordinate system. However, as explained in what
follows, the crystal may be rotated so that its u axis
lies at any angle to the x-s plane. It is most useful to
express the components of G in some coordinate systein
Axed in the crystal, preferably the same coordinate
system normally used for the evaluation of the elastic
constants. In the following considerations, therefore,
both the elastic compliance and G are evaluated in a
coordinate system whose x axis is the crystallographic
+u axis and whose z axis is the c axis. With reference
now to the original coordinate system used in the
diagonalization of the spin Hamiltonian, let the crystal
be oriented with its +a axis at an angle —4 to the
x axis. Let the uniaxial stress be applied in the x-s plane
at an angle 0~ to the z axis. Then, if the elastic com-
pliance is s, and the component of the strain along the
stress axis is e, the components of F can be written as
follows:

(~1 Fs)/~ (G11 G12)

X L(SII—Sts) sin'O~ —Sr4 sin20' sin34)/S'
+GI4L2SI4 sin'O' —S44 sin20+ sin34]/S'
+(Gss 0.070Glg)(S44 sin20~ cos34')/S', (6)

Fs/e=Gss(Sts sin'0~+Sss cos'0~)/S' —(Gr&+G»)
XL(Sll+S12)»n'8+Sls cos'8]/S', (7)

A/e= G4ri (Sn—Srs) sin'O~ sin34 —Sr4 sin20&)/S'

+G44(Sr4 sinsO~ sin34 —S44 sin20~)/S'
—(Gss+0.159GIs) (Stt—SIs) sin'0 cos34/S'. (8)

In the above expressions the quantity s' is the corn-
ponent of the elastic compliance tensor in a coordinate
system whose x axis is the stress axis. The values for
the components of the elastic compliance used in the
analysis of the data in this experiment were those
obtained by Wachtmann et al."

It can be seen from expressions (6)—(8) that if the
stress is applied in the m-c plane, 4 =90', there is no
dependence of the components of F on those components
of 6 which change sign between the two nonequivalent
sites discussed previously. Consequently, for stress
applied in the m-c plane the stress-dependent line shifts
will depend only upon G», G», G», G&4, G4~, and G44,
and there will be no line splitting. For stress applied in
any other plane, however, there will occur both line
shifts and splittings, but the splittings will depend only
upon G2~, G52, G~6, and G45. It is important to observe,
however, that the components of 6 which lead to line
splitting occur in Eqs. (6)—(8) only in the combinations
(Gss 0.070Gts) and (Gss+ 0.159G4s) . This fact means,
of course, that measurement of the line splittings can
only provide the values of these two combinations of
these four components of 6, and not all four individual
values.

The combination of Eq. (5) with Eqs. (6)—(8) pro-
vides the desired relationship between the line shifts
and splittings and the components of G. Inspection of
these equations shows that a suKcient number of inde-
pendent relations will be obtained for the determination
of all the components of 6, with the exception noted
above, if the line shifts are measured for three different
directions of the applied stress in the III-c plane (4 =90')
and the line splittings are measured for two diGerent
directions of stress in the a-c plane (4=0').
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's J. B. %achtman, Jr. , W. E. Tefft, D. G. Lam, Jr. , and R. P.
Stinch6eld, J. Res. Natl, Bur. Std. (U. S.) 64A, 213 (1960).

III. THE EKPEMMENTAL PROCEDURE

Experimentally it was necessary to apply stress in
the horizontal plane, which was the plane containing

RF



146 SPIN —LATTICE INTERACTION IN RUBY 333

600

400

'Experimental Data '

0 -12 b-23 (HIGH H)

C3 -23(LOW H) V-34

C
200

tO

0

g -200
I

x:

- 400

- 600
Oo 30 60

Angle Between H and C Axis
90

FIG. 4. Experimental data on line shifts for sample No. 1
(0=0'), showing curves computed from least-squares analysis
of data.

the magnetic held, in order to avoid complication of
the analysis described in the preceding section. In
such a situation it is dificult to measure stress directly,
as would be possible if, for example, the stress were

applied in the vertical direction so that known weights
could be used to produce the stress. It is possible,
however, to measure the stress indirectly by measuring
the component of strain along the stress direction.
Actually, because of the treatment of the spin-lattice
Hamiltonian in terms of the lattice strain, it is necessary
to obtain the strain components in any event. The
measurement of any one of these components, under the
condition of uniaxial stress, permits the computation
of all the other components. Therefore, the measurement
of strain is actually a more direct measurement of the
desired quantity than would be the measurement of
stress. Consequently, the strain along the stress axis
was measured by means of strain gauges cemented to
the ruby crystal, and the stress could then be applied
in the horizontal plane by means of a simple screw
mechanism.

The experimental arrangement for the application
of uniaxial stress is shown schematically in Fig. 3, where
the coordinates defined in the previous section are also
shown, for clarity. The crystal was in the form of a
rectangular rod, of square cross section. It was situated
in the center of a TE~O~ rectangular cavity, whose
dimensions were such that approximately 20% of
the rod was located inside the cavity. Attached to the
crystal but outside the cavity were four strain gauges,
one on each side of the crystal. These strain gauges were
simple resistance gauges (Baldwin-Lima-Hamilton Type
SR-4) and were attached to the sample with Eastman
910 cement. All four gauges were taken from the same
production lot and were stated by the manufacturer
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FIG. 5. Experimental data on line shifts for sample No. 2
(0~=45', C =90'), showing curves computed from least-squares
analysis of data.

to have the same gauge factor within 1%. Stress was
applied by a screw mechanism not shown in Fig. 3 in
such a way that the stress axis could be adjusted slightly.
This adjustment of the stress axis was found to be
necessary in order to insure that the stress be truly
uniaxial and uniform, with no shear components. Early
measurements on ruby" were found to be nonrepro-
ducible to some extent because of nonuniformity of the
stress and because of some bending of the crystal. It was
found, for example, that unless the stress axis was very
carefully adjusted, the strain measured on one side of
the rod could differ greatly from that measured on the
other sides. This effect was apparently due to the fact
that the ends of the sample against which the screw
mechanism pressed could not be made exactly parallel
and Qat. It was necessary, therefore, to adjust the
direction of the stress axis until all four gauges indi-
cated the same strain within &S&&10—'. Once this
alignment was accomplished, a number of measure-
ments at strains as high as 400)&10 ' could be made
without requiring further realignment. The repro-
ducibility of the results and the good agreement with
theory which is discussed in the following section indi-
cated that this method of aligning the stress axis was
adequate.

The ruby crystals used in this experiment were
stated by the manufacturer to be low-strain laser-
quality crystals containing 0.05% Cr'+ ions. Since the
concentration of Cr'+ ions was not important for this
experiment, no attempt was made to determine it more
accurately. The samples were oriented by means of a
Laue back-reRection x-ray camera to an accuracy of

'4 P. L. Donoho and R. B.Hemphill, in Proceedings of the Eighth
Internattonal Conference on Low Ternperatnre Physics, edited by
R. 0. Davies (Butterworths Scientific Publications Ltd. , London,
1963), Chap. 9, p. 294.
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FIG. 6. Experimental data on line shifts for sample No. 3
(0=90', 4 =90'), showing curves computed from least-squares
analysis of data.

approximately 0.3' and were cut with a precision saw
into rectangular rods of length 1.5 cm and 0.3-cm'
cross section. The orientations for the 6ve samples
used were the following:

Sample No. 1: Stress along c axis (0"=0').
Sample No. 2: Stress in m-c plane at 45' to c axis

(0'=45 C =90 ).
Sample No. 3: Stress along' axis (0'=90', C =90').
Sample Xo. 4: Stress in a-c plane at 45' to c axis

(0=45', C =0').
Sample No. 5: Stress along a axis (0"=90', 4 =0').

The first three samples were used for line-shift measure-
ments, and the last two were used for line-splitting
measurements.

The ESR measurements were made at room tempera-
ture with a conventional X-band spectrometer operating
at a frequency of approximately 10.1 GHz. The mag-
netic-6eld strength at the center of each line wasmeas-
ured as a function of measured strain using an NMR
gaussmeter. Line shifts in the range 10 to 50 Oe were
observed typically, and it was estimated that they could
be measured to an accuracy of approximately 0.25 Oe.
The data were recorded in the form of line shift (or
splitting) from the unstrained position versus strain.
Measurements were made for each observable transi-
tion at several values of the angle between the field and
the c axis. For each transition and angle the quantity
DH, ,/e was obtained. Through the use of Eqs. (5)—(8)
a set of relations between this quantity and the com-
ponents of G was obtained. The components of G
could then be obtained by a straightforward least-
squares analysis of the data.

Gt4=- —043~0» cm '

Gy2= —1.94+0.3 cm ' G4y= —0.63~0.30 cm '

Gs, ——6.40+0.13 cm ' Gss —0.070GM ——+1.50+0.2 cm '

G44 ——1.97+0.15 cm ' Gss+0. 159G4s ——&1.43&0.3cm '

Curves computed from these least-squares values of the
components of G are compared in Figs. 4—7 to the data.
The extremely good 6t, with no systematic deviations
between the curves and the data points, is very good
evidence that the predicted form of the spin-lattice
Hamiltonian, given in Eq. (2), is the correct form. If
there were an appreciable term in the spin-lattice
Hamiltonian linear in spin, then the computed curves
would show a systematic deviation from the data
points.

As observed previously, it is impossible to obtain the
individual values of G25, G52, G~6, and G45 using uniaxial
stress alone. The application of some other type of stress
would perhaps permit the determination of these
quantities separately, but it was felt that the applica-
tion of any type of stress other than the uniaxial
stress employed here would be very dificult and would
not yield information of great enough importance to
warrant the effort.

Although there seems to be no theoretical basis for
assuming a symmetry' to G of the form G;, =G;;, such
a symmetry is not inconsistent with the experimental
results. In fact, if the data are analyzed with the re-
quirement of this form of symmetry, which requires
that Grs ——G4s=0, G14 G41 Gss Gs2 and Gtt+Gr2
=—,'G», then the values obtained by the least-squares
analysis are changed only slightly, and the 6t of the
computed curves to the experimental points is almost
as good. The results, as presented here, do not exhibit
this symmetry, but the degree of asymmetry is, per-
haps accidentally, slight.

The value for G33 reported here is in agreement with
the value obtained by Tucker, 4 5.7 cm ', and that
obtained by Dobrov, " 5.9 cm ', by the method of
ultrasonic magnetic resonance. Dobrov's value for G~4,
1.55 cm ', is not, however, in agreement with the value
reported here. Although Tucker's measurement of G»
was the first measurement of the spin-lattice Hamil-
tonian, the accuracy of ultrasonic measurements should
not, in general, be as good as that which can be ob-
tained by the method of uniaxial stress, because the
ultrasonic measurement requires, among other things,
an accurate knowledge of the resonance line shape and
the ionic concentration. Ultrasonic measurements in a
trigonal crystal such as ruby are particularly com-
plicated by the large number of constants to be deter-
mined in the spin-lattice Hamiltonian.
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V. DISCUSSION

This experiment has demonstrated the validity of
Van Vleck's theory of the spin-lattice interaction. In
particular, the quadratic dependence of the spin-
lattice Hamiltonian has been quite well demonstrated.
Although the data do not permit the determination of
the magnitude of any term linear in spin, it is expected
that such a term should be about 100 times smaller
than the quadratic term, and this magnitude is certainly
too small to be detected in this experiment. It should be
pointed out that the presence of a term linear in spin
could best be detected by observing the effect of stress
on the +-', ~ ——', transition, where the quadratic term
would have no effect. Since it is dificult to obtain a
pure +-', ~ —

s transition in ruby, an attempt was
made to observe this effect in MgO. No line shift was
observed, leading to the conclusion that the linear term
in the spin-lattice Hamiltonian for Cr'+ ions is indeed
negligible. A linear term does appear in the spin-lattice
Hamiltonian for ions with an isolated Kramers-doublet
ground state, as shown by the work of Black and
Donoho, "so that the question of whether such a term
appears here is of some importance.

Preliminary values of the components of the G tensor
not differing appreciably from those reported here have
been used by Donoho' to compute the low-temperature
one-phonon relaxation times for the Cr'+ ion in ruby,
These calculations have been found by Standley and
Vaughan" to be in good agreement with experimental
values for the relaxation times.

We have made no attempt to compute the value of
the G tensor using crystal-Geld theory because of the
complexity of the problem. The calculation of G in

ruby should be closely related to the problem of calculat-
ing the zero-Geld splitting 2D, which arises from the
trigonal distortion of the field from cubic symmetry and
the spin-orbit coupling. A calculation of this splitting
was made by Sugano and Peter, '~ who found it necessary
to assume substantial conGguration mixing, covalency,
and anisotropic spin-orbit coupling in order to obtain
reasonable accuracy in their value for the zero-held
splitting. More recent work by Macfarlane" ' has,

"T.D. Black and P. L. Donoho, Bull. Am. Phys. Soc. 9, 37
(1964)."K.J. Standley and R. A. Vaughan, Phys. Rev. 139, A1275
(1965).

'r S. Sugano and M. Peter, Phys. Rev. 122, 381 (1961).' R. M. Macfarlane, J. Chem. Phys. 42, 442 (1965)."R.M. Macfarlane, j.Chem. Phys. 39, 3118 (1963).
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FIG. 7. Experimental data on line splittings for sample No. 4
(0=45', C&=0'), showing curves computed from least-squares
analysis of data.

'0 M. D. Sturge, J. Chem. Phys. 43, 1826 (1965).
"M. Blume and R. Orbach, Phys. Rev. 127, 1587 (1962).

however yielded an even better value for 2D without
introducing the complications used by Sugano and
Peter. In his work, Macfarlane diagonalizes the crystal
Geld accurately for the entire d' conGguration, and Gnds

that the principal contribution to 2D comes from the
off-diagonal elements of the matrix, and not from the
diagonal elements as assumed by Sugano and Peter.
It seems quite reasonable that Macfarlane's procedure
is appropriate for the computation of the G tensor,
and a calculation based on this method should yield
reasonably accurate results. In fact, Sturge" has shown
that in a uniaxial-stress experiment DD/D, which is
equal to G»e/D, is equal within experimental error to
hv'/v', the ratio of the change in off-diagonal matrix
element to the unperturbed value of the matrix element.
This result seems to indicate that G will depend strongly
also on the off-diagonal components of the Inatrix of
the perturbing Geld due to applied stress. It should be
pointed out that Blume and Orbach" have computed G
for Mn~ ions in MgO, obtaining the correct order
of magnitude, but the wrong sign for the compo-
nents.


